Academic literature on the topic 'Si heterojunction solar cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Si heterojunction solar cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Si heterojunction solar cells"

1

Lin, C. H. "Si/Ge/Si double heterojunction solar cells." Thin Solid Films 518, no. 6 (January 2010): S255—S258. http://dx.doi.org/10.1016/j.tsf.2009.10.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zelentsov, K. S., and A. S. Gudovskikh. "GaP/Si anisotype heterojunction solar cells." Journal of Physics: Conference Series 741 (August 2016): 012096. http://dx.doi.org/10.1088/1742-6596/741/1/012096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruan, Kaiqun, Ke Ding, Yuming Wang, Senlin Diao, Zhibin Shao, Xiujuan Zhang, and Jiansheng Jie. "Flexible graphene/silicon heterojunction solar cells." Journal of Materials Chemistry A 3, no. 27 (2015): 14370–77. http://dx.doi.org/10.1039/c5ta03652f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Hiroshi, Yoshirou Takaba, Yuji Komatsu, Ming-Ju Yang, Takashi Hayakawa, Masafumi Shimizu, and Haruhisa Takiguchi. "High-efficiency μc-Si/c-Si heterojunction solar cells." Solar Energy Materials and Solar Cells 74, no. 1-4 (October 2002): 525–31. http://dx.doi.org/10.1016/s0927-0248(02)00071-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamamoto, Kenji, Kunta Yoshikawa, Hisashi Uzu, and Daisuke Adachi. "High-efficiency heterojunction crystalline Si solar cells." Japanese Journal of Applied Physics 57, no. 8S3 (July 20, 2018): 08RB20. http://dx.doi.org/10.7567/jjap.57.08rb20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Li, Xinliang Chen, Yiming Liu, Ying Zhao, and Xiaodan Zhang. "Research on ZnO/Si heterojunction solar cells." Journal of Semiconductors 38, no. 5 (June 2017): 054005. http://dx.doi.org/10.1088/1674-4926/38/5/054005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hayashi, Toshiya, Takehiro Nishikura, Kazuhiro Nishimura, and Yoshinori Ema. "p-Si/n-CdS Heterojunction Solar Cells." Japanese Journal of Applied Physics 28, Part 1, No. 7 (July 20, 1989): 1174–77. http://dx.doi.org/10.1143/jjap.28.1174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anderson, W. A., B. Jagannathan, and E. Klementieva. "Lightweight, thin-film Si heterojunction solar cells." Progress in Photovoltaics: Research and Applications 5, no. 6 (November 1997): 433–41. http://dx.doi.org/10.1002/(sici)1099-159x(199711/12)5:6<433::aid-pip195>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gudovskikh, A. S., K. S. Zelentsov, A. I. Baranov, D. A. Kudryashov, I. A. Morozov, E. V. Nikitina, and J. P. Kleider. "Study of GaP/Si Heterojunction Solar Cells." Energy Procedia 102 (December 2016): 56–63. http://dx.doi.org/10.1016/j.egypro.2016.11.318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nawaz, Muhammad. "Design Analysis of a-Si/c-Si HIT Solar Cells." Advances in Science and Technology 74 (October 2010): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ast.74.131.

Full text
Abstract:
A theoretical design analysis using numerical two dimensional computer aided design tool (i.e., TCAD) is presented for a-Si/c-Si based heterojunction (HJ) solar cells. A set of optical beam propagation models, complex refractive index models and defect models for a-Si material implemented (in-built) in the simulation software are first evaluated for single (SHJ) and double heterojunction (DHJ) devices. Assessment is further carried out by varying physical parameters of the layer structures such as doping, thickness of the c-Si and a-Si layers, defect density in the a-Si layer and bandgap discontinuity parameter. With varying bandgap discontinuity and using standard transport model in numerical device simulation, HJ solar cell performance is undervalued (η = 19.5%). This is the result of poor photogenerated carrier collection due to the presence of heterojunction at the respective n and p-contacts of the device. Implementing thermionic field emission tunneling model at the heterojunction, we obtained improved performance (η = 24 %) over large range of bandgap discontinuities. Keeping improved efficiency of HJ cell, implementing a step graded a-Si layer, further helps to widen the range of bandgap discontinuity parameter.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Si heterojunction solar cells"

1

Lau, Yin Ping. "Si/CdTe heterojunction fabricated by closed hot wall system." HKBU Institutional Repository, 1995. http://repository.hkbu.edu.hk/etd_ra/44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, de Nicolas Silvia. "a-Si : H/c-Si heterojunction solar cells : back side assessment and improvement." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112253/document.

Full text
Abstract:
Parmi les technologies photovoltaïques à base de silicium, les cellules solaires à hétérojonction a-Si:H/c-Si (HJ) ont montré une attention croissante en ce qui concerne leur fort potentiel d’amélioration du rendement et de la réduction de coûts. Dans cette thèse, des investigations sur les cellules solaires à hétérojonction a-Si:H/c-Si de type (n) développées à l'Institut National de l'Énergie Solaire sont présentées. Les aspects technologiques et physiques du dispositif à HJ ont été revus, en mettant l'accent sur la compréhension du rôle joué par la face arrière. À travers le développement et la mise en œuvre des films de a-Si:H intrinsèques et dopés (n) de haute qualité des cellules solaires à HJ, les conditions requises en face arrière des dispositifs ont été établies. Une comparaison entre plusieurs types de champ surface arrière, avec et sans l’introduction d’une couche buffer, est présentée et les caractéristiques des cellules solaires résultants sont discutées. Une discussion autour du contact arrière de cellules solaires à HJ est aussi présentée. Une nouvelle approche d’oxyde transparent conducteur en face arrière basé sur les couches d’oxyde de zinc dopé au bore (ZnO:B) est étudié. Dans le but de développer des couches de ZnO:B de haute qualité bien adaptées à leur utilisation dans des dispositifs à HJ, différents paramètres de dépôt ainsi que des traitements après dépôt comme le post plasma d’hydrogène ou le recuit laser sont étudiés et leur influence sur des cellules solaires est évaluée. Au cours de ce travail il est montré que la face arrière des cellules solaires à HJ joue un rôle important sur l’accomplissement de hauts rendements. Cependant, l'augmentation de la performance globale du dispositif dû à l’optimisation de la face arrière de la cellule est toujours dépendante des phénomènes ayant lieu en face avant des dispositifs. L'utilisation des films optimisés pour la face arrière des HJs développées dans cette thèse, associée à des couches améliorées pour la face avant et une nouvelle approche de métallisation nous a permis d’atteindre un rendement de conversion record de plus de 22%, démontrant ainsi le grand potentiel de cette technologie à HJ de a-Si:H/c-Si
Amongst available silicon-based photovoltaic technologies, a-Si:H/c-Si heterojunctions (HJ) have raised growing attention because of their potential for further efficiency improvement and cost reduction. In this thesis, research on n-type a-Si:H/c-Si heterojunction solar cells developed at the Institute National de l’Énergie Solaire is presented. Technological and physical aspects of HJ devices are reviewed, with the focus on the comprehension of the back side role. Then, an extensive work to optimise amorphous layers used at the rear side of our devices as well as back contact films is addressed. Through the development and implementation of high-quality intrinsic and n-doped a-Si:H films on HJ solar cells, the needed requirements at the back side of devices are established. A comparison between different back surface fields (BSF) with and without the inclusion of a buffer layer is presented and resulting solar cell output characteristics are discussed. A discussion on the back contact of HJ solar cells is also presented. A new back TCO approach based on boron-doped zinc oxide (ZnO:B) layers is studied. With the aim of developing high-quality ZnO:B layers well-adapted to their use in HJ devices, different deposition parameters as well as post-deposition treatments such as post-hydrogen plasma or excimer laser annealing are studied, and their influence on solar cells is assessed. Throughout this work it is evidenced that the back side of HJ solar cells plays an important role on the achievement of high efficiencies. However, the enhancement of the overall device performance due to the back side optimisation is always dependent on phenomena taking place at the front side of devices. The use of the optimised back side layers developed in this thesis, together with improved front side layers and a novel metallisation approach have permitted a record conversion efficiency over 22%, thus demonstrating the great potential of this technology
APA, Harvard, Vancouver, ISO, and other styles
3

Meitzner, Karl. "Heterojunction-Assisted Impact Ionization and Other Free Carrier Dynamics in Si, ZnS/Si, and ZnSe/Si." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19294.

Full text
Abstract:
With increasing global energy demand and diminishing fossil fuel supplies, the development of clean and affordable renewable energy technology is more important than ever. Photovoltaic devices harvest the sun’s energy to produce electricity and produce very little pollution compared to nonrenewable sources. In order to make these devices affordable, however, technological advances are required. In this dissertation a novel photovoltaic device architecture that is designed to enhance sunlight-to-electricity conversion efficiency of photovoltaics is proposed and demonstrated. The increase in efficiency arises due to enhancement of the internal quantum efficiency of photoexcitation in the semiconductor absorber. In other words, the probability that the absorption of a single photon will produce two or more electron-hole pairs, instead of just one, is increased. This occurs through the process of impact ionization, by which a highly excited charge carrier (via absorption of a high energy photon) relaxes by excitation of a second electron-hole pair. The result is an increased photocurrent, and efficiency, of the photovoltaic device. Using thin films of ZnS on Si substrates, we demonstrate that the probability of impact ionization is enhanced at the (unbiased) heterojunction between these layers. The magnitude of enhancement depends on material properties, including crystallinity of the ZnS film as well as concentration of oxygen (impurity) at the interface. Thin films of ZnSe on Si substrates do not exhibit heterojunction-assisted impact ionization, but they do display promising characteristics that make them an intriguing system for future work. The same is true for ZnS/Si materials fabricated by O2-free chemical bath deposition. For the analysis of plain Si as well as ZnS/Si and ZnSe/Si heterostructures, we employ a novel pump-probe transient transmission and reflection spectroscopy technique. A method is demonstrated for using this technique to quantify internal quantum efficiency as well as interface recombination velocity in each of these materials. In bulk silicon, a free carrier absorption cross section that depends on free carrier concentration (above 1018 cm-3) is observed and the relationship is quantified. This dissertation includes unpublished and previously published co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
4

Gogolin, Ralf [Verfasser]. "Analysis and optimization of a-Si:H/c-Si heterojunction solar cells / Ralf Gogolin." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1099098130/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pehlivan, Ozlem. "Growth And Morphological Characterization Of Intrinsic Hydrogenated Amorphous Silicon Thin Film For A-si:h/c-si Heterojunction Solar Cells." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615488/index.pdf.

Full text
Abstract:
Passivation of the crystalline silicon (c-Si) wafer surface and decreasing the number of interface defects are basic requirements for development of high efficiency a-Si:H/c-Si heterojunction solar cells. Surface passivation is generally achieved by development of detailed silicon wafer cleaning processes and the optimization of PECVD parameters for the deposition of intrinsic hydrogenated amorphous silicon layer. a-Si:H layers are grown in UHV-PECVD system. Solar cells were deposited on the p type Cz-silicon substrates in the structure of Al front contact/a-Si:H(n)/a-Si:H(i)/c-Si(p)/Al back contact. Solar cell parameters were determined under standard test conditions namely, using 1000 W/m2, AM 1.5G illumination at 25 oC. Growth of (i) a-Si:H, films on the clean wafer surface was investigated as a function of substrate temperature, RF power density, gas flow rate, hydrogen dilution ratio and deposition time and was characterized using SEM, HRTEM, AFM, SE, ATR-FTIR and I/V measurements. Structural properties of the films deposited on silicon wafer surface are directly effective on the solar cell efficiency. Morphological characterization of the grown films on the crystalline surface was found to be very complex depending on the deposition parameters and may even change during the deposition time. At 225 oC substrate temperature, at the beginning of the deposition, (i) a-Si:H films was found grown in epitaxial structure, followed by a simultaneous growth of crystalline and amorphous structure, and finally transforming to complete amorphous structure. Despite this complex structure, an efficiency of 9.2% for solar cells with total area of 72 cm2 was achieved. In this cell structure, TCO and back surface passivation do not exist. In the
APA, Harvard, Vancouver, ISO, and other styles
6

Müller, Thomas. "Heterojunction solar cells (a-Si, c-Si) investigations on PECV deposited hydrogenated silicon alloys for use as high quality surface passivation and emitter, BSF." Berlin Logos-Verl, 2009. http://d-nb.info/997563184/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussain, Babar. "Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer." Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10258481.

Full text
Abstract:

The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO.

In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified. The spatial analysis for thickness uniformity and optical quality of ZnO films is carried out. These properties turn out to play a fundamental role in device performance and so far have been overlooked by the research community. Three different materials are used as a quantum buffer layer at the interface of ZnO and Si to suppress the interface states and improve the VOC. The best measured value of VOC of 359 mV is achieved using amorphous-ZnO (a-ZnO) as the buffer layer at the interface. Finally, supplementary simulations are performed to optimize the valence-band and conduction-band offsets by engineering the bandgap and electron affinity of ZnO.

After we published our initial results related to the feasibility of n-ZnO/p-Si SHJSC [Sol. Energ. Mat. Sol. Cells 139 (2015) 95–100], different research groups have fabricated and reported the solar cell performance with the best efficiency of 7.1% demonstrated very recently by Pietruszka et al. [Sol. Energ. Mat. Sol. Cells 147 (2016) 164–170]. We conclude that major challenge in n-ZnO/p-Si SHJSC is to overcome Fermi-level pinning at the hetero-interface. A potential solution is to use the appropriate material as buffer layer which is confirmed by observing an improvement in VOC using a-ZnO at the interface as buffer layer. Once the interface quality is improved and the experimental value of VOC matched the theoretical prediction, the n-ZnO/p-Si SHJSC can potentially have significant contribution in solar cells industry.

APA, Harvard, Vancouver, ISO, and other styles
8

Jakkala, Pratheesh Kumar. "Fabrication of Si/InGaN Heterojunction Solar Cells by RF Sputtering Method: Improved Electrical and Optical Properties of Indium Gallium Nitride (InGaN) Thin Films." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1490714042486824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Labrune, Martin. "Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00611652.

Full text
Abstract:
This thesis presents a work which has been devoted to the growth of silicon thin films on crystalline silicon for photovoltaic applications by means of RF PECVD. The primary goal of this work was to obtain an amorphous growth on any c-Si surface in order to provide an efficient passivation, as required in heterojunction solar cells. Indeed, we demonstrated that epitaxial or mixed phase growths, easy to obtain on (100) Si, would lead to poor surface passivation. We proved that growing a few nm thin a-Si1-xCx:H alloy film was an efficient, stable and reproducible way to hinder epitaxy while keeping an excellent surface passivation by the subsequent deposition of a-Si:H films. Process optimization mainly based on Spectroscopic Ellipsometry, Effective lifetime measurements (Sinton lifetime tester) and current-voltage characterization led us to demonstrate that it was possible to obtain a-Si:H/c-Si heterojunction solar cells with stable VOC of 710 mV and FF of 76 % on flat (n) c-Si wafers, with solar cells of 25 cm2 whose metallization was realized by screen-printing technology. This work has also demonstrated the viability of a completely dry process where the native oxide is removed by SiF4 plasma etching instead of the wet HF removal. Last but not least, the epitaxial growth of silicon thin films, undoped and n or p-type doped, on (100)-oriented surfaces has been studied by Spectroscopic Ellipsometry and Hall effect measurements. We have been able to fabricate homojunction solar cells with a p-type emitter as well as p-i-n structures with an undoped epitaxial absorber on a heavily-doped (p) c-Si wafers.
APA, Harvard, Vancouver, ISO, and other styles
10

Hertl, Vít. "Studium fotovoltaických nanostruktur mikroskopickými metodami." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-444405.

Full text
Abstract:
V této diplomové práci je nejprve ve zkratce uvedena teorie fyziky solárních článků, kde jsou zmíněny klíčové procesy ovlivňující účinnost konverze slunečního záření na elektrickou energii. Dále je předložena rešerše o fotovoltaických nanostrukturách (nanodráty, nanokrystaly), jejichž implementací je možné účinnost solárních článků zvýšit. V přehledu experimentálních technik ke zkoumání fotovoltaických nanostruktur je důraz kladen zejména na korelativní měření pomocí SEM a AFM, vodivostního AFM, měření EBIC a mikroskopické měření elektroluminiscence. V experimentální části jsou předloženy výsledky měření struktur mikrokrystalického křemíku, vzorku hetero-přechodového Si solárního článku s kontakty na zadní straně (IBC-SHJ z projektu NextBase) a V-pitů vzorku InGaN/GaN kvantových jam. Měření elektroluminiscence bylo provedeno na vzorcích III-V polovodičů (InGaP, GaAs). Byly vypočítány jinak těžko dostupné charakteristiky III-V tandemových solárních článků pomocí elektroluminiscence a srovnání vlastností IBC-SHJ zjištěných pomocí mikroskopického měření elektroluminiscence a EBIC. Provedením experimentů bylo zjištěno, jakým způsobem se dělí proud vybuzený svazkem elektronů mezi hrot AFM a vzorek mikrokrystalického křemíku.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Si heterojunction solar cells"

1

Landis, Geoffrey A. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Landis, Geoffrey. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fahrner, Wolfgang Rainer, ed. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37039-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakajima, K., and Noritaka Usami. Crystal growth of Si for solar cells. Berlin: Springer Verlag, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weinberg, Irving. Heteroepitaxial InP solar cells on Si and GaAs substrates. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Solanki, Chetan Singh, and Hemant Kumar Singh. Anti-reflection and Light Trapping in c-Si Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4771-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ellison, T. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology. Golden, CO: National Renewable Energy Laboratory, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Senoussaoui, Nadia. Einfluss der Oberflächenstrukturierung auf die optischen Eigenschaften der Dünnschichtsolarzellen auf der Basis von a-Si : H und [mu]c-Si: H. Jülich: Forschungszentrum Jülich, Zentralbibliothek, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Si heterojunction solar cells"

1

Fujiwara, Hiroyuki. "Amorphous/Crystalline Si Heterojunction Solar Cells." In Spectroscopic Ellipsometry for Photovoltaics, 227–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75377-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muñoz, Delfina, Thibaut Desrues, and Pierre-Jean Ribeyron. "a-Si:H/c-Si Heterojunction Solar Cells: A Smart Choice for High Efficiency Solar Cells." In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 539–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Jayasree Roy, Debolina Saha, Arijit Bardhan Roy, Gourab Das, Snehanshu Patra, A. K. Barua, and Sumita Mukhopadhyay. "Application of N-doped ZnO Nanorods in Heterojunction Si Solar Cells." In Springer Proceedings in Physics, 361–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anwer, Syed, and Mukul Das. "Performance analysis of ZnO/c-Si heterojunction solar cell." In Computer, Communication and Electrical Technology, 189–92. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315400624-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manzoor, Rumysa, Prashant Singh, Sanjay K. Srivastava, P. Prathap, and C. M. S. Rauthan. "Alkaline Treatment of Silicon Nanostructures for Efficient PEDOT:PSS/Si Heterojunction Solar Cells." In Springer Proceedings in Physics, 477–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Bingyan, Yan Zhang, Bei Guo, Bing Zhang, Hongyuan Li, Wenjing Wang, and Lei Zhao. "Computer Simulation of P-A-Si:H/N-C-Si Heterojunction Solar Cells." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1239–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mandal, Lipika, S. Sadique Anwer Askari, Manoj Kumar, and Muzaffar Imam. "Analysis of ZnO/Si Heterojunction Solar Cell with Interface Defect." In Advances in Computer, Communication and Control, 533–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3122-0_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Sang Kyun, Jung Chul Lee, Viresh Dutta, Sung Ju Park, and Kyung Hoon Yoon. "The Effect of ZnO:Al Sputtering Condition on a-Si:H / Si Wafer Heterojunction Solar Cells." In Solid State Phenomena, 1015–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guechi, Abla, and Mohamed Chegaar. "Seasonal Variations of Solar Radiation on the Performance of Crystalline Silicon Heterojunction (c-Si-HJ) Solar Cells." In Advanced Control Engineering Methods in Electrical Engineering Systems, 267–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97816-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angermann, Heike, and Jörg Rappich. "Wet-Chemical Conditioning of Silicon Substrates for a-Si:H/c-Si Heterojunctions." In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 45–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Si heterojunction solar cells"

1

Chen, Christopher T., Rebecca Saive, Hal S. Emmer, Shaul Aloni, and Harry A. Atwater. "GaP/Si heterojunction solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ager, J. W., L. A. Reichertz, K. M. Yu, W. J. Schaff, T. L. Williamson, M. A. Hoffbauer, N. M. Haegel, and W. Walukiewicz. "InGaN/Si heterojunction tandem solar cells." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abdul Hadi, Sabina, Ammar Nayfeh, Pouya Hashemi, and Judy Hoyt. "a-Si/c-Si1−xGex/c-Si heterojunction solar cells." In 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2011). IEEE, 2011. http://dx.doi.org/10.1109/sispad.2011.6035083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lombardo, Salvatore, Cosimo Gerardi, Andrea Scuto, Marina Foti, Giuseppe Condorelli, Andrea Canino, and Anna Battaglia. "Amorphous Si tandem solar cells with SiOx / microcrystalline Si heterojunction." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakamura, J. "Development of Heterojunction Back Contact Si Solar Cells." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.g-8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Syu, Hong-Jhang, Shu-Chia Shiu, and Ching-Fuh Lin. "Si/silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.893353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Falk, Fritz, Guobin Jia, Gudrun Andrä, Ingo Sill, and Nikolay Petkov. "Silicon nanowire solar cells with a-Si heterojunction showing 7.3% efficiency." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.897369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Islam, Kazi, and Ammar Nayfeh. "Simulation of a-Si/c-GaAs/c-Si Heterojunction Solar Cells." In 2012 European Modelling Symposium (EMS). IEEE, 2012. http://dx.doi.org/10.1109/ems.2012.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muralidharan, Pradyumna, Kunal Ghosh, Dragica Vasileska, and Stephen M. Goodnick. "Hot hole transport in a-Si/c-Si heterojunction solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohdaira, Keisuke, Cheng Guo, Hideyuki Takagishi, Takashi Masuda, Zhongrong Shen, and Tatsuya Shimoda. "Si heterojunction solar cells with a-Si passivation films formed from liquid Si." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749690.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Si heterojunction solar cells"

1

Hegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1224531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Author, Not Given. High efficiency (> 20%) heterojunction solar cell on 30μm thin crystalline Si substrates using a novel exfoliation technology. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1356325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Redwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey, and Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1350042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jen, Alex K. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada616502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tao, Meng. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1171391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Compaan, A. D., X. Deng, and R. G. Bohn. High efficiency thin film CdTe and a-Si based solar cells. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/754623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grassman, Tyler, Steven Ringel, Emily Warren, Stephen Bremner, and Alex Stavrides. GaAsP/Si Tandem Solar Cells: Pathway to Low-Cost, High-Efficiency Photovoltaics. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1784256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Qi. Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1013897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Olsen, L. C. Alternative Heterojunction Partners for CIS-Based Solar Cells; Final Report: 1 January 1998--31 August 2001. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/15003609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography