Journal articles on the topic 'Si and Ge nanostructures'

To see the other types of publications on this topic, follow the link: Si and Ge nanostructures.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Si and Ge nanostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brunner, Karl. "Si/Ge nanostructures." Reports on Progress in Physics 65, no. 1 (December 19, 2001): 27–72. http://dx.doi.org/10.1088/0034-4885/65/1/202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zaumseil, Peter, Yuji Yamamoto, Markus Andreas Schubert, Thomas Schroeder, and Bernd Tillack. "Reduction of Structural Defects in Ge Epitaxially Grown on Nano-Structured Si Islands on SOI Substrate." Solid State Phenomena 205-206 (October 2013): 400–405. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.400.

Full text
Abstract:
One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.
APA, Harvard, Vancouver, ISO, and other styles
3

Egorov, V. A., G. É. Cirlin, A. A. Tonkikh, V. G. Talalaev, A. G. Makarov, N. N. Ledentsov, V. M. Ustinov, N. D. Zakharov, and P. Werner. "Si/Ge nanostructures for optoelectronics applications." Physics of the Solid State 46, no. 1 (January 2004): 49–55. http://dx.doi.org/10.1134/1.1641919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stoica, T., and E. Sutter. "Ge dots embedded in SiO2obtained by oxidation of Si/Ge/Si nanostructures." Nanotechnology 17, no. 19 (September 11, 2006): 4912–16. http://dx.doi.org/10.1088/0957-4484/17/19/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Douhan, Rahaf, Kirill Lozovoy, Andrey Kokhanenko, Hazem Deeb, Vladimir Dirko, and Kristina Khomyakova. "Recent Advances in Si-Compatible Nanostructured Photodetectors." Technologies 11, no. 1 (January 24, 2023): 17. http://dx.doi.org/10.3390/technologies11010017.

Full text
Abstract:
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Since silicon is the dominating semiconductor material in the electronic industry over the past decades, and as germanium and tin nanostructures are very compatible with silicon, the combination of these factors makes them the promising candidate to use in future technologies.
APA, Harvard, Vancouver, ISO, and other styles
6

Barbagiovanni, E. G., D. J. Lockwood, P. J. Simpson, and L. V. Goncharova. "Quantum confinement in Si and Ge nanostructures." Journal of Applied Physics 111, no. 3 (February 2012): 034307. http://dx.doi.org/10.1063/1.3680884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moutanabbir, O., S. Miyamoto, A. Fujimoto, and K. M. Itoh. "Isotopically controlled self-assembled Ge/Si nanostructures." Journal of Crystal Growth 301-302 (April 2007): 324–29. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Ye-Liang, Hai-Ming Guo, Zhi-Hui Qin, Hai-Feng Ma, and Hong-Jun Gao. "Toward a Detailed Understanding of Si(111)-7×7Surface and Adsorbed Ge Nanostructures: Fabrications, Structures, and Calculations." Journal of Nanomaterials 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/874213.

Full text
Abstract:
Firstly, both the rest atoms and the adatoms of Si(111)-7×7surface are observed simultaneously by scanning tunneling microscopy (STM) when the sample bias voltages are kept less than − 0.7 V. The visibility of the rest atoms is rationalized by first-principle calculations and a very sharper tip can resolve them. Secondly, the behaviors of various Ge nanostructures fabricated on Si(111)-7×7, ranging from the initial adsorption sites of individual Ge atoms to the aggregation patterns of Ge nanoclusters, and then to 2D extended Ge islands, are comprehensively investigated by STM. The individual Ge atoms tend to substitute for Si adatoms at Si(111)-7×7with the preference of corner adatoms in the faulted half unit when keeping substrate at150∘C. With increasing Ge coverage, individual Ge atoms and Ge nanoclusters coexist on the substrate. Subsequently, the density of Ge nanoclusters increase and cluster-distribution becomes gradually regular with the formation of final 2D extended hexagonal configuration. When keeping the substrate at300∘C, Ge islands consisting of more complicated reconstructions with intermixing Ge/Si components are present on the substrate. The detail structural characterizations and the bonding nature of the observed Ge nanostructures are enunciated by the first-principle calculations.
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Y. S., C. M. Sotomayor Torres, T. E. Whall, E. H. C. Parker, H. Presting, and H. Kibbel. "Optical properties of Si-Si1−xGex and Si-Ge nanostructures." Journal of Materials Science: Materials in Electronics 6, no. 5 (October 1995): 356–62. http://dx.doi.org/10.1007/bf00125892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Лапин, Вячеслав Анатольевич, Александр Александрович Кравцов, Дмитрий Сергеевич Кулешов, and Федор Федорович Малявин. "INVESTIGATION OF POSSIBILITY OF THE MISFIT DISLOCATION DENSITY REDUCTION IN GE / SI FILMS WITH A BUFFER LAYER." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 13 (December 23, 2021): 263–71. http://dx.doi.org/10.26456/pcascnn/2021.13.263.

Full text
Abstract:
В работе исследована возможность улучшения качества гетероэпитаксиальных структур Ge / Si с буферным слоем. Показано, что при использовании подготовительного слоя, состоящего из наноостровков, зарощенных низкотемпературным буферным слоем, возможно проявление так называемого эффекта аннигиляции дислокаций несоответствия в объеме буферного слоя Buf, что значительно улучшает приборное качество получаемых структур. Представлена зависимость морфологии поверхности слоя чистого Ge на буфере от времени роста наноостровков в интерфейсе Si / Buf . Выявлены оптимальные технологические параметры роста наноостровков для получения слоя Ge с минимальной значением шероховатости. Наилучших результатов удалось достичь при времени осаждения наноостровков 2 мин. При этом была достигнута минимальное значение шероховатости поверхности, равное 78 нм. Показано, что при дальнейшем увеличении размеров наноостровков, процесс аннигиляции дефектов замедляется, и рост низкотемпературного буферного слоя сменяется трехмерным островковым ростом, что увеличивает перепады рельефа поверхности выращиваемого слоя. The possibility of improving the quality of Ge / Si heteroepitaxial structures with a buffer layer is investigated. It is shown that when using a preparatory layer consisting of nanostructures overgrown with a low-temperature buffer layer, it is possible to manifest the so-called effect of annihilation of the misfit dislocations in the bulk of the buffer layer Buf , which significantly improves the quality of the resulting structures. The dependence of the morphology of the surface of the pure Ge layer on the buffer on the growth time of nanostructures in the Si / Buf interface is presented. The optimal technological parameters of the growth of nanostructures for obtaining a Ge layer with a minimum roughness value are revealed. The best results were achieved when the deposition time of nanostructures was 2 min. At the same time, the minimum surface roughness value of 78 nm was achieved. It is shown that with a further increase in the size of the nanostructures, the process of annihilation of defects slows down, and the growth of the low-temperature buffer layer is replaced by a three-dimensional island growth, which increases the differences in the relief of the surface of the grown layer.
APA, Harvard, Vancouver, ISO, and other styles
11

Baribeau, J.-M., X. Wu, N. L. Rowell, and D. J. Lockwood. "Ge dots and nanostructures grown epitaxially on Si." Journal of Physics: Condensed Matter 18, no. 8 (February 10, 2006): R139—R174. http://dx.doi.org/10.1088/0953-8984/18/8/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nikolenko, A. S. "Photoresponse in Ge/Si nanostructures with quantum dots." Semiconductor Physics, Quantum Electronics & Optoelectronics 9, no. 1 (March 1, 2006): 32–35. http://dx.doi.org/10.15407/spqeo9.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Das, Suvankar, Amitava Moitra, Mishreyee Bhattacharya, and Amlan Dutta. "Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires." Beilstein Journal of Nanotechnology 6 (October 2, 2015): 1970–77. http://dx.doi.org/10.3762/bjnano.6.201.

Full text
Abstract:
The present study employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young’s modulus and the linear coefficient of thermal expansion through separate simulations. These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability.
APA, Harvard, Vancouver, ISO, and other styles
14

Mckay, Michael R., John Shumway, and Jeff Drucker. "Real-time coarsening dynamics of Ge∕Si(100) nanostructures." Journal of Applied Physics 99, no. 9 (May 2006): 094305. http://dx.doi.org/10.1063/1.2191574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Brona, Jacek, Vasily Cherepanov, Konstantin Romanyuk, and Bert Voigtländer. "Formation of pits during growth of Si/Ge nanostructures." Surface Science 604, no. 3-4 (February 2010): 424–27. http://dx.doi.org/10.1016/j.susc.2009.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Izhnin, I. I., O. I. Fitsych, A. V. Voitsekhovskii, A. P. Kokhanenko, K. A. Lozovoy, and V. V. Dirko. "Nanostructures with Ge–Si quantum dots for infrared photodetectors." Opto-Electronics Review 26, no. 3 (September 2018): 195–200. http://dx.doi.org/10.1016/j.opelre.2018.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kamenev, B. V., E. K. Lee, H. Y. Chang, H. Han, H. Grebel, L. Tsybeskov, and T. I. Kamins. "Excitation-dependent photoluminescence in Ge∕Si Stranski-Krastanov nanostructures." Applied Physics Letters 89, no. 15 (October 9, 2006): 153106. http://dx.doi.org/10.1063/1.2361198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Montoro, Luciano A., Marina S. Leite, Daniel Biggemann, Fellipe G. Peternella, K. Joost Batenburg, Gilberto Medeiros-Ribeiro, and Antonio J. Ramirez. "Revealing Quantitative 3D Chemical Arrangement on Ge−Si Nanostructures." Journal of Physical Chemistry C 113, no. 21 (May 5, 2009): 9018–22. http://dx.doi.org/10.1021/jp902480w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Al-Salman, Rihab, Xiangdong Meng, Jiupeng Zhao, Yao Li, Ulrich Kynast, Marina M. Lezhnina, and Frank Endres. "Semiconductor nanostructures via electrodeposition from ionic liquids." Pure and Applied Chemistry 82, no. 8 (May 14, 2010): 1673–89. http://dx.doi.org/10.1351/pac-con-09-09-25.

Full text
Abstract:
The fascinating properties of ionic liquids make it possible to synthesize semiconductor nanostructures via a simple and low-cost electrochemical pathway. The present paper summarizes our recent work on the synthesis of Si, Ge, and SixGe1–x nanostructures from ionic liquids: thin films, nanowires and photonic crystals. We also introduce our first results on the template-assisted electrodeposition of SixGe1–x photonic crystals from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf2N) ionic liquid, and some optical measurements on the previously prepared Ge photonic crystals. Our results confirm that electrochemistry in ionic liquids is excellently suited to the synthesis of high-quality semiconductor nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
20

Podolian, A. O., V. V. Kuryliuk, A. B. Nadtochiy, S. V. Kondratenko, O. A. Korotchenkov, Yu N. Kozyrev, V. K. Sklyar, M. Yu Rubezhanska, and V. S. Lysenko. "Photovoltage Performance of Ge/Si Nanostructures Grown on Intermediate Ultrathin SiOX Layers." Advanced Materials Research 276 (July 2011): 159–66. http://dx.doi.org/10.4028/www.scientific.net/amr.276.159.

Full text
Abstract:
An enhanced photovoltage is reported to occur in Ge/Si structures with a SiOx layer having a thickness of 0.5-2 nm and placed between a Si substrate and Ge nanoislands. The effect is interpreted in terms of an increased separation distance for photoexcited electrons and holes occurring in the stress fields generated in the oxidized Ge/SiOx/Si structure. The electron-hole separation is modeled utilizing finite-element method techniques, and a good agreement between the experimentally observed enhancement and the computationally increased inter-charge distance is obtained. It is also found that insertion of the oxide layer accelerates the photovoltage decay. This result is interpreted in terms of competing processes, involving the direct recombination of the separated electrons and holes and multi-trapping behavior typical of disordered systems caused by Ge islands.
APA, Harvard, Vancouver, ISO, and other styles
21

Oku, Takeo, T. Hirata, N. Motegi, R. Hatakeyama, N. Sato, T. Mieno, N. Y. Sato, H. Mase, M. Niwano, and N. Miyamoto. "Formation of carbon nanostructures with Ge and SiC nanoparticles prepared by direct current and radio frequency hybrid arc discharge." Journal of Materials Research 15, no. 10 (October 2000): 2182–86. http://dx.doi.org/10.1557/jmr.2000.0314.

Full text
Abstract:
Carbon nanocage structures with Ge and SiC nanoparticles were synthesized by direct current and radio frequency (dc-rf) hybrid arc discharge of C, Ge, and Si elements. High-resolution images showed the formation of Ge and SiC nanoparticles and nanowires encapsulated in carbon nanocapsules and nanotubes. The growth direction of the Ge nanowires was found to be 〈111〉 of Ge, and a structure model for Ge/C interface was proposed. The present work indicates that the various carbon nanostructures with semiconductor nanoparticles and nanowires can be synthesized by the dc-rf hybrid arc-discharge method.
APA, Harvard, Vancouver, ISO, and other styles
22

Amato, Michele. "(Invited, Digital Presentation) Physical Properties of Silicon-Germanium Nanostructures: Theory and Simulations." ECS Meeting Abstracts MA2022-02, no. 20 (October 9, 2022): 907. http://dx.doi.org/10.1149/ma2022-0220907mtgabs.

Full text
Abstract:
Silicon germanium nanostructures (SiGe NSs) have acquired today a prominent role in several cutting-edge research topics in nanoscience, thanks to the most recent advances in synthesis, processing and characterization [1-4]. The physical properties of such nanosystems are strictly related not solely to the size of the system (as in pure Si and Ge NSs), but also to the relative composition of Si and Ge atoms as well as to the geometry of Si/Ge interface. The investigation of these materials with experimental techniques is, however, complicated by several factors not always well controlled which can hide the right comprehension of the fundamental properties. In this context first principles theoretical modeling is extraordinarily important as it can complement or augment experimental observations. Here, I will present an overview of the ab initio computational modeling of various types of SiGe nanosystems (nanowires [5], nanodots [6] and slabs [7-8]). I will outline how by bringing together two similar elements –Si and Ge, neighbors in the periodic table–, a broad variety of new chemical and physical properties emerge, stimulating both fundamental and application-driven research in nanoscience. Indeed, I will show that substituting some of the atoms of a pure Si NS with Ge in configurations of distinct compositions and dimensionalities, can strongly affect some fundamental properties such as band gap, band offsets, work function and impurity doping levels. Bibliography [1] M. Amato, M. Palummo, R. Rurali, S. Ossicini, Chem. Rev. 114, 1371 (2014) [2] I. Berbezier, A. Ronda, Surf. Sci. Rep., 64, 47 (2009) [3] J.-N Aqua, I. Berbezier, L. Favre, T. Frisch, A. Ronda, Phys. Rep., 522, 52 (2013) [4] D. J. Paul, Semicond. Sci. Technol. 19, R75–R108 (2004) [5] M. Amato, S. Ossicini and R. Rurali, Nano Lett. 11, 2, 594-598 (2011) [6] I. Marri, M. Amato, S. Ossicini, S. Grillo, O. Pulci, Interplay of quantum confinement and strain effects in type I to type II transition in Ge/Si core-shell nanocrystals (submitted, 2022) [7] I. Marri, M. Amato, M. Bertocchi, A. Ferretti, D. Varsano, S. Ossicini, Phys. Chem. Chem. Phys. 22, 25593-25605 (2020) [8] S. Pouch, M. Amato, M. Bertocchi, S. Ossicini, N. Chevalier, T. Mélin, J.M. Hartmann, O. Renault, V. Delaye, D. Mariolle, L. Borowik, J. Phys. Chem. C 119, 26776-26782 (2015)
APA, Harvard, Vancouver, ISO, and other styles
23

Xin, Zheng Hang, Chong Wang, Feng Qiu, Rong Fei Wang, Chen Li, and Yu Yang. "Advance in the Fabrication of Ordered Ge/Si Nanostructure Array on Si Patterned Substrate by Nanosphere Lithography." Materials Science Forum 852 (April 2016): 283–92. http://dx.doi.org/10.4028/www.scientific.net/msf.852.283.

Full text
Abstract:
The recent process in the fabrication of the ordered Ge/Si quantum dots (QDs) is reviewed. The fabrication step generally started on the preparation of patterned substrate prepared in advance by using several interesting methods, such as photo lithography, focus ion beam (FIB), reactive ion etching (RIE), and extreme ultraviolet lithography (EUV-IL) et al, which are introduced briefly in this article. Here, we’d like to focus on the detailed process of nanosphere lithography (NSL) which has the advantages of less cost and higher product compared with the referred methods. The ordered Ge nanostructures always show as Hexagonal close-packed array on the patterned Si substrate and have the advantages of potential applications in electronic and optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
24

Teichert, C., J. C. Bean, and M. G. Lagally. "Self-organized nanostructures in Si 1-x Ge x films on Si(001)." Applied Physics A: Materials Science & Processing 67, no. 6 (December 1, 1998): 675–85. http://dx.doi.org/10.1007/s003390050839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zandvliet, H. J. W. "Strain-Induced Nanostructuring on Si(001) and Ge(001) Surfaces." Modern Physics Letters B 11, no. 02n03 (January 30, 1997): 47–52. http://dx.doi.org/10.1142/s0217984997000074.

Full text
Abstract:
The ability to create structures on a nanometer scale is and will be of great fundamental and technological importance. Here I discuss a simple but elegant method, based on strain-induced self-assembling, to produce an uniform nanowire pattern. The typical width of the nanowires can be varied between 8–12 Å, whereas the averaged spacing between neighbouring nanowires can be varied in the range from 30 to 100 Å. This method can be applied to a wide range of adsorbates or etching materials on group IV semiconductor (001) surfaces. Among them are Ni/Si(001), Bi/Si(001), Ge/Si(001), Ag/Si(001), Bi/Ge(001), H 2 /Si(001) , O 2/ Si(001) , Br 2/ Si(001) and I 2/ Si(001) . Finally, the dramatic influence which strain relaxation can have on the formation of self-assembled nanostructures on surfaces is illustrated using the particular interesting Bi/Ge(001) system.
APA, Harvard, Vancouver, ISO, and other styles
26

Dadykin, A. A., Yu N. Kozyrev, and A. G. Naumovets. "Field electron emission from Ge-Si nanostructures with quantum dots." Journal of Experimental and Theoretical Physics Letters 76, no. 7 (October 2002): 472–74. http://dx.doi.org/10.1134/1.1528705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Berashevich, Yu A., A. S. Panfilenok, and V. E. Borisenko. "Radiative recombination channels in Si/Si1 − x Ge x nanostructures." Semiconductors 42, no. 1 (January 2008): 67–73. http://dx.doi.org/10.1134/s1063782608010090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Barbagiovanni, Eric G., David J. Lockwood, Peter J. Simpson, and Lyudmila V. Goncharova. "Quantum confinement in Si and Ge nanostructures: Theory and experiment." Applied Physics Reviews 1, no. 1 (March 2014): 011302. http://dx.doi.org/10.1063/1.4835095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Taraci, J. L., T. Clement, J. W. Dailey, J. Drucker, and S. T. Picraux. "Ion beam analysis of VLS grown Ge nanostructures on Si." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 242, no. 1-2 (January 2006): 205–8. http://dx.doi.org/10.1016/j.nimb.2005.08.202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kolobov, A. V., H. Oyanagi, A. Frenkel, I. Robinson, J. Cross, S. Wei, K. Brunner, et al. "Local structure of Ge/Si nanostructures: Uniqueness of XAFS spectroscopy." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 199 (January 2003): 174–78. http://dx.doi.org/10.1016/s0168-583x(02)01556-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Voigtländer, Bert, Midori Kawamura, Neelima Paul, and Vasily Cherepanov. "Formation of Si/Ge nanostructures at surfaces by self-organization." Journal of Physics: Condensed Matter 16, no. 17 (April 17, 2004): S1535—S1551. http://dx.doi.org/10.1088/0953-8984/16/17/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cai, Qijia, Peixuan Chen, Zhenyang Zhong, Zuimin Jiang, Fang Lu, and Zhenghua An. "Circularly organized quantum dot nanostructures of Ge on Si substrates." Semiconductor Science and Technology 24, no. 9 (July 31, 2009): 095005. http://dx.doi.org/10.1088/0268-1242/24/9/095005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Stavarache, Ionel, Valentin Adrian Maraloiu, Petronela Prepelita, and Gheorghe Iordache. "Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties." Beilstein Journal of Nanotechnology 7 (October 21, 2016): 1492–500. http://dx.doi.org/10.3762/bjnano.7.142.

Full text
Abstract:
Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
34

Tsybeskov, Leonid, Boris V. Kamenev, Jean-Marc Baribeau, and David J. Lockwood. "Optical Properties of Composition-Controlled Three-Dimensional Si/Si $_{1 - x}$Ge$_{x}$ Nanostructures." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 6 (November 2006): 1579–84. http://dx.doi.org/10.1109/jstqe.2006.884061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zaumseil, Peter, Markus Andreas Schubert, Yuji Yamamoto, Oliver Skibitzki, Giovanni Capellini, and Thomas Schroeder. "Misfit Dislocation Free Epitaxial Growth of SiGe on Compliant Nano-Structured Silicon." Solid State Phenomena 242 (October 2015): 402–7. http://dx.doi.org/10.4028/www.scientific.net/ssp.242.402.

Full text
Abstract:
The integration of germanium (Ge) into silicon-based microelectronics technologies is currently attracting increasing interest and research effort. One way to realize this without threading and misfit dislocations is the so-called nanoheteroepitaxy approach. We demonstrate that a modified Si nanostructure approach with nanopillars or bars separated by TEOS SiO2 can be used successfully to deposit SiGe dots and lines free of misfit dislocations. It was found that strain relaxation in the pseudomorphically grown SiGe happens fully elastically. These studies are important for the understanding of the behavior of nanostructured Si for the final goal of Ge integration via SiGe buffer.
APA, Harvard, Vancouver, ISO, and other styles
36

Sadofyev, Yu G., V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’evskii. "Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001) Si/Ge Virtual Wafers." Physics Procedia 72 (2015): 411–18. http://dx.doi.org/10.1016/j.phpro.2015.09.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alfaro, Pedro, Rodolfo Cisneros, Monserrat Bizarro, Miguel Cruz-Irisson, and Chumin Wang. "Raman scattering by confined optical phonons in Si and Ge nanostructures." Nanoscale 3, no. 3 (2011): 1246. http://dx.doi.org/10.1039/c0nr00623h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Moon, D. W., H. I. Lee, B. Cho, Y. L. Foo, T. Spila, S. Hong, and J. E. Greene. "Direct measurements of strain depth profiles in Ge/Si(001) nanostructures." Applied Physics Letters 83, no. 25 (December 22, 2003): 5298–300. http://dx.doi.org/10.1063/1.1635074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kwon, Soonshin, Matthew C. Wingert, Jianlin Zheng, Jie Xiang, and Renkun Chen. "Thermal transport in Si and Ge nanostructures in the ‘confinement’ regime." Nanoscale 8, no. 27 (2016): 13155–67. http://dx.doi.org/10.1039/c6nr03634a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cheng, M. H., W. X. Ni, G. L. Luo, S. C. Huang, J. J. Chang, and C. Y. Lee. "Growth and characterization of Ge nanostructures selectively grown on patterned Si." Thin Solid Films 517, no. 1 (November 2008): 57–61. http://dx.doi.org/10.1016/j.tsf.2008.08.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schmidt, O. G., K. Eberl, and J. Auerswald. "C-induced Ge dots: enhanced light-output from Si-based nanostructures." Journal of Luminescence 80, no. 1-4 (December 1998): 491–95. http://dx.doi.org/10.1016/s0022-2313(98)00161-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Klyachkovskaya, Elena, Natalia Strekal, Inna Motevich, Svetlana Vaschenko, Anna Harbachova, Mikhail Belkov, Sergey Gaponenko, et al. "Enhanced Raman Scattering of Ultramarine on Au-coated Ge/Si-nanostructures." Plasmonics 6, no. 2 (March 4, 2011): 413–18. http://dx.doi.org/10.1007/s11468-011-9219-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kamins, T. I., K. Nauka, and R. S. Williams. "Effect of self-assembled Ge nanostructures on Si surface electronic properties." Applied Physics A Materials Science & Processing 73, no. 1 (July 2001): 1–9. http://dx.doi.org/10.1007/s003390100782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Manimuthu, Veerappan, Shoma Yoshida, Yuhei Suzuki, Faiz Salleh, Mukannan Arivanandhan, Yoshinari Kamakura, Yasuhiro Hayakawa, and Hiroya Ikeda. "Seebeck Coefficient of Ge-on-Insulator Layers Fabricated by Direct Wafer Bonding Process." Advanced Materials Research 1117 (July 2015): 94–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1117.94.

Full text
Abstract:
We investigate thermoelectric characteristics of SiGe nanostructures for realizing high-sensitive infrared photodetector applications. In this paper, for future Ge and SiGe nanowires, we fabricate p-type Ge-on-insulator (GOI) substrates by a direct wafer bonding process. We discuss the annealing effect on the GOI substrate in the process and measure its Seebeck coefficient in the temperature range of 290-350 K. The Seebeck coefficient of the GOI layers is almost identical with the reported values for Ge. This result confirms that the measured Seebeck coefficient of GOI layers is not influenced by the buried oxide (BOX) layer and the Si substrate.
APA, Harvard, Vancouver, ISO, and other styles
45

Ichikawa, M. "Growth of Si and Ge nanostructures on Si substrates using ultrathin SiO/sub 2/ technology." IEEE Journal of Quantum Electronics 38, no. 8 (August 2002): 988–94. http://dx.doi.org/10.1109/jqe.2002.800972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bietti, Sergio, Lucia Cavigli, Marco Abbarchi, Anna Vinattieri, Massimo Gurioli, Alexey Fedorov, Stefano Cecchi, Fabio Isa, Giovanni Isella, and Stefano Sanguinetti. "High quality GaAs quantum nanostructures grown by droplet epitaxy on Ge and Ge-on-Si substrates." physica status solidi (c) 9, no. 2 (November 17, 2011): 202–5. http://dx.doi.org/10.1002/pssc.201100273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Balasubramanian, Prabhu, Jerrold A. Floro, Jennifer L. Gray, and Robert Hull. "Nano-scale Chemistry of Complex Self-Assembled Nanostructures in Epitaxial SiGe Films." MRS Proceedings 1551 (2013): 75–80. http://dx.doi.org/10.1557/opl.2013.1019.

Full text
Abstract:
ABSTRACTHeteroepitaxy of SiGe alloys on Si (001) under certain growth conditions has previously been shown to cause self-assembly of nanostructures called Quantum Dot Molecules, QDMs, where pyramidal pits and 3D islands cooperatively form. QDMs have potential applications to nanologic device architectures such as Quantum Cellular Automata that relies on localization of charges inside islands to create bi-stable logic states. In order to determine the applicability of QDMs to such structures it is necessary to understand the nano-scale chemistry of QDMs because the chemistry affects local bandgap which in turn affects a QDM’s charge confinement property. We investigate the nanoscale chemistry of QDMs in the Si0.7Ge0.3/Si (100) system using Auger Electron Spectroscopy (AES). Our AES analysis indicates that compressively strained QDM pit bases are the most Ge rich regions in a QDM. The segregation of Ge to these locations cannot be explained by strain energy minimization.
APA, Harvard, Vancouver, ISO, and other styles
48

Volodin, V. A., A. I. Yakimov, A. V. Dvurechenskiĭ, M. D. Efremov, A. I. Nikiforov, E. I. Gatskevich, G. D. Ivlev, and G. Yu Mikhalev. "Modification of quantum dots in Ge/Si nanostructures by pulsed laser irradiation." Semiconductors 40, no. 2 (February 2006): 202–9. http://dx.doi.org/10.1134/s1063782606020175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kolobov, A. V. "Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations." Journal of Applied Physics 87, no. 6 (March 15, 2000): 2926–30. http://dx.doi.org/10.1063/1.372279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lodari, M., D. Chrastina, V. Mondiali, M. R. Barget, J. Frigerio, E. Bonera, and M. Bollani. "Strain in Si or Ge from the Edge Forces of Epitaxial Nanostructures." Nanoscience and Nanotechnology Letters 9, no. 7 (July 1, 2017): 1128–31. http://dx.doi.org/10.1166/nnl.2017.2449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography