Academic literature on the topic 'Si-transporter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Si-transporter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Si-transporter"
Ratcliffe, Sarah, Ravin Jugdaohsingh, Julien Vivancos, Alan Marron, Rupesh Deshmukh, Jian Feng Ma, Namiki Mitani-Ueno, et al. "Identification of a mammalian silicon transporter." American Journal of Physiology-Cell Physiology 312, no. 5 (May 1, 2017): C550—C561. http://dx.doi.org/10.1152/ajpcell.00219.2015.
Full textLaîné, Philippe, Raphaël Coquerel, Mustapha Arkoun, Jacques Trouverie, and Philippe Etienne. "Assessing the Effect of Silicon Supply on Root Sulfur Uptake in S-Fed and S-Deprived Brassica napus L." Plants 11, no. 12 (June 18, 2022): 1606. http://dx.doi.org/10.3390/plants11121606.
Full textAshokan, Akhila, S. Anand, B. Aparna, and V. Mini. "Silicon Uptake Mechanism and its Multidimensional Influences on Stress Mitigation in Rice (Oryza sativa L.)." International Journal of Plant & Soil Science 35, no. 4 (March 4, 2023): 16–24. http://dx.doi.org/10.9734/ijpss/2023/v35i42793.
Full textLi, Jie, Scott M. Leisner, and Jonathan Frantz. "Alleviation of Copper Toxicity in Arabidopsis thaliana by Silicon Addition to Hydroponic Solutions." Journal of the American Society for Horticultural Science 133, no. 5 (September 2008): 670–77. http://dx.doi.org/10.21273/jashs.133.5.670.
Full textGuo, Yongping, Qian Jiang, Dingkun Gui, and Niansong Wang. "Chinese Herbal Formulas Si-Wu-Tang and Er-Miao-San Synergistically Ameliorated Hyperuricemia and Renal Impairment in Rats Induced by Adenine and Potassium Oxonate." Cellular Physiology and Biochemistry 37, no. 4 (2015): 1491–502. http://dx.doi.org/10.1159/000438517.
Full textFerraris, R. P., S. Yasharpour, K. C. Lloyd, R. Mirzayan, and J. M. Diamond. "Luminal glucose concentrations in the gut under normal conditions." American Journal of Physiology-Gastrointestinal and Liver Physiology 259, no. 5 (November 1, 1990): G822—G837. http://dx.doi.org/10.1152/ajpgi.1990.259.5.g822.
Full textSCHRÖDER, Heinz-C., Sanja PEROVIĆ-OTTSTADT, Matthias ROTHENBERGER, Matthias WIENS, Heiko SCHWERTNER, Renato BATEL, Michael KORZHEV, Isabel M. MÜLLER, and Werner E. G. MÜLLER. "Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter." Biochemical Journal 381, no. 3 (July 27, 2004): 665–73. http://dx.doi.org/10.1042/bj20040463.
Full textHu, Cai, and Jeong. "Silicon Affects Root Development, Tissue Mineral Content, and Expression of Silicon Transporter Genes in Poinsettia (Euphorbia pulcherrima Willd.) Cultivars." Plants 8, no. 6 (June 17, 2019): 180. http://dx.doi.org/10.3390/plants8060180.
Full textSklan, David, Asaf Geyra, Elad Tako, Orit Gal-Gerber, and Zehava Uni. "Ontogeny of brush border carbohydrate digestion and uptake in the chick." British Journal of Nutrition 89, no. 6 (June 2003): 747–53. http://dx.doi.org/10.1079/bjn2003853.
Full textRahman, Md Atikur, Sang-Hoon Lee, Yowook Song, Hyung Soo Park, Jae Hoon Woo, Bo Ram Choi, and Ki-Won Lee. "Molecular Characterization of Silicon (Si) Transporter Genes, Insights into Si-acquisition Status, Plant Growth, Development, and Yield in Alfalfa." Journal of The Korean Society of Grassland and Forage Science 43, no. 3 (September 30, 2023): 168–76. http://dx.doi.org/10.5333/kgfs.2023.43.3.168.
Full textDissertations / Theses on the topic "Si-transporter"
El, Moukhtari Ahmed. "Étude de l’effet d’apports exogènes de silicium et / ou de proline dans l’amélioration de la tolérance de la symbiose Medicago - Ensifer meliloti aux contraintes salines." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS234.pdf.
Full textThe effects of silicon (Si) and/or proline on the tolerance to salt stress were investigated in alfalfa Medicago sativa L. and Medicago truncatula Gaertn. Two Moroccan M. sativa varieties, Oued Lmalah (OL) and Demnate 201 (Dm), and a European M. sativa variety NS Mediana ZMS V (NS Med) originating from Serbia were used. Experiments were carried out at different stages of development. Results showed that salt stress reduced seed germination and embryo viability and inhibited reserve mobilization, particularly in the NS Med variety. The restricted germination is concomitant with an oxidative stress reflected by high levels of malonyldialdehyde (MDA) and hydrogen peroxide (H2O2) and ionic toxicity indicated by lower K+/Na+ ratio. However, Si supply induces a significant accumulation of proline and improves seed germination, embryo viability and reserve mobilization. Si also triggers high catalase (CAT) and superoxide dismutase (SOD) activities and reduces MDA and H2O2 contents. During plant growth, salinity reduces plant growth and nodulation in all of the varieties. Growth restriction is accompanied by a significant decrease in leaf chlorophyll content, chlorophyll fluorescence (Fv/Fm) and stomatal conductance. Salinity also reduces plant nitrogen and K+ and increases Na+. Among the three alfalfa varieties, the European variety NS Med is the most affected. Exogenous supply of Si and proline results in a considerable accumulation of some compatible solutes, such as proline, glycine betaine and soluble sugars together with an enhanced antioxidant enzyme activity, such as SOD, CAT, ascorbate peroxidase and glutathione reductase. This improved leaf relative water content, reduced oxidative stress and therefore restores growth and photosynthetic activity of salt-stressed plants. Similarly, using the model legume M. truncatula, the application of proline and Si modulates the expression of genes encoding enzymes of proline metabolism, such as Pyroline-5-carboxylate synthetase 1 (P5CS1), P5CS2, Ornithine aminotransferase, Proline dehydrogenase 1, and P5C dehydrogenase as well as Low silicon 2 gene encoding a silicon transporter. In conclusion, separate application of proline and Si is more beneficial for improving M. sativa salt tolerance while the combined application of the two molecules is beneficial for M. truncatula
Book chapters on the topic "Si-transporter"
Roy, Plabani, and Moumita Ash. "INFLUENCE OF SILICON ON PLANT UPTAKE OF HEAVY METALS AND METALLOID FROM SOIL." In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 2 Book 9, 107–29. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2023. http://dx.doi.org/10.58532/v2bs9ch10.
Full textReports on the topic "Si-transporter"
Wong, Eric A., and Zehava Uni. Nutrition of the Developing Chick Embryo: Nutrient Uptake Systems of the Yolk Sac Membrane and Embryonic Intestine. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7697119.bard.
Full text