Academic literature on the topic 'Si/β-FeSi2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Si/β-FeSi2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Si/β-FeSi2"

1

Cho, Sung-Pyo, Yoshiaki Nakamura, Jun Yamasaki, Eiji Okunishi, Masakazu Ichikawa та Nobuo Tanaka. "Microstructure and interdiffusion behaviour of β-FeSi2 flat islands grown on Si(111) surfaces". Journal of Applied Crystallography 46, № 4 (2013): 1076–80. http://dx.doi.org/10.1107/s0021889813015355.

Full text
Abstract:
β-FeSi2 flat islands have been fabricated on ultra-thin oxidized Si(111) surfaces by Fe deposition on Si nanodots. The microstructure and interdiffusion behaviour of the β-FeSi2/Si(111) system at the atomic level were studied by using spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The formed β-FeSi2 flat islands had a disc shape with an average size of 30–150 nm width and 10–20 nm height, and were epitaxically grown on high-quality single-phase Si with a crystallographic relationship (110)β-FeSi2/(111)Si and [001]β-FeSi2/[1\bar 10]Si. Moreover, the heterojunction between the β-FeSi2(110) flat islands and the Si(111) substrate was an atomically and chemically abrupt interface without any irregularities. It is believed that these results are caused by the use of ultra-thin SiO2 films in our fabrication method, which is likely to be beneficial particularly for fabricating practical nanoscaled devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Eguchi, Hajime, Motoki Iinuma, Hirofumi Hoshida, Naoki Murakoso та Yoshikazu Terai. "Growth of Sb-Doped β-FeSi2 Epitaxial Films and Optimization of Donor Activation Conditions". Defect and Diffusion Forum 386 (вересень 2018): 38–42. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.38.

Full text
Abstract:
Sb-doped β-FeSi2 epitaxial films on Si(111) were grown by molecular beam epitaxy to control an electron density of β-FeSi2. After an optimization of donor activation conditions in the Sb-doped β-FeSi2, the electron density of 6 × 1018 cm-3 at 300 K was achieved by thermal annealing in a N2 ambient. In the temperature dependence of carrier density, the n-type conduction was changed to p-type conduction at low temperatures in the film annealed at high temperature (600 °C). Raman spectra of the annealed films showed that both Fe and Si sites were substituted by the doped Sb in β-FeSi2 lattice.
APA, Harvard, Vancouver, ISO, and other styles
3

Akiyama, Kensuke, Hiroshi Funakubo та Masaru Itakura. "Epitaxial growth of (010)-oriented β-FeSi2 film on Si(110) substrate". MRS Proceedings 1493 (2013): 189–94. http://dx.doi.org/10.1557/opl.2013.407.

Full text
Abstract:
ABSTRACTHigh-quality (010)-oriented epitaxial β-FeSi2 films were grown on Si(110) substrates by coating silver thin layer. The full width at half maximum of the rocking curve of β-FeSi2040 was 0.14o for the film deposited at 800°C on Si(110) substrates with 95 nm-thick silver layer. Moreover, this epitaxial β-FeSi2 film was constructed with single domain structure, and the lattice parameter of a-axis was extended by 0.7%. The photoluminescence spectrum from this epitaxial β-FeSi2 indicated that the band-gap was modulated by lattice strain of a-axis.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiao Na, Bing Hu, Chuang Dong, and Xin Jiang. "Structural Evolution Upon Annealing of Multi-Layer Si/Fe Thin Films Prepared by Magnetron Sputtering." Materials Science Forum 561-565 (October 2007): 1161–64. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1161.

Full text
Abstract:
Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.
APA, Harvard, Vancouver, ISO, and other styles
5

Akiyama, Kensuke, Yuu Motoizumi, Tetsuya Okuda, Hiroshi Funakubo, Hiroshi Irie, and Yoshihisa Matsumoto. "Synthesis and Photocatalytic Properties of Iron Disilicide/SiC Composite Powder." MRS Advances 2, no. 8 (2017): 471–76. http://dx.doi.org/10.1557/adv.2017.221.

Full text
Abstract:
ABSTRACTSemiconducting iron disilicide (β-FeSi2) island grains of 50-100 nanometers in size were formed on the surface of Au-coated 3C-SiC powder by metal-organic chemical vapor deposition. On the surface of 3C-SiC powder, the Au-Si liquidus phase was obtained via a Au-Si eutectic reaction, which contributed to the formation of the β-FeSi2 island grains. This β-FeSi2/SiC composite powder could evolve hydrogen (H2) from methyl-alcohol aqueous solution under irradiation of visible light with wavelengths of 420-650 nm.
APA, Harvard, Vancouver, ISO, and other styles
6

Tsunoda, Tatsuo, Masakazu Mukaida, Akio Watanabe, and Yoji Imai. "Composition dependence of morphology, structure, and thermoelectric properties of FeSi2 films prepared by sputtering deposition." Journal of Materials Research 11, no. 8 (1996): 2062–70. http://dx.doi.org/10.1557/jmr.1996.0259.

Full text
Abstract:
Direct β–FeSi2 film preparation from gaseous phase was examined using a radio-frequency (rf) sputtering deposition apparatus equipped with a composite target of iron and silicon. Films composed of only β–FeSi2 phase were formed at substrate temperatures above 573 K when the chemical composition of the film was very close to stoichiometric FeSi2. The β–FeSi2 films thus formed showed rather large positive Seebeck coefficient. When the chemical composition of the films were deviated to the Fe-rich side, ∈–FeSi phase was formed along with β–FeSi2. On the other hand, α–FeSi2 phase, which is stable above 1210 K in the equilibrium phase diagram, was formed at the substrate temperature as low as 723 K when the chemical composition was deviated to the Si-rich side. The formation of α–FeSi2 phase induced drastic changes in the morphology and thermoelectric properties of the films. The α–FeSi2 phase formed in the films was easily transformed to β–FeSi2 phase by a thermal treatment.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, X. W., Z. Liliental-Weber, J. Washburn, J. Desimoni та H. Bernas. "Formation of β-FeSi2, by thermal annealing of Fe-implanted (001) Si". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 серпня 1993): 808–9. http://dx.doi.org/10.1017/s0424820100149878.

Full text
Abstract:
Epitaxy of semiconducting β-FeSi2 on Si is of interest for optoelectronic device technology, because of its direct bandgap of ≈0.9 eV. Several techniques, including solid phase epitaxy (SPE) and ion beam synthesis, have been successfully used to grow β-FeSi2 on either Si (001) or (111) wafers. In this paper, we report the epitaxial formation of β-FeSi2 upon thermal annealing of an Fe-Si amorphous layer formed by ion implantation.Si (001) wafers were first implanted at room temperature with 50-keV Fe+ ions to a dose of 0.5 - 1×1016 cm−2, corresponding to a peak Fe concentration of cp ≈ 2 - 4 at.%, and subsequently annealed at 320, 520, and 900°C, in order to induce SPE of the implanted amorphous layer. Cross-sectional high-resolution electron microscopy (HREM) was used for structural characterization.We find that the implanted surface layer ( ≈100 nm thick) remains amorphous for samples annealed at 320°C for as long as 3.2 h, whereas annealing above 520°C results in SPE of Si, along with precipitation of β-FeSi2.
APA, Harvard, Vancouver, ISO, and other styles
8

Nanko, Makoto, Se Hun Chang, Koji Matsumaru, Kozo Ishizaki та Masatoshi Takeda. "Isothermal Oxidation of Sintered β-FeSi2 in Air". Materials Science Forum 522-523 (серпень 2006): 641–48. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.641.

Full text
Abstract:
High-temperature oxidation of sintered β-FeSi2 doped with Mn and Co was evaluated at 800°C in air. Amorphous SiO2 was developed as an oxide scale. Granular ε-FeSi also appeared below the SiO2 scale as a result of consumption of Si in β-FeSi2. Growth of the oxide scale on doped FeSi2 followed a parabolic law and its rate was similar to oxidation of undoped samples. Thermoelectric properties of sintered β-FeSi2 were also evaluated before and after oxidation at 800°C for 7 days. There was no significant change in thermoelectric properties after high-temperature oxidation on β-FeSi2 sintered bodies.
APA, Harvard, Vancouver, ISO, and other styles
9

Visotin, Maxim A., I. A. Tarasov, A. S. Fedorov, S. N. Varnakov та S. G. Ovchinnikov. "Prediction of orientation relationships and interface structures between α-, β-, γ-FeSi2 and Si phases". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, № 3 (2020): 469–82. http://dx.doi.org/10.1107/s2052520620005727.

Full text
Abstract:
A pure crystallogeometrical approach is proposed for predicting orientation relationships, habit planes and atomic structures of the interfaces between phases, which is applicable to systems of low-symmetry phases and epitaxial thin film growth. The suggested models are verified with the example of epitaxial growth of α-, γ- and β-FeSi2 silicide thin films on silicon substrates. The density of near-coincidence sites is shown to have a decisive role in the determination of epitaxial thin film orientation and explains the superior quality of β-FeSi2 thin grown on Si(111) over Si(001) substrates despite larger lattice misfits. Ideal conjunctions for interfaces between the silicide phases are predicted and this allows for utilization of a thin buffer α-FeSi2 layer for oriented growth of β-FeSi2 nanostructures on Si(001). The thermal expansion coefficients are obtained within quasi-harmonic approximation from the DFT calculations to study the influence of temperature on the lattice strains in the derived interfaces. Faster decrease of misfits at the α-FeSi2(001)||Si(001) interface compared to γ-FeSi2(001)||Si(001) elucidates the origins of temperature-driven change of the phase growing on silicon substrates. The proposed approach guides from bulk phase unit cells to the construction of the interface atomic structures and appears to be a powerful tool for the prediction of interfaces between arbitrary phases for subsequent theoretical investigation and epitaxial film synthesis.
APA, Harvard, Vancouver, ISO, and other styles
10

Akiyama, Kensuke, Satoru Kaneko, Yasuo Hirabayashi та Hiroshi Funakubo. "Photoluminescence properties of Si/β-FeSi2/Si double heterostructure". Thin Solid Films 508, № 1-2 (2006): 380–84. http://dx.doi.org/10.1016/j.tsf.2005.07.353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography