Academic literature on the topic 'Si and Ge nanostructures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Si and Ge nanostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Si and Ge nanostructures"

1

Brunner, Karl. "Si/Ge nanostructures." Reports on Progress in Physics 65, no. 1 (December 19, 2001): 27–72. http://dx.doi.org/10.1088/0034-4885/65/1/202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zaumseil, Peter, Yuji Yamamoto, Markus Andreas Schubert, Thomas Schroeder, and Bernd Tillack. "Reduction of Structural Defects in Ge Epitaxially Grown on Nano-Structured Si Islands on SOI Substrate." Solid State Phenomena 205-206 (October 2013): 400–405. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.400.

Full text
Abstract:
One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.
APA, Harvard, Vancouver, ISO, and other styles
3

Egorov, V. A., G. É. Cirlin, A. A. Tonkikh, V. G. Talalaev, A. G. Makarov, N. N. Ledentsov, V. M. Ustinov, N. D. Zakharov, and P. Werner. "Si/Ge nanostructures for optoelectronics applications." Physics of the Solid State 46, no. 1 (January 2004): 49–55. http://dx.doi.org/10.1134/1.1641919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stoica, T., and E. Sutter. "Ge dots embedded in SiO2obtained by oxidation of Si/Ge/Si nanostructures." Nanotechnology 17, no. 19 (September 11, 2006): 4912–16. http://dx.doi.org/10.1088/0957-4484/17/19/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Douhan, Rahaf, Kirill Lozovoy, Andrey Kokhanenko, Hazem Deeb, Vladimir Dirko, and Kristina Khomyakova. "Recent Advances in Si-Compatible Nanostructured Photodetectors." Technologies 11, no. 1 (January 24, 2023): 17. http://dx.doi.org/10.3390/technologies11010017.

Full text
Abstract:
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Since silicon is the dominating semiconductor material in the electronic industry over the past decades, and as germanium and tin nanostructures are very compatible with silicon, the combination of these factors makes them the promising candidate to use in future technologies.
APA, Harvard, Vancouver, ISO, and other styles
6

Barbagiovanni, E. G., D. J. Lockwood, P. J. Simpson, and L. V. Goncharova. "Quantum confinement in Si and Ge nanostructures." Journal of Applied Physics 111, no. 3 (February 2012): 034307. http://dx.doi.org/10.1063/1.3680884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moutanabbir, O., S. Miyamoto, A. Fujimoto, and K. M. Itoh. "Isotopically controlled self-assembled Ge/Si nanostructures." Journal of Crystal Growth 301-302 (April 2007): 324–29. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Ye-Liang, Hai-Ming Guo, Zhi-Hui Qin, Hai-Feng Ma, and Hong-Jun Gao. "Toward a Detailed Understanding of Si(111)-7×7Surface and Adsorbed Ge Nanostructures: Fabrications, Structures, and Calculations." Journal of Nanomaterials 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/874213.

Full text
Abstract:
Firstly, both the rest atoms and the adatoms of Si(111)-7×7surface are observed simultaneously by scanning tunneling microscopy (STM) when the sample bias voltages are kept less than − 0.7 V. The visibility of the rest atoms is rationalized by first-principle calculations and a very sharper tip can resolve them. Secondly, the behaviors of various Ge nanostructures fabricated on Si(111)-7×7, ranging from the initial adsorption sites of individual Ge atoms to the aggregation patterns of Ge nanoclusters, and then to 2D extended Ge islands, are comprehensively investigated by STM. The individual Ge atoms tend to substitute for Si adatoms at Si(111)-7×7with the preference of corner adatoms in the faulted half unit when keeping substrate at150∘C. With increasing Ge coverage, individual Ge atoms and Ge nanoclusters coexist on the substrate. Subsequently, the density of Ge nanoclusters increase and cluster-distribution becomes gradually regular with the formation of final 2D extended hexagonal configuration. When keeping the substrate at300∘C, Ge islands consisting of more complicated reconstructions with intermixing Ge/Si components are present on the substrate. The detail structural characterizations and the bonding nature of the observed Ge nanostructures are enunciated by the first-principle calculations.
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Y. S., C. M. Sotomayor Torres, T. E. Whall, E. H. C. Parker, H. Presting, and H. Kibbel. "Optical properties of Si-Si1−xGex and Si-Ge nanostructures." Journal of Materials Science: Materials in Electronics 6, no. 5 (October 1995): 356–62. http://dx.doi.org/10.1007/bf00125892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Лапин, Вячеслав Анатольевич, Александр Александрович Кравцов, Дмитрий Сергеевич Кулешов, and Федор Федорович Малявин. "INVESTIGATION OF POSSIBILITY OF THE MISFIT DISLOCATION DENSITY REDUCTION IN GE / SI FILMS WITH A BUFFER LAYER." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 13 (December 23, 2021): 263–71. http://dx.doi.org/10.26456/pcascnn/2021.13.263.

Full text
Abstract:
В работе исследована возможность улучшения качества гетероэпитаксиальных структур Ge / Si с буферным слоем. Показано, что при использовании подготовительного слоя, состоящего из наноостровков, зарощенных низкотемпературным буферным слоем, возможно проявление так называемого эффекта аннигиляции дислокаций несоответствия в объеме буферного слоя Buf, что значительно улучшает приборное качество получаемых структур. Представлена зависимость морфологии поверхности слоя чистого Ge на буфере от времени роста наноостровков в интерфейсе Si / Buf . Выявлены оптимальные технологические параметры роста наноостровков для получения слоя Ge с минимальной значением шероховатости. Наилучших результатов удалось достичь при времени осаждения наноостровков 2 мин. При этом была достигнута минимальное значение шероховатости поверхности, равное 78 нм. Показано, что при дальнейшем увеличении размеров наноостровков, процесс аннигиляции дефектов замедляется, и рост низкотемпературного буферного слоя сменяется трехмерным островковым ростом, что увеличивает перепады рельефа поверхности выращиваемого слоя. The possibility of improving the quality of Ge / Si heteroepitaxial structures with a buffer layer is investigated. It is shown that when using a preparatory layer consisting of nanostructures overgrown with a low-temperature buffer layer, it is possible to manifest the so-called effect of annihilation of the misfit dislocations in the bulk of the buffer layer Buf , which significantly improves the quality of the resulting structures. The dependence of the morphology of the surface of the pure Ge layer on the buffer on the growth time of nanostructures in the Si / Buf interface is presented. The optimal technological parameters of the growth of nanostructures for obtaining a Ge layer with a minimum roughness value are revealed. The best results were achieved when the deposition time of nanostructures was 2 min. At the same time, the minimum surface roughness value of 78 nm was achieved. It is shown that with a further increase in the size of the nanostructures, the process of annihilation of defects slows down, and the growth of the low-temperature buffer layer is replaced by a three-dimensional island growth, which increases the differences in the relief of the surface of the grown layer.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Si and Ge nanostructures"

1

Gadea, Gerard. "Integration of Si/Si-Ge nanostructures in micro-thermoelectric generators." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459243.

Full text
Abstract:
Silicon and silicon-germanium nanostructures were grown, integrated, optimized and characterized for their application in thermoelectric generation. Specifically two kinds of nanostructures were worked: silicon and silicon-germanium nanowire arrays (Si/Si-Ge NW) and polycrystalline silicon nanotube fabrics (pSi NT). The results are dived in four chapters. Chapters 3, 4 and 5 deal with Si/Si-Ge NWs, while chapter 6 presents the pSi NT fabrics. In Chapter 3 the growth and integration of Si/Si-Ge NWs was studied, in order to optimize their properties for thermoelectric application in micro-thermoelectric generators (µTEG). First, the methods for depositing gold nanoparticles prior to NW growth were studied. Second, the growth of NWs from the gold nanoparticles in a Chemical Vapour Deposition (CVD) process was comprehensively studied and optimized for subsequent integration of NWs in µTEGs, both of Si and Si-Ge. All important properties – NW length, diameter, density, doping and alignment – could be controlled by tuning the seeding gold nanoparticles and the process conditions, namely temperature, pressure, flows of reactants and growth time. Finally, integration was demonstrated in micro-structures for thermoelectric generation and characterization. The optimization process yielded to fully integrated thermoelectric Si/Si-Ge NW arrays with diameters and densities of ~100 nm and 5 NW/µm2 respectively. In Chapter 4 the Si NWs were thermoelectrically characterized. The Seebeck coefficient, electrical conductivity and thermal conductivity of arrays and single Si-NWs were measured in microstructures devoted to characterization comprising NWs integrated as in final µTEG application. Additionally a novel atomic force microscope based method for determination of thermal conductivity was explored. Then the results were discussed comparing them with existing literature. A ZT of 0.022 was found at room temperature, revealing an improvement of factor 2-3 with respect to bulk. In Chapter 5 The harvesting capabilities of µTEGs with integrated Si/Si-Ge NWs was assessed. The thermal gradient and the power of the µTEGs was assessed for two generation of devices and for two thermoelectric materials, namely Si and Si-Ge NWs, which were integrated for the first time in functional generators. Also a study on heat sinking and convection effects was conducted adding insight towards further device improvement. Finally, the results were discussed and compared with literature. The maximum power densities attained were 4.5 µW/cm2 for the Si NWs and 4.9 µW/cm2 for the Si-Ge NWs while harvesting over surfaces at 350 ºC. Chapter 6 deals with pSi NT fibers. First this new material concept and the growth route are presented, showing the fabrication steps and the control of the resulting properties by CVD method. Then the material is thermoelectrically characterized, by measuring its Seebeck coefficient and electrical and thermal conductivities up to 450 ºC. A ZT of 0.12 was found, doubling the optimally doped bulk at this temperature. Finally a proof of concept was demonstrated by assessing the thermal harvesting capabilities of the material on top of hot surfaces. A maximum of 3.5 mW/cm2 was attained at 650 ºC.
Los materiales termoeléctricos permiten la conversión de calor a electricidad y viceversa. Esto permite explotar el efecto termoeléctrico en generadores termoeléctricos, capaces de extraer energía térmica de fuentes calientes y convertirla a electricidad útil. Estos generadores presentan grandes ventajas, como su falta de piezas móviles – y por ende necesidad de mantenimiento alguna – y su total escalabilidad, que permite cambiar su tamaño sin afectar su rendimiento. Esto los hace obvios candidatos para la alimentación y carga de dispositivos portátiles y situados lugares de difícil acceso. A pesar de ello, su uso no está muy extendido debido a que su relación eficiencia-coste es baja en comparación a otros métodos capaces de suplir las funciones de alimentación – como la sustitución periódica de baterías – o de conversión térmica-eléctrica – como las turbinas de vapor. Los materiales termoeléctricos suelen ser o eficientes y caros (como el Bi2Te3 usado en los módulos comerciales) o ineficientes y de bajo coste (como el silicio, barato por su abundancia ya que supone un 28% de la corteza terrestre). En este trabajo se han crecido nanostructuras de silicio y silicio-germano, con dimensiones en el orden de los 100 nm. Los nanomateriales presentan propiedades termoeléctricas mejoradas respecto a sus contrapartes macroscópicas. Gracias a la nanoestructuración pues, se ha abordado del problema de eficiencia-coste por dos vertientes: • En el caso del silicio – normalmente un mal termoeléctrico debido a su alta conductividad térmica – se ha habilitado su uso como termoeléctrico al crecerlo en forma de nanohilos cristalinos y nanotubos de silicio policristalino. • En el caso de silicio-germano – que ya es un buen termoeléctrico para uso en altas temperaturas – se ha aumentado su eficiencia aún más, creciéndolo en forma de nanohilos. Yendo más allá de la síntesis, los nanohilos de silicio/silicio-germano se han optimizado, caracterizado en integrado en gran número micro-generadores termoeléctricos de 1 mm2 de superficie, pensados para la alimentación de pequeños dispositivos y circuitos integrados. Respecto a los nanotubos de Si, estos se han obtenido en densas fibras macroscópicas aptas para su aplicación directa como generadores termoeléctricos de gran área. Cabe mencionar que ambos nanomateriales – así como los microgeneradores basados en nanohilos – fueron obtenidos mediante técnicas actualmente utilizadas para la fabricación de circuitos integrados, pensando en la escalabilidad del proceso para su aplicación. El trabajo presentado en esta tesis consiste en el crecimiento, optimización, estudio e integración de nanostructuras de Si/Si-Ge para su aplicación en generación termoeléctrica. En los Capítulos 1 y 2 se pone un marco a los materiales tratados y su aplicación y se describen los métodos utilizados, respectivamente. Los resultados se han dividido en cuatro capítulos. En los Capítulos 3, 4 y 5 se tratan los nanohilos abordando su crecimiento, caracterización y aplicación en microgeneradores, respectivamente. En el Capítulo 6 se tratan las fibras de nanotubos, integrando todo el estudio en el mismo capítulo. Finalmente en el Capítulo 7 se muestran las conclusiones, resumiendo los resultados e indicando la relevancia del trabajo.
APA, Harvard, Vancouver, ISO, and other styles
2

Elfving, Anders. "Near-infrared photodetectors based on Si/SiGe nanostructures." Doctoral thesis, Linköping : Surface and Semiconductor Physics, Linköping University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pascale, Alina Mihaela. "Evolution morphologique des nanostructures Si(1-x)Ge(x) pendant la croissance par EJM." Aix-Marseille 2, 2003. https://tel.archives-ouvertes.fr/tel-00504903.

Full text
Abstract:
Dans ce travail nous avons étudié l'auto-organisation d'îlots de Ge sur des substrats vicinaux de Si nanostructurés en utilisant un processus à deux étapes qui consiste en :1) l'auto-structuration naturelle du substrat et 2) la nucléation préférentielle des îlots de Ge sur les motifs créés. Après des rappels bibliographiques dans les trois premiers chapitres, nous présentons les résultats, à la fois théoriques et expérimentaux, dans les deux derniers chapitres. En particulier, nous avons mis en évidence : a) une pseudo-barrière Ehrlich-Schwoebel inverse implicite à l'origine de l'instabilité cinétique qui se développe durant l'homoépitaxie Si/Si(001), avec des exposants critiques en bon accord avec la théorie et b) une réduction importante de l'énergie élastique d'un système comprenant un îlot de Ge, une couche de mouillage de Ge et un substrat à motifs de Si (où chaque motif est représenté par des marches) lorsque le motif possède au moins trois marches
In this work we studied the Ge dots self-organization on vicinal Si substrates nanostructured by using a two stages process which consists of: i) substrate natural self-structuration and ii) Ge dots preferential nucleation on the created patterns. After bibliographical recalls in the first three chapters, we present the theoretical and experimental results in the two last chapters. In particular, we have evidenced: a) an implicit inverse Ehrlich-Schwoebel pseudo-barrier at the origin of the kinetic instability which develops during the homoepitaxial growth Si/Si(001), with scaling exponents in good agreement with the theory and b) an important reduction of the elastic energy of a system including a Ge dot, a Ge wetting layer and a Si patterned substrate (where each pattern is represented by steps) when the pattern is constitued of three steps at least
APA, Harvard, Vancouver, ISO, and other styles
4

Portavoce, Alain. "Mécanismes élémentaires de redistribution de l'antimoine au cours de la croissance d'hétérostructure Si/Si(1-x)Ge(x) : Diffusion, ségrégation, désorption et effet surfactant." Aix-Marseille 3, 2002. http://www.theses.fr/2002AIX30060.

Full text
Abstract:
Les nouvelles structures micro et nano-électroniques à base SiGe imposent un contrôle rigoureux du dopage et pour certaines un confinement 3D. Nous avons analysé les phénomènes de redistribution de dopants (B, Sb) pendant la croissance par MBE de couches SiGe en épitaxie sur Si: diffusion, ségrégation, désorption, effet surfactant. Notre approche (couches sous divers états de contrainte) permet de séparer l'effet de la teneur en Ge de celui de la contrainte. La diffusion du Sb augmente avec la teneur en Ge et avec une compression biaxiale, celle du B suit le comportement inverse. Nous montrons que ces variations sont en accord avec un mécanisme principalement lacunaire pour le Sb et interstitiel pour le B. La ségrégation en cours de croissance varie de façon identique à la diffusion, montrant la prédominance de la cinétique. Le contrôle de la concentration superficielle de Sb permet de faire croître des couches de Ge planes ou de réduire la taille et d'augmenter la densité des îlots de Ge
The future SiGe structures for micro and nano-electronic impose a strict doping control and for some of them a 3D confinement. We have analysed the dopant (B, Sb) redistribution phenomena during the MBE growth of SiGe layers in epitaxy on Si: diffusion, segregation, desorption, surfactant effect. Our approach (layers under various states of stress) permits to separate the Ge concentration effect from the strain effect. Sb diffusion increases with Ge concentration and with biaxial compression, while the B diffusion follows the opposite behaviour. We show that these variations are in agreement with a mechanism using principally vacancies for Sb and interstitials for B. Surface segregation during growth follows the same variations as diffusion, showing the prevalence of kinetics. The control of the superficial Sb coverage allows either the growth of thicker flat Ge layers or to reduce the size and to increase the density of Ge islands
APA, Harvard, Vancouver, ISO, and other styles
5

Moontragoon, Pairot. "Band structure calculation of Si-Ge-Sn binary and ternary alloys, nanostructures and devices." Thesis, University of Leeds, 2009. http://etheses.whiterose.ac.uk/5850/.

Full text
Abstract:
Alloys of silicon (Si), germanium (Ge) and tin (Sn) are continuously attracting research attention as possible direct band gap semiconductors with prospective applications in optoelectronics. The direct gap property may be brought about by the alloy composition alone or combined with the influence of strain, when an alloy layer is grown on a virtual substrate of different composition. Si-GeSn nanostructures are also promising materials because they are compatible with Si-based technology, and have a high potential in many optoelectronic applications, such as silicon-based Ge/SiGeSn band-to-band and inter-subband lasers. In search for direct gap materials, the electronic structure of relaxed or strained Gel-xSnx and Si1-xSnx alloys, and of strained Ge grown on relaxed Gel_x_ySixSny, were calculated by the self-consistent pseudo-potential plane wave method, within the mixed-atom supercell model of alloys, which was found to offer a much better accuracy than the virtual crystal approximation. Expressions are given for the direct and indirect band gaps in relaxed Gel-xSnx, strained Ge grown on relaxed SixGel-x_ySny, and for strained Gel-xSnx grown on a relaxed Gel_ySny substrate, and these constitute the criteria for achieving a direct band gap semiconductor, by using appropriate tensile strain. In particular, strained Ge on relaxed SixGel_x_ySny has a direct gap for y > 0.12 + 0.20x, while strained Gel-xSnx on relaxed Gel_ySny has a direct gap for y > 3.2x2 - 0.07x + 0.09. In contrast, within the mixed-atom approach the SnxSi1- x alloys never show a finite direct band gap (while the VCA calculation does predict it). Self-assembled quantum dots in Si-Ge-Sn system attract research attention as possible direct band gap materials, compatible with Si-based technology, with potential applications in optoelectronics. In this work, the electronic structure near the f-point and interband optical matrix elements of strained Sn and SnGe quantum dots in Si or Ge matrix are calculated using the eightband k· p method, and the competing L-valley conduction band states were found by the effective mass method. The strain distribution in the dots was found with the continuum mechanical model. The parameters required for the k· p or effective mass calculation for Sn were extracted by fitting to the energy band structure calculated by the nonlocal empirical pseudopotential method (EPM). The calculations show that the self-assembled Sn/Si dots, sized between 4 nm and 12 nm, have indirect interband transition energies between 0.8 to 0.4 eV and direct interband transitions between 2.5 to 2.0 eV. In particular, the actually grown, approximately cylindrical Sn dots in Si with a diameter and height of about 5 nm are calculated to have an indirect transition (to the L valley) of about 0.7 eV, which agrees very well with experimental results. Similar good agreement with experiment was also found for SnGe dots grown on Si. However, neither of these are predicted to be direct band gap materials, in contrast to some earlier expectations. In order to extend a creativity in developing a complete suite of Si-base optoelectronic devices, SiGeSn alloys are considered as promising materials for optoelectronic applications because they offer the possibility for a direct band gap and are compatible with Si-based technology, therefore having a perspective of applications for interband lasers and detectors, solar cells, etc. In this work, another possible application of nanostructures based on these materials was considered: to extend the suite of Si-based optoelectronic devices, namely for interband electro-absorption modulators. Using the 8-band k.p method asymmetric double quantum wells have been designed and optimized, by varying the well and barrier widths and material composition, to show large optical transmission sensitivity to the applied bias. Generally, these structures are useful for electro-absorption modulators in the mid-infrared spectral range.
APA, Harvard, Vancouver, ISO, and other styles
6

Ruh, Elisabeth Margrit. "Investigation of the local Ge concentration in Si/SiGe nanostructures by convergent-beam electron diffraction /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bohorquez, Ballen Jaime. "Thermal transport in low dimensional semiconductor nanostructures." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/798.

Full text
Abstract:
We have performed a first principles density functional theory (DFT) calculations to study the thermal conductivity in ZnO nanotubes, ZnO nanowires, and Si/Ge shell-core nanowires. We found the equilibrium configuration and the electric band structure of each nanostructure using DFT, the interatomic force constants and the phonon dispersion relations were calculated using DFPT as implemented in Quantum Espresso. In order to fundamentally understand the effect of atomic arrangements, we calculated the phonon conductance in a ballistic approach using a Green's function method. All ZnO nanostructures studied exhibit semiconducting behavior, with direct bandgap at the Gamma point. The calculated values for the bandgaps were larger than the value of the bandgap of the bulk ZnO. We were able to identify phonon modes in which the motion of Zn atoms is significant when it is compared with the motion of oxygen atoms. The thermal conductivity depends on the diameter of the nanowires and nanotubes and it is dramatically affected when the nanowire or nanotube is doped with Ga. For Si/Ge nanowires, the slope and the curvature of acoustic modes in the phonon dispersion relation increases when the diameter increases. For nanowires with the same number of atoms, the slope and curvature of acoustic modes depends on the concentration of Si atoms. We were able to identify phonon modes in which the motion of core atoms is significant when it is compared with motion of atoms on the nanowire's shell. The thermal conductivity in these nanostructures depends on the nanowire's diameter and on the Si atoms concentration.
APA, Harvard, Vancouver, ISO, and other styles
8

Kozlowski, Grzegorz [Verfasser], and Thomas [Akademischer Betreuer] Schröder. "On the compliant behaviour of free-standing Si nanostructures on Si(001) for Ge nanoheteroepitaxy / Grzegorz Kozlowski. Betreuer: Thomas Schröder." Cottbus : Universitätsbibliothek der BTU Cottbus, 2012. http://d-nb.info/1022561456/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cariou, Romain. "Epitaxial growth of Si(Ge) materials on Si and GaAs by low temperature PECVD: towards tandem devices." Palaiseau, Ecole polytechnique, 2014. https://theses.hal.science/tel-01113794/document.

Full text
Abstract:
Cette thèse s'intéresse à la croissance épitaxiale de Si et SiGe à basse température (200°C) par dépôt chimique en phase vapeur assistée par plasma (PECVD), et à l'utilisation de ces matériaux cristallins dans les cellules solaires en couches minces. L'objectif était de mieux comprendre cette croissance inattendue et d'étudier le potentiel de ces matériaux pour les cellules simples et multijonctions. Nous avons d'abord démontré qu'il est possible d'effectuer, avec un réacteur PECVD standard, un nettoyage efficace de la surface du c-Si et de poursuivre par une croissance épitaxiale de couches de Si jusqu'à 8µm d'épaisseur. L'impact des paramètres du procédé tels que la dilution du SiH4 dans l'H2, l'énergie des ions ou encore la pression totale, sur la qualité des couches a été mis en évidence. Les propriétés électriques et structurelles des couches ont été analysées, et nous avons démontré une amélioration de la qualité cristalline avec l'épaisseur de la couche. La croissance épitaxiale de Ge et SiGe sur c-Si dans des conditions similaires a également été établie. Ensuite, par une séquence d'étapes à moins de 200°C, des hétérojonctions PIN sur substrats très dopés, avec une couche absorbante épitaxiée de 1-4µm ont été réalisées, atteignant 8. 8% de rendement (sans piégeage optique) et 80% de FF. Le remplacement du Si par du Si0:73Ge0:27 a permis un gain de 11% sur le Jsc. Le contrôle de l'interface wafer/épi et des contraintes permet de favoriser le décollement : des couches epi-Si de 1. 5µm/10cm^2 ont été reportées sur verre avec succés. Nous avons également analysé l'influence de nanostructures photoniques sur les propriétés des dispositifs. L'étude conjointe de la croissance, du transfert et du piégeage optique ouvre la voie aux cellules c-Si ultra-minces (<10µm) bas côut. Enffin, contrairement au scénario classique de dépôt des matériaux III-V sur Si, nous avons étudié l'hétéroépitaxie de Si sur III-V. Avec cette approche, une bonne qualité cristalline de Si déposé directement sur GaAs est obtenue grâce aux faibles contraintes thermiques et à l'absence de problèmes de polarité à l'interface. Nous avons fabriqué des cellules GaAs avec 20% d'efficacité et des jonctions tunnel atteignant 55A/cm^2 par dépôt MOVPE. Une augmentation du courant tunnel par exposition au plasma d'hydrogène a aussi été démontrée. Ces résultats de croissance, cellule et jonction tunnel, couplés aux techniques de report, valident les briques élémentaires pour atteindre une cellule tandem AlGaAs(MOVPE)/SiGe(PECVD) à haut rendement
This thesis focuses on epitaxial growth of Si and SiGe at low temperature (200°C) by Plasma Enhanced Chemical Vapor Deposition (PECVD), and its application in thin film crystalline solar cells. Our goal is to gain insight into this unusual growth process, as well as to investigate the potential of such low temperaturedeposited material for single and multi-junction solar cells. First, we have proposed a one pump-down plasma process to clean out-of-the-box c-Si wafer surface and grow epitaxial layers of up to 8µm thick, without ultra-high vacuum, in a standard RF-PECVD reactor. By exploring the experimental parameters space, the link between layer quality and important physical variables, such as silane dilution, ion energy, or deposition pressure, has been confirmed. Both material and electrical properties were analyzed, and we found that epitaxial quality improves with film thickness. Furthermore, we could bring evidence of SiGe and Ge epitaxial growth under similar conditions. Then, with the whole process steps <200°C, we have achieved PIN heterojunction solar cells on highly doped substrates with 1-4µm epitaxial absorber, reaching 8. 8% efficiency (without light trapping) and 80. 5% FF. Replacing Si absorber by epitaxial Si0:73Ge0:27 resulted in 11% boost in Jsc. The use of an engineered wafer/epitaxial layer interface and stress enables easy lift-off: e. G. We successfully bonded 1. 5µm thick 10cm^2 epi-Si to glass. Additionally, we have considered the impact of photonic nanostructures on device properties. Together, the control of growth, transfer and advanced light trapping are paving the way toward highly efficient, ultrathin (<10µm) and low cost c-Si cells. Finally, in contrast with general trend of growing III-V semiconductors on Si, we have studied the hetero-epitaxial growth of Si on III-V. Good crystal quality was achieved by direct Si deposition on GaAs, thanks to reduced thermal load and suppressed polarity issues in this approach. Using MOCVD, we could build GaAs cells with 20% efficiency and III-V tunnel junctions reaching 55A/cm^2. Tunneling improvement upon H-plasma exposure was shown. Those results, combined with III-V layer lift-off, validate milestones toward high efficiency tandem AlGaAs(MOVD)/SiGe(PECVD) metamorphic solar cells
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Zhen. "AFM electrical mode development for nanostructure semiconductor study : application on Ge / Si nanostructure." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0135/these.pdf.

Full text
Abstract:
Aujourd'hui, la technologie des semi-conducteurs est confrontée au défi de la réduction ultime de la taille des composants pour augmenter la performance des appareillages électroniques en les miniaturisant. Cette forte réduction d'échelle provoque un développement considérable des techniques de microscopie pour révéler de nouvelles caractéristiques physiques à l'échelle nanométrique. La compréhension de ces nouvelles propriétés à l'échelle du nanomètre est donc de première importance. Dans ce travail, l’utilisation et l’application des techniques de caractérisation des propriétés électriques par microscopie à force atomique à pointes conductrices sont développées vis-à-vis de l’application aux semi-conducteurs. Les modes électriques spécifiques, comprenant la mesure de capacité par microscopie AFM (SCM) et la spectroscopie associée (SCS), la microscopie à force électrostatique (EFM) et la microscopie à sonde locale de Kelvin (KPFM) sont utilisées à température ambiante pour étudier les propriétés électroniques de nanostructures de germanium sur silicium qui ont été fabriquées par un procédé de démouillage. Il ressort que les mesures SCM, SCS, EFM et KPFM sont bien adaptées pour la caractérisation de nanostructures semi-conductrices, en particulier pour l'étude des nanocristaux à l'échelle du nanomètre. Ces travaux de caractérisation par AFM à modes électriques sont d'une importance primordiale dans le développement de dispositifs électroniques, en particulier pour l'application de transistors à mémoire utilisant des nanoilots de Ge / Si
Nowadays, the semiconductor technology is facing a great challenge to increase the device performance while reducing its dimension. This downscaling in microelectronics industry causes a drastic development of microscopy to reveal new physical characteristics at nanoscale. The understanding of these new properties in nanometer scale is of prime importance. In this work, the AFM fundamental working principle and some typical electric property characterization techniques in semiconductor industry were introduced. The electrical AFM modes including scanning capacitance microscopy (SCM) and spectroscopy (SCS), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) were developed at room temperature to study the properties of the promising replacement of the conventional poly-silicon floating gate, Germanium nanocrystals local Ge/Si nanostructures, which were fabricated by dewetting process. SCM, SCS, EFM and KPFM were proved to be available methodologies for semiconductor nanostructures characterizations, especially the nanocrystal study in nanometer scale. These characterisation works with developed AFM electrical mode are of prime importance in developing electronic devices application, especially the memory transistors application using Ge/Si nanocrystal
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Si and Ge nanostructures"

1

Zheng, Yuan. Shi si ge ge. Hong Kong: Xing He, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yukio, Mishima. Jin ge si. Taibei Shi: Hua cheng tu shu, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hui, Chen. Si ji ge. Xianggang: Tian di tu shu you xian gong si, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yukio, Mishima. Jin ge si. 7th ed. Taibei Shi: Da di chu ban she, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tang yue mei, 1931- ), ed. Jin ge si. Bei jing: Jiu zhou chu ban she, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

te, Bo lang, and Xue hong shi. A ge ni si · ge lei. Nan jing: Yi lin chu ban she, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Dao Zi. Si mian chu ge. Hong Kong: Huan Qiu, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

wen, Lai, and Yu er yan. Sheng si zhi ge. Bei jing: Dong fang chu ban she, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Si wang fu ge. Xianggang: Tian di tu shu you xian gong si, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ling, Wang, ed. Si lu zhi ge. Taibei Shi: San min shu ju gu fen you xian gong si, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Si and Ge nanostructures"

1

Cirlin, G. E., V. G. Talalaev, N. D. Zakharov, and P. Werner. "Si/Ge Nanostructures For Led." In Towards the First Silicon Laser, 79–88. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0149-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kawamura, T., T. Yokotsuka, and M. R. Wilby. "Comparative Study of Homoepitaxial Growths on Si(001) and Ge(111)." In Nanostructures and Quantum Effects, 298–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosei, F., N. Motta, A. Sgarlata, and A. Balzarotti. "Growth and Characterization of Ge Nanostructures on Si(111)." In Nanoscale Spectroscopy and Its Applications to Semiconductor Research, 252–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45850-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Persichetti, L., A. Capasso, A. Sgarlata, M. Fanfoni, N. Motta, and A. Balzarotti. "Towards a Controlled Growth of Self-assembled Nanostructures: Shaping, Ordering, and Localization in Ge/Si Heteroepitaxy." In Self-Assembly of Nanostructures, 201–63. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0742-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujimoto, Yoshitaka. "Formation, Growth Mechanism and Electronic Structures of Ge Films on Si Substrates." In Two-Dimensional Nanostructures for Energy-Related Applications, 377–400. Boca Raton, FL : CRC Press, [2016] | “A science publishers book.”: CRC Press, 2017. http://dx.doi.org/10.1201/9781315369877-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujimoto, Yoshitaka. "Formation, Growth Mechanism and Electronic Structures of Ge Films on Si Substrates." In Two-Dimensional Nanostructures for Energy-Related Applications, 377–400. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369877-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nauka, K., and T. I. Kamins. "Modification of the Si surface electronic properties by Ge nanostructures: Surface photovoltage studies." In Springer Proceedings in Physics, 305–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Haiming, Yeliang Wang, and Hongjun Gao. "Scanning Tunneling Microscopy of the Si(111)-7×7 Surface and Adsorbed Ge Nanostructures." In Applied Scanning Probe Methods XII, 183–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85039-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Jifeng. "Ge-on-Si Lasers." In Photonics and Electronics with Germanium, 267–309. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527650200.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carow-Watamura, U., D. V. Louzguine, and A. Takeuchi. "Ge-Nb-Si (281)." In Physical Properties of Ternary Amorphous Alloys. Part 3: Systems from Cr-Fe-P to Si-W-Zr, 256. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14133-1_75.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Si and Ge nanostructures"

1

SOBOLEV, N. A. "RADIATION EFFECTS IN Si/Ge NANOSTRUCTURES." In Reviews and Short Notes to Nanomeeting '97. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814503938_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ji, Pengfei, Yiming Rong, Yuwen Zhang, and Yong Tang. "Heat Conduction in Si/Ge Superlattices: A Molecular Dynamics Study." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70270.

Full text
Abstract:
Owing to the exceptional low thermal conductivity, Si/Ge superlattices becomes an attractive thermoelectric material to convert thermal energy into electric power. The heat conduction process in Si/Ge superlattices is studied by employing the molecular dynamics (MD) simulation in this paper. For the purpose of investigating the role of Si and Ge interface to the contribution of overall thermal conductivity reduction in Si/Ge superlattices, convergent and divergent cone nanostructures are designed as interfaces between Si layer and Ge layer. By keeping fixed temperature difference between the left and right sides of Si/Ge superlattices with constant length, the spatial distribution of temperature and temporal evolution of heat flux flowing through Si/Ge superlattices are calculated. Comparing with the Si/Ge superlattices with even interface, the nanostructured interface contributes to impede the heat conduction between Si and Ge atoms. Si/Ge superlattices with divergent cone interface presents the most excellent performance among all the simulated cases. The design of nanostructured interface paves a promising path to enhance the efficiency of Si/Ge thermoelectric material.
APA, Harvard, Vancouver, ISO, and other styles
3

FRIGERI, C., L. NASI, M. SERÉNYI, A. CSIK, Z. ERDÉLY, and D. L. BEKE. "STRUCTURAL INSTABILITY OF ANNEALED a-Si/a-Ge NANOSTRUCTURES." In Proceedings of the International Conference on Nanomeeting 2009. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814280365_0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gruetzmacher, Detlev A., Rainer Hartmann, Oliver Leifeld, Ulf Gennser, Christian David, Elizabeth Mueller, and Jan-Christoph Panitz. "Optical properties of Si-Ge-C nanostructures deposited by MBE." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Derek C. Houghton and Eugene A. Fitzgerald. SPIE, 1999. http://dx.doi.org/10.1117/12.342787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barbagiovanni, Eric G., David J. Lockwood, Raimundo N. Costa Filho, Lyudmila V. Goncharova, and Peter J. Simpson. "Quantum confinement in Si and Ge nanostructures: effect of crystallinity." In Photonics North 2013, edited by Pavel Cheben, Jens Schmid, Caroline Boudoux, Lawrence R. Chen, André Delâge, Siegfried Janz, Raman Kashyap, David J. Lockwood, Hans-Peter Loock, and Zetian Mi. SPIE, 2013. http://dx.doi.org/10.1117/12.2036323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pearsall, Thomas P. "Determination of electronic structure of Ge-Si nanostructures by electroreflectance spectroscopy." In Semi - DL tentative, edited by Fred H. Pollak, Manuel Cardona, and David E. Aspnes. SPIE, 1990. http://dx.doi.org/10.1117/12.20874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SOBOLEV, N. A., G. D. IVLEV, E. I. GATSKEVICH, D. N. SHARAEV, J. P. LEITÃO, A. FONSECA, M. C. CARMO, et al. "SELF-ORGANIZATION PHENOMENA IN PULSED LASER ANNEALED Si/Ge SUPERLATTICES." In Physics, Chemistry and Application of Nanostructures - Reviews and Short Notes to Nanomeeting 2003. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796738_0114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chernozatonskii, L. A. "New inorganic nanotubes of dioxides MO2(M=Si, Ge, Sn)." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samvedi, Vikas, and Vikas Tomar. "Role of Interface Thermal Boundary Resistance, Straining, and Morphology in Thermal Conductivity of a Set of Si-Ge Superlattices and Biomimetic Si-Ge Nanocomposites." In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52284.

Full text
Abstract:
Nanoscale engineered materials with tailored thermal properties are desirable for applications such as highly efficient thermoelectric, microelectronic and optoelectronic devices. It has been shown earlier that by judiciously varying interface thermal boundary resistance (TBR) thermal conductivity in nanostructures could be controlled. Two types of nanostructures that have gained significant attention owing to the presence of TBR are superlattices and nanocomposites. A systematic comparison of thermal behavior of superlattices and nanocomposites considering their characteristic structural factors such as periodicity and period length for superlattices, and morphology for nanocomposites, under different extents of straining at a range of temperatures remains to be performed. In this presented work, such analyses are performed for a set of Si-Ge superlattices and Si-Ge biomimetic nanocomposites using non-equilibrium molecular dynamics (NEMD) simulations at three different temperatures (400 K, 600 K, and 800 K) and at strain levels varying between −10% and 10%. The analysis of interface TBR contradicts the usual notion that each interface contributes equally to the heat transfer resistance in a layered structure. The dependence of thermal conductivity of superlattice on the direction of heat flow gives it a characteristic somewhat similar to a thermal diode as found in this study. The comparison of thermal behavior of superlattices and nanocomposites indicate that the nanoscale morphology differences between the superlattices and the nanocomposites lead to a striking contrast in the phonon spectral density, interfacial thermal boundary resistance, and thermal conductivity. Both compressive and tensile strains are observed to be important factors in tailoring the thermal conductivity of the analyzed superlattices, whereas have very insignificant influence on the thermal conductivity of the analyzed nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
10

Samvedi, Vikas, and Vikas Tomar. "Role of Interface Thermal Boundary Resistance, Straining and Morphology in Thermal Conductivity of a Set of Si-Ge Superlattices and Biomimetic Si-Ge Nanocomposites." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44644.

Full text
Abstract:
Nanoscale engineered materials with tailored thermal properties are desirable for applications such as highly efficient thermoelectric, microelectronic and optoelectronic devices. It has been shown earlier that by judiciously varying interface thermal boundary resistance (TBR) thermal conductivity in nanostructures could be controlled. Two types of nanostructures that have gained significant attention owing to the presence of TBR are superlattices and nanocomposites. A systematic comparison of thermal behavior of superlattices and nanocomposites considering their characteristic structural factors such as periodicity and period length for superlattices, and morphology for nanocomposites, under different extents of straining at a range of temperatures remains to be performed. In this presented work, such analyses are performed for a set of Si-Ge superlattices and Si-Ge biomimetic nanocomposites using non-equilibrium molecular dynamics (NEMD) simulations at three different temperatures (400 K, 600 K, and 800 K) and at strain levels varying between −10% and 10%. The analysis of interface TBR contradicts the usual notion that each interface contributes equally to the heat transfer resistance in a layered structure. The dependence of thermal conductivity of superlattice on the direction of heat flow gives it a characteristic somewhat similar to a thermal diode as found in this study. The comparison of thermal behavior of superlattices and nanocomposites indicate that the nanoscale morphology differences between the superlattices and the nanocomposites lead to a striking contrast in the phonon spectral density, interfacial thermal boundary resistance, and thermal conductivity. Both compressive and tensile strains are observed to be important factors in tailoring the thermal conductivity of the analyzed superlattices, whereas have very insignificant influence on the thermal conductivity of the analyzed nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Si and Ge nanostructures"

1

Sanchez-Vazquez, Mario, and Nancy Perez-Peralta. Theoretical Study of Si(x)Ge(y)Li(z)- (x=4-10, y=1-10, z=0-10) Clusters for Designing of Novel Nanostructured Materials to be Utilized as Anodes for Lithium-Ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ad1013217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shum, Kai. Hot Electron Ge/Si Lasers. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada329725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Washburn, Sean. Quantum Transport in Si/SiGe Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada395028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dinh, L. N. Synthesis, electronic and optical properties of Si nanostructures. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/425299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bozhko, S. I., A. N. Chaika, and A. M. Ionov. Vicinal Si(hhm) surfaces: templates for nanostructures fabrication. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)58-64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blake, P., and R. O. Scattergood. Diamond turning of Si and Ge single crystals. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adamski, Joseph A., and John S. Bailey. Establish Methods for Crystal Growth of Si-Ge. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada337685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kouvetakis, John, and J. Menendez. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ad1003360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Kang L. Fundamental Properties and Device Applications of Ge(x)Si(1-x)/Si Superlattices. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada236098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZAIDI, SALEEM H. Characterization of Si nanostructures using internal quantum efficiency measurements. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/754397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography