To see the other types of publications on this topic, follow the link: Si quantum well.

Journal articles on the topic 'Si quantum well'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Si quantum well.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kuo, P. S., C. Y. Peng, C. H. Lee, Y. Y. Shen, H. C. Chang, and C. W. Liu. "Si/Si0.2Ge0.8/Si quantum well Schottky barrier diodes." Applied Physics Letters 94, no. 10 (March 9, 2009): 103512. http://dx.doi.org/10.1063/1.3099337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Shang Yuan, John D. Dow, and Jun Shen. "Criteria for Si quantum‐well luminescence." Journal of Applied Physics 73, no. 12 (June 15, 1993): 8458–62. http://dx.doi.org/10.1063/1.353419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, David, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner. "Ge Quantum Well Modulators on Si." ECS Transactions 16, no. 10 (December 18, 2019): 851–56. http://dx.doi.org/10.1149/1.2986844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qasaimeh, O., and P. Bhattacharya. "SiGe-Si quantum-well electroabsorption modulators." IEEE Photonics Technology Letters 10, no. 6 (June 1998): 807–9. http://dx.doi.org/10.1109/68.681491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robbins, D. J., M. B. Stanaway, W. Y. Leong, J. L. Glasper, and C. Pickering. "Si1?XGeX/Si quantum well infrared photodetectors." Journal of Materials Science: Materials in Electronics 6, no. 5 (October 1995): 363–67. http://dx.doi.org/10.1007/bf00125893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rölver, R., B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz. "Lateral Si∕SiO2 quantum well solar cells." Applied Physics Letters 92, no. 21 (May 26, 2008): 212108. http://dx.doi.org/10.1063/1.2936308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, J., S. H. Li, J. Singh, and P. K. Bhattacharya. "Low-Temperature photoluminescence of SiGe/Si disordered multiple quantum wells and quantum well wires." Journal of Electronic Materials 23, no. 8 (August 1994): 831–33. http://dx.doi.org/10.1007/bf02651380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sasaki, Kohei, Ryuichi Masutomi, Kiyohiko Toyama, Kentarou Sawano, Yasuhiro Shiraki, and Tohru Okamoto. "Well-width dependence of valley splitting in Si/SiGe quantum wells." Applied Physics Letters 95, no. 22 (November 30, 2009): 222109. http://dx.doi.org/10.1063/1.3270539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ABRAMOV, ARNOLD. "RESONANT DONOR STATES IN QUANTUM WELL." Modern Physics Letters B 25, no. 02 (January 20, 2011): 89–96. http://dx.doi.org/10.1142/s0217984911025493.

Full text
Abstract:
A method of calculation of donor impurity states in a quantum well is developed. The used techniques have made it possible to find the binding energy both of ground and excited impurity states attached to each QW subband. The positions of the resonant states in 2D continuum are determined as poles of corresponding wave functions. As a result of such an approach the identification of resonant states in 2D continuum is avoided, introducing special criterions. The calculated dependences of binding energies versus impurity position are presented for various widths of Si / Si 1-x Ge x quantum wells.
APA, Harvard, Vancouver, ISO, and other styles
10

Nayak, D. K., J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWilliams. "Hole confinement in a Si/GeSi/Si quantum well on SIMOX." IEEE Transactions on Electron Devices 43, no. 1 (1996): 180–82. http://dx.doi.org/10.1109/16.477614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sun, Po-Hsing, Shu-Tong Chang, Yu-Chun Chen, and Hongchin Lin. "A SiGe/Si multiple quantum well avalanche photodetector." Solid-State Electronics 54, no. 10 (October 2010): 1216–20. http://dx.doi.org/10.1016/j.sse.2010.05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Karunasiri, R. P. G., J. S. Park, and K. L. Wang. "Si1−xGex/Si multiple quantum well infrared detector." Applied Physics Letters 59, no. 20 (November 11, 1991): 2588–90. http://dx.doi.org/10.1063/1.105911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Fei, Song Tong, Hyung-jun Kim, and Kang L. Wang. "Photoconductive gain of SiGe/Si quantum well photodetectors." Optical Materials 27, no. 5 (February 2005): 864–67. http://dx.doi.org/10.1016/j.optmat.2004.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prunnila, Mika, and Jouni Ahopelto. "Two sub-band conductivity of Si quantum well." Physica E: Low-dimensional Systems and Nanostructures 32, no. 1-2 (May 2006): 281–84. http://dx.doi.org/10.1016/j.physe.2005.12.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aleshkin, V. Ya, V. I. Gavrilenko, and D. V. Kozlov. "Shallow acceptors in Si/SiGe quantum well heterostructures." physica status solidi (c), no. 2 (February 2003): 687–89. http://dx.doi.org/10.1002/pssc.200306183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Terashima, Koichi, Michio Tajima, Nobuyuki Ikarashi, Taeko Niino, and Toru Tatsumi. "Photoluminescence of Si1-xGex/Si Quantum Well Structures." Japanese Journal of Applied Physics 30, Part 1, No. 12B (December 30, 1991): 3601–5. http://dx.doi.org/10.1143/jjap.30.3601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

TANG, Y. S., C. M. SOTOMAYOR TORRES, C. D. W. WILKINSON, D. W. SMITH, T. E. WHALL, and E. H. C. PARKER. "Photoluminescence from Si/Si0.87Ge0.13 multiple quantum well wires." Le Journal de Physique IV 03, no. C5 (October 1993): 119–22. http://dx.doi.org/10.1051/jp4:1993521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tang, Y. S., C. D. W. Wilkinson, C. M. Sotomayor Torres, D. W. Smith, T. E. Whall, and E. H. C. Parker. "Optical properties of Si/Si0.87Ge0.13multiple quantum well wires." Applied Physics Letters 63, no. 4 (July 26, 1993): 497–99. http://dx.doi.org/10.1063/1.109984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lai, K., W. Pan, D. C. Tsui, S. Lyon, M. Mühlberger, and F. Schäffler. "Quantum Hall ferromagnetism in a two-valley strained Si quantum well." Physica E: Low-dimensional Systems and Nanostructures 34, no. 1-2 (August 2006): 176–78. http://dx.doi.org/10.1016/j.physe.2006.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Antonova, I. V., L. L. Golik, M. S. Kagan, V. I. Polyakov, A. I. Rukavischnikov, N. M. Rossukanyi, and J. Kolodzey. "Quantum Well Related Conductivity and Deep Traps in SiGe/Si Structures." Solid State Phenomena 108-109 (December 2005): 489–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.489.

Full text
Abstract:
Electrical transport and traps in vertical SiGe/Si QW structures of low background doping level are studied in the presented report. Temperature activation of holes from the quantum well was found to determine the vertical current through Si/SiGe/Si structures at T > 160 K. At lower temperatures (T < 130 K), the current mechanism is attributed to a thermally activated tunneling of holes from quantum well. Deep traps are observed in the Si/SiGe/Si structures in high concentration (1011 – 1012 cm-2). Traps are most likely assistance in the current in the vertical Si/SiGe/Si structures as recombination centers near the QW.
APA, Harvard, Vancouver, ISO, and other styles
21

Antonova, I. V., E. P. Neustroev, S. A. Smagulova, M. S. Kagan, P. S. Alekseev, S. K. Ray, N. Sustersic, and J. Kolodzey. "Confinement Levels in Passivated SiGe/Si Quantum Well Structures." Solid State Phenomena 156-158 (October 2009): 541–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.541.

Full text
Abstract:
The set of quantum confinement levels in SiGe quantum wells (QW) was observed in the temperature range from 80 to 300 K by means of charge deep-level transient spectroscopy (Q-DLTS) and transport measurements. These observations proved possible due to a passivation of structure surface with organic monolayer deposition. Si/SiGe/Si structures with different Ge contents in SiGe layer were studied. The confined levels in passivated structures became apparent through DLTS measurements as various activation energies in temperature dependence of the rate of carrier emission from QW. It was found that the recharging of SiGe QWs and carrier emission accomplish due to thermo-stimulated tunneling. The steps in the current-voltage characteristics originated from direct tunneling via the confined states were found to determine the current flow at high fields.
APA, Harvard, Vancouver, ISO, and other styles
22

Ray, S. K., G. S. Kar, and S. K. Banerjee. "Characteristics of UHVCVD grown Si/Si1−x−yGexCy/Si quantum well heterostructure." Applied Surface Science 182, no. 3-4 (October 2001): 361–65. http://dx.doi.org/10.1016/s0169-4332(01)00449-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wen-qin, Cheng, Cui Qian, Cai Li-hong, Hu Qiang, and Zhou Jun-ming. "Electroluminescence spectra of Ge x Si 1- x /Si single quantum well." Acta Physica Sinica (Overseas Edition) 4, no. 11 (November 1995): 856–58. http://dx.doi.org/10.1088/1004-423x/4/11/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huda, M. Q., A. R. Peaker, J. H. Evans-Freeman, D. C. Houghton, and W. P. Gillin. "Strong luminescence from erbium in Si/Si1–xGex/Si quantum well structures." Electronics Letters 33, no. 13 (1997): 1182. http://dx.doi.org/10.1049/el:19970750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Diehl, L., S. Mentese, E. Müller, D. Grützmacher, H. Sigg, T. Fromherz, J. Faist, et al. "Strain compensated Si/SiGe quantum well and quantum cascade on Si0.5Ge0.5 pseudosubstrate." Physica E: Low-dimensional Systems and Nanostructures 16, no. 3-4 (March 2003): 315–20. http://dx.doi.org/10.1016/s1386-9477(02)00607-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marris, D., A. Cordat, D. Pascal, A. Koster, E. Cassan, L. Vivien, and S. Laval. "Design of a SiGe-Si quantum-well optical modulator." IEEE Journal of Selected Topics in Quantum Electronics 9, no. 3 (May 2003): 747–54. http://dx.doi.org/10.1109/jstqe.2003.820404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Corbin, E., K. B. Wong, and M. Jaros. "Absorption inp-type Si-SiGe strained quantum-well structures." Physical Review B 50, no. 4 (July 15, 1994): 2339–45. http://dx.doi.org/10.1103/physrevb.50.2339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tutor, J., and F. Comas. "Si/SiGe Quantum-Well Electron Mobility. Main Scattering Mechanisms." physica status solidi (b) 191, no. 1 (September 1, 1995): 121–28. http://dx.doi.org/10.1002/pssb.2221910113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gaggero-Sager, L. M., and R. Pérez-Alvarez. "Electronic states in B δ-doped Si quantum well." physica status solidi (b) 197, no. 1 (September 1, 1996): 105–9. http://dx.doi.org/10.1002/pssb.2221970116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rached, D., N. Benkhettou, and N. Sekkal. "Electronic properties of Si/SiGe ultrathin quantum well superlattices." physica status solidi (b) 235, no. 1 (January 2003): 189–94. http://dx.doi.org/10.1002/pssb.200301356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hattori, K., M. Tsujishita, H. Okamoto, and Y. Hamakawa. "Electroabsorption spectroscopy of amorphous Si/SiC quantum well structures." Applied Physics Letters 55, no. 8 (August 21, 1989): 763–65. http://dx.doi.org/10.1063/1.101799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Abramkin, D. S., M. O. Petrushkov, M. A. Putyato, B. R. Semyagin, E. A. Emelyanov, V. V. Preobrazhenskii, A. K. Gutakovskii, and T. S. Shamirzaev. "GaAs/GaP Quantum-Well Heterostructures Grown on Si Substrates." Semiconductors 53, no. 9 (September 2019): 1143–47. http://dx.doi.org/10.1134/s1063782619090021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Holtz, P. O., B. Monemar, M. Sundaram, J. L. Merz, and A. C. Gossard. "The shallow Si donor confined in a quantum well." Superlattices and Microstructures 12, no. 1 (January 1992): 133–35. http://dx.doi.org/10.1016/0749-6036(92)90235-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kil, Yeon-Ho, Hyeon Deok Yang, Jong-Han Yang, Sukill Kang, Tae Soo Jeong, Chel-Jong Choi, Taek Sung Kim, and Kyu-Hwan Shim. "Optical properties of hybrid Si1−xGex/Si quantum dot/quantum well structures grown on Si by RPCVD." Materials Science in Semiconductor Processing 17 (January 2014): 178–83. http://dx.doi.org/10.1016/j.mssp.2013.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Han, Ji Sheng, Sima Dimitrjiev, Li Wang, Alan Iacopi, Qu Shuang, and Xian Gang Xu. "InGaN/GaN Multiple Quantum Well Blue LEDs on 3C-SiC/Si Substrate." Materials Science Forum 679-680 (March 2011): 801–3. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.801.

Full text
Abstract:
Gallium nitrides are primarily used for their excellent light emission properties. GaN LEDs are mostly grown on foreign substrates, essentially sapphire and SiC, but more recently, also on Si substrates. In this paper, we will demonstrate that the high structural quality of InGaN/GaN multiple quantum wells can be deposited on 3C-SiC/Si (111) substrate using MOCVD. This demonstrates that 3C-SiC/Si is a promising template for the epitaxial growth of InGaN/GaN multiple quantum wells for LEDs.
APA, Harvard, Vancouver, ISO, and other styles
36

Christian, George, Menno Kappers, Fabien Massabuau, Colin Humphreys, Rachel Oliver, and Philip Dawson. "Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells." Materials 11, no. 9 (September 15, 2018): 1736. http://dx.doi.org/10.3390/ma11091736.

Full text
Abstract:
In this paper we report on the optical properties of a series of InGaN polar quantum well structures where the number of wells was 1, 3, 5, 7, 10 and 15 and which were grown with the inclusion of an InGaN Si-doped underlayer. When the number of quantum wells is low then the room temperature internal quantum efficiency can be dominated by thermionic emission from the wells. This can occur because the radiative recombination rate in InGaN polar quantum wells can be low due to the built-in electric field across the quantum well which allows the thermionic emission process to compete effectively at room temperature limiting the internal quantum efficiency. In the structures that we discuss here, the radiative recombination rate is increased due to the effects of the Si-doped underlayer which reduces the electric field across the quantum wells. This results in the effect of thermionic emission being largely eliminated to such an extent that the internal quantum efficiency at room temperature is independent of the number of quantum wells.
APA, Harvard, Vancouver, ISO, and other styles
37

Maikap, S., L. K. Bera, S. K. Ray, S. John, S. K. Banerjee, and C. K. Maiti. "Electrical characterization of Si/Si1−xGex/Si quantum well heterostructures using a MOS capacitor." Solid-State Electronics 44, no. 6 (June 2000): 1029–34. http://dx.doi.org/10.1016/s0038-1101(99)00327-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Huang, Rao, Yun Du, Ailing Ji, and Zexian Cao. "Time-resolved photoluminescence from Si-in-SiNx/Si-in-SiC quantum well-dot structures." Optical Materials 35, no. 12 (October 2013): 2414–17. http://dx.doi.org/10.1016/j.optmat.2013.06.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rack, M. J., T. J. Thornton, D. K. Ferry, J. Huffman, and R. Westhoff. "Strained Si/SiGe quantum well MODFETs for cryogenic circuit applications." Solid-State Electronics 45, no. 7 (July 2001): 1199–203. http://dx.doi.org/10.1016/s0038-1101(01)00198-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lin, C. H., C. Y. Yu, P. S. Kuo, C. C. Chang, T. H. Guo, and C. W. Liu. "δ-Doped MOS Ge/Si quantum dot/well infrared photodetector." Thin Solid Films 508, no. 1-2 (June 2006): 389–92. http://dx.doi.org/10.1016/j.tsf.2005.06.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Peng, C. Y., F. Yuan, C. Y. Yu, P. S. Kuo, M. H. Lee, S. Maikap, C. H. Hsu, and C. W. Liu. "Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si." Applied Physics Letters 90, no. 1 (January 2007): 012114. http://dx.doi.org/10.1063/1.2400394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Laikhtman, B., and R. A. Kiehl. "Theoretical hole mobility in a narrow Si/SiGe quantum well." Physical Review B 47, no. 16 (April 15, 1993): 10515–27. http://dx.doi.org/10.1103/physrevb.47.10515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Salvador, A., G. Liu, W. Kim, Ö. Aktas, A. Botchkarev, and H. Morkoç. "Properties of a Si doped GaN/AlGaN single quantum well." Applied Physics Letters 67, no. 22 (November 27, 1995): 3322–24. http://dx.doi.org/10.1063/1.115234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Akahane, Kouichi, Naokatsu Yamamoto, Shin-ichiro Gozu, and Naoki Ohtani. "High-Quality GaSb/AlGaSb Quantum Well Grown on Si Substrate." Japanese Journal of Applied Physics 44, no. 1 (December 10, 2004): L15—L17. http://dx.doi.org/10.1143/jjap.44.l15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maine, Sylvain, Delphine Marris Morini, Laurent Vivien, Eric Cassan, and Suzanne Laval. "Design Optimization of a SiGe/Si Quantum-Well Optical Modulator." Journal of Lightwave Technology 26, no. 6 (March 2008): 678–84. http://dx.doi.org/10.1109/jlt.2007.916589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Jianxun, Jin Wang, Xiujian Sun, Qian Sun, Meixin Feng, Rui Zhou, Yu Zhou, et al. "InGaN-Based Quantum Well Superluminescent Diode Monolithically Grown on Si." ACS Photonics 6, no. 8 (July 9, 2019): 2104–9. http://dx.doi.org/10.1021/acsphotonics.9b00657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zingway Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu. "A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor." IEEE Electron Device Letters 24, no. 10 (October 2003): 643–45. http://dx.doi.org/10.1109/led.2003.817870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhou, W. Z., Z. M. Huang, Z. J. Qiu, T. Lin, L. Y. Shang, D. L. Li, H. L. Gao, et al. "Pseudospin in Si -doped InAlAs/InGaAs/InAlAs single quantum well." Solid State Communications 142, no. 7 (May 2007): 393–97. http://dx.doi.org/10.1016/j.ssc.2007.03.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pidgeon, C. R., P. Murzyn, J. P. R. Wells, I. V. Bradley, Z. Ikonic, R. W. Kelsall, P. Harrison, et al. "THz intersubband dynamics in p-Si/SiGe quantum well structures." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 904–7. http://dx.doi.org/10.1016/s1386-9477(02)00231-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dötsch, U., U. Gennser, C. David, G. Dehlinger, D. Grützmacher, T. Heinzel, S. Lüscher, and K. Ensslin. "Single-hole transistor in a p-Si/SiGe quantum well." Applied Physics Letters 78, no. 3 (January 15, 2001): 341–43. http://dx.doi.org/10.1063/1.1342040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography