Academic literature on the topic 'Shor Algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shor Algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shor Algorithm"
Monz, T., D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt. "Realization of a scalable Shor algorithm." Science 351, no. 6277 (March 3, 2016): 1068–70. http://dx.doi.org/10.1126/science.aad9480.
Full textCherckesova, Larissa, Olga Safaryan, Pavel Razumov, Irina Pilipenko, Yuriy Ivanov, and Ivan Smirnov. "Speed improvement of the quantum factorization algorithm of P. Shor by upgrade its classical part." E3S Web of Conferences 224 (2020): 01016. http://dx.doi.org/10.1051/e3sconf/202022401016.
Full textAVILA, M. A. "MINIMAL EXECUTION TIME OF SHOR'S ALGORITHM AT LOW TEMPERATURES." International Journal of Quantum Information 07, no. 01 (February 2009): 287–96. http://dx.doi.org/10.1142/s0219749909004475.
Full textLerner, E. Yu. "Prime witnesses in the Shor algorithm and the Miller-Rabin algorithm." Russian Mathematics 52, no. 12 (December 2008): 36–40. http://dx.doi.org/10.3103/s1066369x08120062.
Full textHlukhov, V. "CAPACITIVE COMPLEXITY OF DETERMINING GCD IN THE SHOR S ALGORITHM." ELECTRICAL AND COMPUTER SYSTEMS 33, no. 108 (November 30, 2020): 26–32. http://dx.doi.org/10.15276/eltecs.32.108.2020.3.
Full textEkerå, Martin. "On post-processing in the quantum algorithm for computing short discrete logarithms." Designs, Codes and Cryptography 88, no. 11 (August 6, 2020): 2313–35. http://dx.doi.org/10.1007/s10623-020-00783-2.
Full textKiseliova, O. M., O. M. Prytomanova, and V. H. Padalko. "APPLICATION OF THE THEORY OF OPTIMAL SET PARTITIONING BEFORE BUILDING MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAM WITH FUZZY PARAMETERS." EurasianUnionScientists 6, no. 2(71) (2020): 30–35. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.71.615.
Full textPlesa, Mihail-Iulian, and Togan Mihai. "A New Quantum Encryption Scheme." Advanced Journal of Graduate Research 4, no. 1 (June 22, 2018): 59–67. http://dx.doi.org/10.21467/ajgr.4.1.59-67.
Full textGhisi, F., and S. V. Ulyanov. "The information role of entanglement and interference operators in Shor quantum algorithm gate dynamics." Journal of Modern Optics 47, no. 12 (October 2000): 2079–90. http://dx.doi.org/10.1080/09500340008235130.
Full textUlyanov, F. Ghisi, S. V. "The information role of entanglement and interference operators in Shor quantum algorithm gate dynamics." Journal of Modern Optics 47, no. 12 (October 15, 2000): 2079–90. http://dx.doi.org/10.1080/095003400419933.
Full textDissertations / Theses on the topic "Shor Algorithm"
MARTINS, ROBERTO CINTRA. "SHOR S FACTORING ALGORITHM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35511@1.
Full textA dissertação apresenta detalhadamente o algoritmo de fatoração de Shor, tanto em termos de sua execução passo a passo como mediante sua representação em forma de circuito, abordando aspectos tanto de sua parte clássica como de sua parte quântica. Inicialmente são apresentados aspectos de teoria dos números indispensáveis para a compreensão do algoritmo e em seguida são desenvolvidos conceitos e propriedades de mecânica quântica e de informação quântica pertinentes. Em atenção ao caráter eminentemente estocástico do algoritmo realiza-se um estudo de sua fonte estocástica e demonstram-se os principais teoremas que embasam a avaliação de sua probabilidade de sucesso. Desenvolvem-se exemplos de simulação clássica do algoritmo. Finalmente, a eficiência do algoritmo de fatoração de Shor é comparada com a de algoritmos clássicos.
The dissertation presents in detail Shor s factoring algorithm, including its execution step by step and its representation in the form of a circuit, addressing aspects of both its classical and its quantum parts. Aspects of number theory indispensable to understand the algorithm are presented, followed by a development of concepts and properties of quantum mechanics and quantum information. Considering the eminently stochastic character of the algorithm, a study of its stochastic source is carried out and the main theorems that support the evaluation of its probability of success are proved. Examples of classical simulation of the algorithm are developed. Finally, the efficiency of Shor s factoring algorithm is compared with that of classical algorithms.
Nwaokocha, Martyns. "Shorův algoritmus v kvantové kryptografii." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445457.
Full textNyman, Peter. "Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer." Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2329.
Full textUtvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.
Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.
Drobouchevitch, Inna G. "Design and analysis of algorithms for short-route shop scheduling problems." Thesis, University of Greenwich, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285392.
Full textBlum, Christian. "Metaheuristics for Group Shop Scheduling." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211345.
Full textTa, Quang-Chieu. "Matheuristic algorithms for minimizing total tardiness in flow shop scheduling problems." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4002/document.
Full textWe consider in this thesis a permutation flow shop scheduling problem where a set of jobs have to be scheduled on a set of machines. The jobs have to be processed on the machines in the same order. The objective is to minimize the total tardiness. We propose heuristic algorithms and many new matheuristic algorithms for this problem. The matheuristic methods are a new type of approximated algorithms that have been proposed for solving combinatorial optimization problems. These methods embed exact resolution into (meta)heuristic approaches. This type of resolution method has received a great interest because of their very good performances for solving some difficult problems. We present the basic concepts and components of a scheduling problem and the aspects related to these components. We also give a brief introduction to the theory of scheduling and present an overview of resolution methods. Finally, we consider a problem where m-machine permutation flow shop scheduling problem and a vehicle routing problem are integrated and the objective is to minimize the total tardiness. We introduce a direct coding for a complete solution and a Tabu search for finding a sequence and trips. The results show that the TS greatly improves the initial solution given by EDD heuristic where each trip serves only one job at a time
Bandini, Michele. "Crittografia quantistica e algoritmo di Shor." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17073/.
Full textKugel, Felix. "Das Shor-Verfahren als stochastischer Algorithmus." [S.l.] : [s.n.], 2006. http://137.193.200.177/ediss/kugel-felix/meta.html.
Full textWeyer, Anne. "The Brute Force Algorithm." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1555605680617133.
Full textLarabi, Mohand. "Le problème de job-shop avec transport : modélisation et optimisation." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00625528.
Full textBooks on the topic "Shor Algorithm"
Song, Yingsheng. Genetic algorithms for job shop scheduling. [S.l: The Author], 2002.
Find full textAsquith, Paul. Short sales and trade classification algorithms. Cambridge, MA: National Bureau of Economic Research, 2008.
Find full textGeorge, Vairaktarakis, ed. Flow shop scheduling: Theoretical results, algorithms, and applications. New York: Springer Verlag, 2013.
Find full textDapporto, Paolo, Paola Paoli, Patrizia Rossi, and Annalisa Guerri. The UTN program. Florence: Firenze University Press, 2001. http://dx.doi.org/10.36253/88-8453-032-6.
Full textBurstein, Joseph. Exact numerical solutions of nonlinear differential equations, short algorithms: After three centuries of approximate methods. Boston: Metrics Press, 2002.
Find full textJin tian bu xue ji qi xue xi, ming tian jiu bei ji qi qu dai: Cong Python ru shou + yan suan fa. Taibei Shi: Jia kui zi xun fa xing, 2017.
Find full text1974-, Zomorodian Afra J., ed. Advances in applied and computational topology: American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.
Find full textDaji, Qiao, and SpringerLink (Online service), eds. Quality, Reliability, Security and Robustness in Heterogeneous Networks: 7th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2010, and Dedicated Short Range Communications Workshop, DSRC 2010, Houston, TX, USA, November 17-19, 2010, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textTschinkel, Yuri, Carlo Gasbarri, Steven Lu, and Mike Roth. Rational points, rational curves, and entire holomorphic curves on projective varieties: CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textLevitin, Anany, and Maria Levitin. Algorithmic Puzzles. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199740444.001.0001.
Full textBook chapters on the topic "Shor Algorithm"
LaPierre, Ray. "Shor Algorithm." In The Materials Research Society Series, 177–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69318-3_13.
Full textRaj, Gaurav, Dheerendra Singh, and Abhishek Madaan. "Analysis of Classical and Quantum Computing Based on Grover and Shor Algorithm." In Smart Computing and Informatics, 413–23. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5547-8_43.
Full textBrucker, Peter. "Shop Scheduling Problems." In Scheduling Algorithms, 145–228. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03612-9_6.
Full textBrucker, Peter. "Shop Scheduling Problems." In Scheduling Algorithms, 143–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03088-2_6.
Full textBrucker, Peter. "Shop Scheduling Problems." In Scheduling Algorithms, 155–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04550-3_6.
Full textBrucker, Peter. "Shop Scheduling Problems." In Scheduling Algorithms, 155–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24804-0_6.
Full textvan Heerdt, Gerco, Clemens Kupke, Jurriaan Rot, and Alexandra Silva. "Learning Weighted Automata over Principal Ideal Domains." In Lecture Notes in Computer Science, 602–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45231-5_31.
Full textAmram, Gal, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara, Moshe Y. Vardi, and Gera Weiss. "Adapting Behaviors via Reactive Synthesis." In Computer Aided Verification, 870–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_41.
Full textMattfeld, Dirk C. "Evolutionary Algorithms." In Evolutionary Search and the Job Shop, 49–64. Heidelberg: Physica-Verlag HD, 1996. http://dx.doi.org/10.1007/978-3-662-11712-5_4.
Full textBagchi, Tapan P. "Job Shop Scheduling." In Multiobjective Scheduling by Genetic Algorithms, 109–35. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5237-6_5.
Full textConference papers on the topic "Shor Algorithm"
Yimsiriwattana, Anocha, and Samuel J. Lomonaco Jr. "Distributed quantum computing: a distributed Shor algorithm." In Defense and Security, edited by Eric Donkor, Andrew R. Pirich, and Howard E. Brandt. SPIE, 2004. http://dx.doi.org/10.1117/12.546504.
Full textZhang, Xin, YaQian Zhao, RenGang Li, XueLei Li, ZhenHua Guo, XiaoMin Zhu, and Gang Dong. "The Quantum Shor Algorithm Simulated on FPGA." In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2019. http://dx.doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00082.
Full textChuang, Issac. "Experimental realization of a Shor-type quantum algorithm." In International Conference on Quantum Information. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/icqi.2001.fqipa3.
Full textYoung, Rupert, Philip Birch, and Chris Chatwin. "A simplification of the Shor quantum factorization algorithm employing a quantum Hadamard transform." In Pattern Recognition and Tracking XXIX, edited by Mohammad S. Alam. SPIE, 2018. http://dx.doi.org/10.1117/12.2309468.
Full textCHOFFRUT, CHRISTIAN. "A SHORT INTRODUCTION TO AUTOMATIC GROUP THEORY." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0004.
Full textLi, Qinbin, Bingsheng He, and Dawn Song. "Practical One-Shot Federated Learning for Cross-Silo Setting." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/205.
Full textScott, David, and L. A. Thomsen. "A Global Algorithm for Pore Pressure Prediction." In Middle East Oil Show. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/25674-ms.
Full textMorris, Christopher, Matthias Fey, and Nils Kriege. "The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/618.
Full textAmbainis, Andris. "Quantum algorithms a decade after shor." In the thirty-sixth annual ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007352.1007354.
Full textSnover, Matthew, Bonnie Dorr, and Richard Schwartz. "A lexically-driven algorithm for disfluency detection." In HLT-NAACL 2004: Short Papers. Morristown, NJ, USA: Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1613984.1614024.
Full textReports on the topic "Shor Algorithm"
Cao, Zhengjun, Lihua Liu, and Andreas Christoforides. A Note on One Realization of a Scalable Shor Algorithm. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.81.
Full textGuliashki, Vassil, and Leoneed Kirilov. Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2019. http://dx.doi.org/10.7546/crabs.2019.06.01.
Full textAsquith, Paul, Rebecca Oman, and Christopher Safaya. Short Sales and Trade Classification Algorithms. Cambridge, MA: National Bureau of Economic Research, July 2008. http://dx.doi.org/10.3386/w14158.
Full textJones, Peter W., Andrei Osipov, and Vladimir Rokhlin. A Randomized Approximate Nearest Neighbors Algorithm - A Short Version. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada639824.
Full textPlimpton, S. Fast parallel algorithms for short-range molecular dynamics. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10176421.
Full textAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Full textCable, S., T. Tajima, and K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/6970874.
Full textCable, S., T. Tajima, and K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10181739.
Full textDownard, Alicia, Stephen Semmens, and Bryant Robbins. Automated characterization of ridge-swale patterns along the Mississippi River. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40439.
Full textAllen, Luke, Joon Lim, Robert Haehnel, and Ian Dettwiller. Helicopter rotor blade multiple-section optimization with performance. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41031.
Full text