Academic literature on the topic 'Shockwave Boundary Layer Interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shockwave Boundary Layer Interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shockwave Boundary Layer Interactions"
Chokani, N., and L. C. Squire. "Transonic shockwave/turbulent boundary layer interactions on a porous surface." Aeronautical Journal 97, no. 965 (May 1993): 163–70. http://dx.doi.org/10.1017/s0001924000026117.
Full textChand, S. V. S. A. Hema Sai. "Transonic shockwave/boundary layer interactions on NACA 5 series -24112." International Journal of Current Engineering and Technology 2, no. 2 (January 1, 2010): 629–34. http://dx.doi.org/10.14741/ijcet/spl.2.2014.120.
Full textHanna, Rebecca L. "Hypersonic shockwave/turbulent boundary-layer interactions on a porous surface." AIAA Journal 33, no. 10 (October 1995): 1977–79. http://dx.doi.org/10.2514/3.12755.
Full textSebastian, Jiss J., and Frank K. Lu. "Upstream-Influence Scaling of Fin-Induced Laminar Shockwave/Boundary-Layer Interactions." AIAA Journal 59, no. 5 (May 2021): 1861–64. http://dx.doi.org/10.2514/1.j059354.
Full textDélery, J. M. "Shock phenomena in high speed aerodynamics: still a source of major concern." Aeronautical Journal 103, no. 1019 (January 1999): 19–34. http://dx.doi.org/10.1017/s0001924000065076.
Full textZahrolayali, Nurfathin, Mohd Rashdan Saad, Azam Che Idris, and Mohd Rosdzimin Abdul Rahman. "Assessing the Performance of Hypersonic Inlets by Applying a Heat Source with the Throttling Effect." Aerospace 9, no. 8 (August 16, 2022): 449. http://dx.doi.org/10.3390/aerospace9080449.
Full textGrilli, Muzio, Peter J. Schmid, Stefan Hickel, and Nikolaus A. Adams. "Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction." Journal of Fluid Mechanics 700 (February 28, 2012): 16–28. http://dx.doi.org/10.1017/jfm.2012.37.
Full textHamed, A., and J. S. Shang. "Survey of validation data base for shockwave boundary-layer interactions in supersonic inlets." Journal of Propulsion and Power 7, no. 4 (July 1991): 617–25. http://dx.doi.org/10.2514/3.23370.
Full textSznajder, Janusz, and Tomasz Kwiatkowski. "EFFECTS OF TURBULENCE INDUCED BY MICRO VORTEX GENERATORS ON SHOCKWAVE – BOUNDARY LAYER INTERACTIONS." Journal of KONES. Powertrain and Transport 22, no. 2 (January 1, 2015): 241–48. http://dx.doi.org/10.5604/12314005.1165445.
Full textKalra, Chiranjeev S., Sohail H. Zaidi, Richard B. Miles, and Sergey O. Macheret. "Shockwave–turbulent boundary layer interaction control using magnetically driven surface discharges." Experiments in Fluids 50, no. 3 (August 18, 2010): 547–59. http://dx.doi.org/10.1007/s00348-010-0898-9.
Full textDissertations / Theses on the topic "Shockwave Boundary Layer Interactions"
Leung, Andrew Wing Che. "An investigation of three-dimensional shockwave/turbulent-boundary layer interaction." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284191.
Full textGalbraith, Daniel S. "Computational Fluid Dynamics Investigation into Shock Boundary Layer Interactions in the “Glass Inlet” Wind Tunnel." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1322053278.
Full textBellinger, James. "Control of the oblique shockwave/boundary layer interaction in a supersonic inlet." Connect to resource, 2008. http://hdl.handle.net/1811/32065.
Full textChokani, Ndaona. "A study of the passive effect on transonic shockwave/turbulent boundary layer interactions on porous surfaces." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293606.
Full textBunnag, Shane. "Bleed Rate Model Based on Prandtl-Meyer Expansion for a Bleed Hole Normal to a Supersonic Freestream." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282330691.
Full textGrilli, Muzio [Verfasser], Nikolaus A. [Akademischer Betreuer] Adams, and Roberto [Akademischer Betreuer] Verzicco. "Analysis of the unsteady behavior in shockwave turbulent boundary layer interaction / Muzio Grilli. Gutachter: Roberto Verzicco ; Nikolaus A. Adams. Betreuer: Nikolaus A. Adams." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1046404741/34.
Full textBoyer, Nathan Robert. "The Effects of Viscosity and Three-Dimensionality on Shockwave-Induced Panel Flutter." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156616766854713.
Full textPhilit, Mickaël. "Modélisation, simulation et analyse des instationnarités en écoulement transsonique décollé en vue d'application à l'aéroélasticité des turbomachines." Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0033/document.
Full textIn modern turbomachinery design, predicting aerolastic phenomena has become a key point. The development of highly loaded components, while reducing their weight, increases the risk of failure. In this context, good understanding and prediction of various instabilities are a major industrial and scientific challenge. This research work aims to improve the prediction of unsteady phenomena involved in turbomachinery aeroelasticity. This study focuses especially on the simulation of shock wave/boundary layer interaction. To begin with, a transonic nozzle separated flow is investigated. Forced oscillation of the shock wave system is simulated through a small unsteady perturbation method combined with the assumption of variable turbulence. This approach is validated against exprimental measurements. The first harmonic of pressure on the wall of the nozzle is predicted quite satisfactorily. The need to linearize the turbulence model was shown of high importance. Deriving the turbulence model, leads us to investigate the turbulence modeling performed to predict the shockwave/boundary layer interaction. A two equations turbulence model supplemented by a "time-lagged" equation is implemented to capture non-equilibrium effects of turbulence. All achieved results for a nozzle are consistent with theory, but overproduction of turbulent kinetic energy at leading edge makes the model useless for turbomachinery configurations. However, the introduction of an eddy viscosity stress limiter inside a two-equation turbulence model proves to give good results. The derivation method is thus presented on such a model, precisely on Wilcox model proposed in 2008. Finally, the linearization technique is extended to aeroelastic problems. A loose fluid-structure coupling strategy is adopted. The structural oscillation of the blades is considered for eigen-modes but frequency is free to change during coupling resolution. The new approach is based on the building of a meta-model to describe the fluid dynamic behavior in order to solve directly the coupled fluid-structure system. This technique is validated on a standard high subsonic turbine configuration and takes advantage of a reduced computation time
Frank, Donya P. "Wave-Current Bottom Boundary Layer Interactions." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1229087949.
Full textTouber, Emile. "Unsteadiness in shock-wave/boundary layer interactions." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/161073/.
Full textBooks on the topic "Shockwave Boundary Layer Interactions"
R, Hingst W., and United States. National Aeronautics and Space Administration., eds. Surface and flow field measurements in a symmetric crossing shockwave/turbulent boundary-layer interaction. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textDélery, J. Shock-wave boundary layer interactions. Neuilly sur Seine, France: NATO, Advisory Group for Aerospace Research and Development, 1986.
Find full textBabinsky, Holger, and John K. Harvey, eds. Shock Wave–Boundary-Layer Interactions. Cambridge: Cambridge University Press, 2011. http://dx.doi.org/10.1017/cbo9780511842757.
Full textShock wave-boundary layer interactions. Cambridge: Cambridge University Press, 2011.
Find full textDelery, J. Shock-wave boundary layer interactions. Neuilly sur Seine: Agard, 1986.
Find full textIUTAM Symposium (1985 Palaiseau, France). Turbulent shear-layer/shock-wave interactions. Edited by Délery J. 1939-, International Union of Theoretical and Applied Mechanics., and France. Office national d'études et de recherches aérospatiales. Berlin: Springer-Verlag, 1986.
Find full textArellano, Jordi Vilà-Guerau de. Atmospheric boundary layer: Integrating air chemistry and land interactions. New York, NY: Cambridge University Press, 2015.
Find full textBlackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textBlackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Find full textUnited States. National Aeronautics and Space Administration., ed. Experimental studies of hypersonic shock-wave boundary-layer interactions. Arlington, Tex: University of Texas at Arlington, 1992.
Find full textBook chapters on the topic "Shockwave Boundary Layer Interactions"
Lusher, D. J., and N. D. Sandham. "Shockwave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows." In ERCOFTAC Series, 271–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42822-8_35.
Full textBogdonoff, S. M. "Observation of Three-dimensional “Separation” in Shock Wave Turbulent Boundary Layer Interactions." In Boundary-Layer Separation, 37–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83000-6_3.
Full textKaushik, Mrinal. "Shock Wave and Boundary Layer Interactions." In Theoretical and Experimental Aerodynamics, 361–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1678-4_14.
Full textSandholt, Per Even, and Charles J. Farrugia. "The aurora as monitor of solar wind-magnetosphere interactions." In Earth's Low-Latitude Boundary Layer, 335–49. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/133gm34.
Full textHultqvist, B., R. Lundin, and K. Stasiewicz. "Ion Interactions in the Magnetospheric Boundary Layer." In Geophysical Monograph Series, 127–35. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm038p0127.
Full textBai, H. L., Y. Zhou, and W. G. Zhang. "Streaky Structures in a Controlled Turbulent Boundary Layer." In Fluid-Structure-Sound Interactions and Control, 135–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_19.
Full textSzwaba, Ryszard, Piotr Doerffer, and Piotr Kaczynski. "Transition Effect on Shock Wave Boundary Layer Interaction on Compressor Blade." In Shock Wave Interactions, 31–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73180-3_2.
Full textBrown, J. L., M. I. Kussoy, and T. J. Coakley. "Turbulent Properties of Axisymmetric Shock-Wave/Boundary-Layer Interaction Flows." In Turbulent Shear-Layer/Shock-Wave Interactions, 137–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_12.
Full textSaida, N. "Separation ahead of Blunt Fins in Supersonic Turbulent Boundary-Layers." In Turbulent Shear-Layer/Shock-Wave Interactions, 247–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_20.
Full textSmits, Alexander J., and Seymour M. Bogdonoff. "A “Preview” of Three-Dimensional Shock-Wave/ Turbulent Boundary-Layer Interactions." In Turbulent Shear-Layer/Shock-Wave Interactions, 191–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_16.
Full textConference papers on the topic "Shockwave Boundary Layer Interactions"
Murray, Neil, and Richard Hillier. "Separated Shockwave / Turbulent Boundary Layer Interactions at Hypersonic Speeds." In 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3038.
Full textHanna, Rebecca. "Hypersonic shockwave/turbulent boundary layer interactions on a porous surface." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-5.
Full textSivasubramanian, Jayahar, and Hermann F. Fasel. "Numerical Investigation of Shockwave Boundary Layer Interactions in Supersonic Flows." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0613.
Full textHORSTMAN, C. "Computation of sharp-fin-induced shockwave/turbulent boundary layer interactions." In 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1032.
Full textPriebe, Stephan, and Pino Martin. "Direct Numerical Simulation of Shockwave and Turbulent Boundary Layer Interactions." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-589.
Full textLee, Sunyoung, and Andreas Gross. "Numerical Investigation of Super- and Hypersonic Laminar Shockwave Boundary Layer Interactions." In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3441.
Full textSebastian, Jiss J., and Frank K. Lu. "Upstream-Influence Scaling of Fin-Generated Shockwave/Laminar Boundary-Layer Interactions." In AIAA AVIATION 2020 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-3009.
Full textMurray, Neil, and Richard Hillier. "Hypersonic ShockWave/Turbulent Boundary Layer Interactions In A Three-Dimensional Flow." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-121.
Full textCohen, Daniel, and Konstantinos Kontis. "Passive Control of Shockwave-Boundary Layer Interactions Using Ultrasonically Absorptive Surfaces." In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1059.
Full textTripathi, Akriti, Lee Mears, Kourosh Shoele, and Rajan Kumar. "Oblique Shockwave Boundary Layer Interactions on a Flexible Panel at Mach 2." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0568.
Full textReports on the topic "Shockwave Boundary Layer Interactions"
Martin, M. P., and A. J. Smits. Understanding and Predicting Shockwave and Turbulent Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada504718.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531259.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions In Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532783.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541857.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574045.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575522.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598037.
Full textAlbrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557114.
Full textLoth, Eric, and Sang Lee. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada478600.
Full textDolling, D. S., N. C. Clemens, and E. Hood. Exploratory Experimental Study of Transitional Shock Wave Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada411523.
Full text