Academic literature on the topic 'Shockwave Boundary Layer Interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shockwave Boundary Layer Interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Shockwave Boundary Layer Interactions"

1

Chokani, N., and L. C. Squire. "Transonic shockwave/turbulent boundary layer interactions on a porous surface." Aeronautical Journal 97, no. 965 (May 1993): 163–70. http://dx.doi.org/10.1017/s0001924000026117.

Full text
Abstract:
AbstractTransonic shockwave/turbulent boundary layer interactions on a porous surface above a closed plenum chamber have been studied experimentally in the choked flow of a windtunnel test-section. The equivalent freestream Mach number is 0.76 and results were obtained for three shock strengths. Without the porous surface the Mach numbers ahead of the shock were 1.13, 1.18 and 1.26. The respective shock Mach numbers with the porous surface were 1.10, 1.11 and 1.19. Laser holographic interferometry results are used to measure the density flowfield and examine the nature of the interaction. These results show that the interaction on the porous surface is modified by a thin shear layer adjacent to the surface and the weakening of the Shockwave is attributed to this. The interaction was also studied by solving the two-dimensional Reynolds-averaged Navier-Stokes equations together with the two-layer algebraic eddy-viscosity model of Baldwin-Lomax modified with appropriate corrections for surface transpiration. The computed results show excellent agreement with the experimental data. The examination of these numerical results shows that the surface transpiration occurs at a low subsonic velocity and suggests that the effect of the transpiration through the porous surface on the interaction may be optimised.
APA, Harvard, Vancouver, ISO, and other styles
2

Chand, S. V. S. A. Hema Sai. "Transonic shockwave/boundary layer interactions on NACA 5 series -24112." International Journal of Current Engineering and Technology 2, no. 2 (January 1, 2010): 629–34. http://dx.doi.org/10.14741/ijcet/spl.2.2014.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanna, Rebecca L. "Hypersonic shockwave/turbulent boundary-layer interactions on a porous surface." AIAA Journal 33, no. 10 (October 1995): 1977–79. http://dx.doi.org/10.2514/3.12755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sebastian, Jiss J., and Frank K. Lu. "Upstream-Influence Scaling of Fin-Induced Laminar Shockwave/Boundary-Layer Interactions." AIAA Journal 59, no. 5 (May 2021): 1861–64. http://dx.doi.org/10.2514/1.j059354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Délery, J. M. "Shock phenomena in high speed aerodynamics: still a source of major concern." Aeronautical Journal 103, no. 1019 (January 1999): 19–34. http://dx.doi.org/10.1017/s0001924000065076.

Full text
Abstract:
Abstract Shockwaves are present in a flow as soon as the Mach number becomes supersonic. Being viscous phenomena, Shockwaves are a source of drag which can be predominant when the Mach number is significantly higher than one. In supersonic air intakes, the production of entropy by shocks is felt as a loss in efficiency. At high Mach numbers, Shockwaves produce a considerable temperature rise leading to severe heating problems, complicated by real gas effects. The intersection - or interference - of two shocks gives rise to complex wave patterns containing slip-lines and associated shear layers whose impingement on a nearby surface can cause detrimental pressure and heat transfer loads. The impact of a Shockwave on a boundary layer is the origin of strong viscous interactions which remain a limiting factor in the design of transonic wings, supersonic air intakes, propulsive nozzles and compressor cascades. More effort is needed to improve prediction of these interactions and to devise new techniques to control such phenomena.
APA, Harvard, Vancouver, ISO, and other styles
6

Zahrolayali, Nurfathin, Mohd Rashdan Saad, Azam Che Idris, and Mohd Rosdzimin Abdul Rahman. "Assessing the Performance of Hypersonic Inlets by Applying a Heat Source with the Throttling Effect." Aerospace 9, no. 8 (August 16, 2022): 449. http://dx.doi.org/10.3390/aerospace9080449.

Full text
Abstract:
Utilization of a heat source to regulate the shock wave–boundary layer interaction (SWBLI) of hypersonic inlets during throttling was computationally investigated. A plug was installed at the intake isolator’s exit, which caused throttling. The location of the heat source was established by analysing the interaction of the shockwave from the compression ramp and the contact spot of the shockwave with that of the inlet cowl. Shockwave interaction inside the isolator was investigated using steady and transient cases. The present computational work was validated using previous experimental work. The flow distortion (FD) and total pressure recovery (TPR) of the inflows were also studied. We found that varying the size and power of the heat source influenced the shockwaves that originated around it and affected the SWBLI within the isolator. This influenced most of the performance measures. As a result, the TPR increased and the FD decreased when the heat source was applied. Thus, the use of a heat source for flow control was found to influence the performance of hypersonic intakes.
APA, Harvard, Vancouver, ISO, and other styles
7

Grilli, Muzio, Peter J. Schmid, Stefan Hickel, and Nikolaus A. Adams. "Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction." Journal of Fluid Mechanics 700 (February 28, 2012): 16–28. http://dx.doi.org/10.1017/jfm.2012.37.

Full text
Abstract:
AbstractThe unsteady behaviour in shockwave turbulent boundary layer interaction is investigated by analysing results from a large eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp. The interaction leads to a very-low-frequency motion near the foot of the shock, with a characteristic frequency that is three orders of magnitude lower than the typical frequency of the incoming boundary layer. Wall pressure data are first analysed by means of Fourier analysis, highlighting the low-frequency phenomenon in the interaction region. Furthermore, the flow dynamics are analysed by a dynamic mode decomposition which shows the presence of a low-frequency mode associated with the pulsation of the separation bubble and accompanied by a forward–backward motion of the shock.
APA, Harvard, Vancouver, ISO, and other styles
8

Hamed, A., and J. S. Shang. "Survey of validation data base for shockwave boundary-layer interactions in supersonic inlets." Journal of Propulsion and Power 7, no. 4 (July 1991): 617–25. http://dx.doi.org/10.2514/3.23370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sznajder, Janusz, and Tomasz Kwiatkowski. "EFFECTS OF TURBULENCE INDUCED BY MICRO VORTEX GENERATORS ON SHOCKWAVE – BOUNDARY LAYER INTERACTIONS." Journal of KONES. Powertrain and Transport 22, no. 2 (January 1, 2015): 241–48. http://dx.doi.org/10.5604/12314005.1165445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalra, Chiranjeev S., Sohail H. Zaidi, Richard B. Miles, and Sergey O. Macheret. "Shockwave–turbulent boundary layer interaction control using magnetically driven surface discharges." Experiments in Fluids 50, no. 3 (August 18, 2010): 547–59. http://dx.doi.org/10.1007/s00348-010-0898-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Shockwave Boundary Layer Interactions"

1

Leung, Andrew Wing Che. "An investigation of three-dimensional shockwave/turbulent-boundary layer interaction." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Galbraith, Daniel S. "Computational Fluid Dynamics Investigation into Shock Boundary Layer Interactions in the “Glass Inlet” Wind Tunnel." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1322053278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bellinger, James. "Control of the oblique shockwave/boundary layer interaction in a supersonic inlet." Connect to resource, 2008. http://hdl.handle.net/1811/32065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chokani, Ndaona. "A study of the passive effect on transonic shockwave/turbulent boundary layer interactions on porous surfaces." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bunnag, Shane. "Bleed Rate Model Based on Prandtl-Meyer Expansion for a Bleed Hole Normal to a Supersonic Freestream." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282330691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grilli, Muzio [Verfasser], Nikolaus A. [Akademischer Betreuer] Adams, and Roberto [Akademischer Betreuer] Verzicco. "Analysis of the unsteady behavior in shockwave turbulent boundary layer interaction / Muzio Grilli. Gutachter: Roberto Verzicco ; Nikolaus A. Adams. Betreuer: Nikolaus A. Adams." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1046404741/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boyer, Nathan Robert. "The Effects of Viscosity and Three-Dimensionality on Shockwave-Induced Panel Flutter." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156616766854713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Philit, Mickaël. "Modélisation, simulation et analyse des instationnarités en écoulement transsonique décollé en vue d'application à l'aéroélasticité des turbomachines." Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0033/document.

Full text
Abstract:
Dans la conception des turbomachines modernes, la prédiction des phénomènes aéroélastiques est devenue un point clé. La tendance à réduire la masse et à augmenter la charge des composants aérodynamiques accroit le risque de rupture. Dans un tel contexte, la compréhension et la bonne prédiction des diverses instabilités constituent un enjeu industriel et scientifique majeur. Le présent travail de recherche a pour objectif d’améliorer la prédiction des phénomènes instationnaires intervenant dans les problèmes d’aéroélasticité en turbomachines. Cette thèse est plus particulièrement axée sur la simulation de l’interaction onde de choc/couche limite. Le support d’étude est une tuyère transsonique présentant un écoulement avec des zones décollées. L’oscillation forcée de l’onde de choc est simulée grâce à une méthode de petites perturbations instationnaires couplée avec une hypothèse de turbulence variable. Cette approche est validée par comparaison avec des mesures. Elle permet une prédiction tout à fait satisfaisante du premier harmonique de pression sur la paroi de la tuyère. Ce travail a montré la nécessité de linéariser le modèle de turbulence. Le besoin de dériver le modèle de turbulence nous a amené à investiguer la modélisation faite pour prédire l’interaction onde de choc/couche limite. Un modèle de turbulence à deux équations complété par une équation de « retard » est implémenté afin de capter un déséquilibre de la turbulence. Les résultats obtenus en tuyère sont cohérents avec la théorie mais une surproduction d’énergie turbulente en présence de bord d’attaque rend le modèle inefficace pour des configurations de turbomachines. Au final, l’introduction d’un limiteur de viscosité turbulente dans un modèle de turbulence à deux équations s’avère donner de bons résultats. La méthode de dérivation du modèle est alors présentée sur le modèle de Wilcox proposé en 2008. Enfin, la technique de linéarisation est étendue à la problématique aéroélastique. Une approche de couplage fluide-structure faible est adoptée. L’oscillation structurelle des aubages suivant les modes propres est considérée mais en laissant la fréquence évoluer au cours du couplage. La nouvelle méthode utilisée s’appuie sur la construction d’un méta-modèle du comportement dynamique du fluide afin de résoudre directement le système fluide-structure couplé. Cette technique est validée sur une configuration de grille annulaire de turbine en haut subsonique et présente l’avantage d’un temps de calcul réduit
In modern turbomachinery design, predicting aerolastic phenomena has become a key point. The development of highly loaded components, while reducing their weight, increases the risk of failure. In this context, good understanding and prediction of various instabilities are a major industrial and scientific challenge. This research work aims to improve the prediction of unsteady phenomena involved in turbomachinery aeroelasticity. This study focuses especially on the simulation of shock wave/boundary layer interaction. To begin with, a transonic nozzle separated flow is investigated. Forced oscillation of the shock wave system is simulated through a small unsteady perturbation method combined with the assumption of variable turbulence. This approach is validated against exprimental measurements. The first harmonic of pressure on the wall of the nozzle is predicted quite satisfactorily. The need to linearize the turbulence model was shown of high importance. Deriving the turbulence model, leads us to investigate the turbulence modeling performed to predict the shockwave/boundary layer interaction. A two equations turbulence model supplemented by a "time-lagged" equation is implemented to capture non-equilibrium effects of turbulence. All achieved results for a nozzle are consistent with theory, but overproduction of turbulent kinetic energy at leading edge makes the model useless for turbomachinery configurations. However, the introduction of an eddy viscosity stress limiter inside a two-equation turbulence model proves to give good results. The derivation method is thus presented on such a model, precisely on Wilcox model proposed in 2008. Finally, the linearization technique is extended to aeroelastic problems. A loose fluid-structure coupling strategy is adopted. The structural oscillation of the blades is considered for eigen-modes but frequency is free to change during coupling resolution. The new approach is based on the building of a meta-model to describe the fluid dynamic behavior in order to solve directly the coupled fluid-structure system. This technique is validated on a standard high subsonic turbine configuration and takes advantage of a reduced computation time
APA, Harvard, Vancouver, ISO, and other styles
9

Frank, Donya P. "Wave-Current Bottom Boundary Layer Interactions." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1229087949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Touber, Emile. "Unsteadiness in shock-wave/boundary layer interactions." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/161073/.

Full text
Abstract:
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. This work investigates the interaction between an impinging oblique shock and a supersonic turbulent boundary layer via large-eddy simulations. Special care is taken at the inlet in order to avoid introducing artificial low-frequency modes that could affect the interaction. All simulations cover extensive integration times to allow for a spectral analysis at the low frequencies of interest. The simulations bring clear evidence of the existence of broadband and energetically-significant low-frequency oscillations in the vicinity of the reflected shock, thus confirming earlier experimental findings. Furthermore, these oscillations are found to persist even if the upstream boundary layer is deprived of long coherent structures. Starting from an exact form of the momentum integral equation and guided by data from large-eddy simulations, a stochastic ordinary differential equation for the reflectedshock foot low-frequency motions is derived. This model is applied to a wide range of input parameters. It is found that while the mean boundary-layer properties are important in controlling the interaction size, they do not contribute significantly to the dynamics. Moreover, the frequency of the most energetic fluctuations is shown to be a robust feature, in agreement with earlier experimental observations. Under some assumptions, the coupling between the shock and the boundary layer is mathematically equivalent to a first-order low-pass filter. Therefore, it is argued that the observed lowfrequency unsteadiness is not necessarily a property of the forcing, either from upstream or downstream of the shock, but simply an intrinsic property of the coupled dynamical system.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Shockwave Boundary Layer Interactions"

1

R, Hingst W., and United States. National Aeronautics and Space Administration., eds. Surface and flow field measurements in a symmetric crossing shockwave/turbulent boundary-layer interaction. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Délery, J. Shock-wave boundary layer interactions. Neuilly sur Seine, France: NATO, Advisory Group for Aerospace Research and Development, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babinsky, Holger, and John K. Harvey, eds. Shock Wave–Boundary-Layer Interactions. Cambridge: Cambridge University Press, 2011. http://dx.doi.org/10.1017/cbo9780511842757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shock wave-boundary layer interactions. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delery, J. Shock-wave boundary layer interactions. Neuilly sur Seine: Agard, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

IUTAM Symposium (1985 Palaiseau, France). Turbulent shear-layer/shock-wave interactions. Edited by Délery J. 1939-, International Union of Theoretical and Applied Mechanics., and France. Office national d'études et de recherches aérospatiales. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arellano, Jordi Vilà-Guerau de. Atmospheric boundary layer: Integrating air chemistry and land interactions. New York, NY: Cambridge University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blackaby, Nicholas D. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. Experimental studies of hypersonic shock-wave boundary-layer interactions. Arlington, Tex: University of Texas at Arlington, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Shockwave Boundary Layer Interactions"

1

Lusher, D. J., and N. D. Sandham. "Shockwave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows." In ERCOFTAC Series, 271–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42822-8_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bogdonoff, S. M. "Observation of Three-dimensional “Separation” in Shock Wave Turbulent Boundary Layer Interactions." In Boundary-Layer Separation, 37–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83000-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaushik, Mrinal. "Shock Wave and Boundary Layer Interactions." In Theoretical and Experimental Aerodynamics, 361–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1678-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sandholt, Per Even, and Charles J. Farrugia. "The aurora as monitor of solar wind-magnetosphere interactions." In Earth's Low-Latitude Boundary Layer, 335–49. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/133gm34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hultqvist, B., R. Lundin, and K. Stasiewicz. "Ion Interactions in the Magnetospheric Boundary Layer." In Geophysical Monograph Series, 127–35. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm038p0127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bai, H. L., Y. Zhou, and W. G. Zhang. "Streaky Structures in a Controlled Turbulent Boundary Layer." In Fluid-Structure-Sound Interactions and Control, 135–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szwaba, Ryszard, Piotr Doerffer, and Piotr Kaczynski. "Transition Effect on Shock Wave Boundary Layer Interaction on Compressor Blade." In Shock Wave Interactions, 31–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73180-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, J. L., M. I. Kussoy, and T. J. Coakley. "Turbulent Properties of Axisymmetric Shock-Wave/Boundary-Layer Interaction Flows." In Turbulent Shear-Layer/Shock-Wave Interactions, 137–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saida, N. "Separation ahead of Blunt Fins in Supersonic Turbulent Boundary-Layers." In Turbulent Shear-Layer/Shock-Wave Interactions, 247–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smits, Alexander J., and Seymour M. Bogdonoff. "A “Preview” of Three-Dimensional Shock-Wave/ Turbulent Boundary-Layer Interactions." In Turbulent Shear-Layer/Shock-Wave Interactions, 191–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82770-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Shockwave Boundary Layer Interactions"

1

Murray, Neil, and Richard Hillier. "Separated Shockwave / Turbulent Boundary Layer Interactions at Hypersonic Speeds." In 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hanna, Rebecca. "Hypersonic shockwave/turbulent boundary layer interactions on a porous surface." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sivasubramanian, Jayahar, and Hermann F. Fasel. "Numerical Investigation of Shockwave Boundary Layer Interactions in Supersonic Flows." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HORSTMAN, C. "Computation of sharp-fin-induced shockwave/turbulent boundary layer interactions." In 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Priebe, Stephan, and Pino Martin. "Direct Numerical Simulation of Shockwave and Turbulent Boundary Layer Interactions." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Sunyoung, and Andreas Gross. "Numerical Investigation of Super- and Hypersonic Laminar Shockwave Boundary Layer Interactions." In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sebastian, Jiss J., and Frank K. Lu. "Upstream-Influence Scaling of Fin-Generated Shockwave/Laminar Boundary-Layer Interactions." In AIAA AVIATION 2020 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-3009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murray, Neil, and Richard Hillier. "Hypersonic ShockWave/Turbulent Boundary Layer Interactions In A Three-Dimensional Flow." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cohen, Daniel, and Konstantinos Kontis. "Passive Control of Shockwave-Boundary Layer Interactions Using Ultrasonically Absorptive Surfaces." In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tripathi, Akriti, Lee Mears, Kourosh Shoele, and Rajan Kumar. "Oblique Shockwave Boundary Layer Interactions on a Flexible Panel at Mach 2." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0568.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Shockwave Boundary Layer Interactions"

1

Martin, M. P., and A. J. Smits. Understanding and Predicting Shockwave and Turbulent Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada504718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions In Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada574045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Albrecht, Bruce. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loth, Eric, and Sang Lee. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada478600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dolling, D. S., N. C. Clemens, and E. Hood. Exploratory Experimental Study of Transitional Shock Wave Boundary Layer Interactions. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada411523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography