Journal articles on the topic 'Shock-wave and separation- region interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Shock-wave and separation- region interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Estruch, D., D. G. MacManus, D. P. Richardson, N. J. Lawson, K. P. Garry, and J. L. Stollery. "Experimental study of unsteadiness in supersonic shock-wave/turbulent boundary-layer interactions with separation." Aeronautical Journal 114, no. 1155 (May 2010): 299–308. http://dx.doi.org/10.1017/s0001924000003742.
Full textMosele, John-Paul, Andreas Gross, and John Slater. "Numerical Investigation of Asymmetric Mach 2.5 Turbulent Shock Wave Boundary Layer Interaction." Aerospace 10, no. 5 (April 29, 2023): 417. http://dx.doi.org/10.3390/aerospace10050417.
Full textHuang, Xin, and David Estruch-Samper. "Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction." Journal of Fluid Mechanics 856 (October 11, 2018): 797–821. http://dx.doi.org/10.1017/jfm.2018.735.
Full textMosele, John-Paul, Andreas Gross, and John Slater. "Numerical Investigation of Mach 2.5 Axisymmetric Turbulent Shock Wave Boundary Layer Interactions." Aerospace 10, no. 2 (February 9, 2023): 159. http://dx.doi.org/10.3390/aerospace10020159.
Full textBurton, D. M. F., and H. Babinsky. "Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels." Journal of Fluid Mechanics 707 (August 2, 2012): 287–306. http://dx.doi.org/10.1017/jfm.2012.279.
Full textChandola, Gaurav, Xin Huang, and David Estruch-Samper. "Highly separated axisymmetric step shock-wave/turbulent-boundary-layer interaction." Journal of Fluid Mechanics 828 (September 6, 2017): 236–70. http://dx.doi.org/10.1017/jfm.2017.522.
Full textBich Ngoc, Hoang Thi, and Nguyen Manh Hung. "Study of separation phenomenon in transonic flows produced by interaction between shock wave and boundary layer." Vietnam Journal of Mechanics 33, no. 3 (September 8, 2011): 170–81. http://dx.doi.org/10.15625/0866-7136/33/3/210.
Full textShahrbabaki, A. Nazarian, M. Bazazzadeh, and R. Khoshkhoo. "Investigation on Supersonic Flow Control Using Nanosecond Dielectric Barrier Discharge Plasma Actuators." International Journal of Aerospace Engineering 2021 (July 14, 2021): 1–14. http://dx.doi.org/10.1155/2021/2047162.
Full textGU, Wenting, Binqian ZHANG, Kun MA, Dong LI, Pengfei LYU, and Jie HAN. "Investigation on the flow mechanism of nacelle airframe interaction for podded blended wing body transport." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, no. 2 (April 2022): 352–59. http://dx.doi.org/10.1051/jnwpu/20224020352.
Full textLAURENCE, S. J., and R. DEITERDING. "Shock-wave surfing." Journal of Fluid Mechanics 676 (April 6, 2011): 396–431. http://dx.doi.org/10.1017/jfm.2011.57.
Full textSchofield, W. H. "Turbulent-boundary-layer development in an adverse pressure gradient after an interaction with a normal shock wave." Journal of Fluid Mechanics 154 (May 1985): 43–62. http://dx.doi.org/10.1017/s0022112085001410.
Full textEagle, W. Ethan, and James F. Driscoll. "Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points." Journal of Fluid Mechanics 756 (September 2, 2014): 328–53. http://dx.doi.org/10.1017/jfm.2014.382.
Full textHUMBLE, R. A., F. SCARANO, and B. W. van OUDHEUSDEN. "Unsteady aspects of an incident shock wave/turbulent boundary layer interaction." Journal of Fluid Mechanics 635 (September 10, 2009): 47–74. http://dx.doi.org/10.1017/s0022112009007630.
Full textKornilov, V. I. "Correlation of the separation region length in shock wave/channel boundary layer interaction." Experiments in Fluids 23, no. 6 (December 10, 1997): 489–97. http://dx.doi.org/10.1007/s003480050139.
Full textПоливанов, П. А., and А. А. Сидоренко. "Подавление ламинарной отрывной зоны искровым разрядом при числе Маха M = 1.43." Письма в журнал технической физики 44, no. 18 (2018): 60. http://dx.doi.org/10.21883/pjtf.2018.18.46613.17344.
Full textPIROZZOLI, SERGIO, MATTEO BERNARDINI, and FRANCESCO GRASSO. "Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation." Journal of Fluid Mechanics 657 (June 24, 2010): 361–93. http://dx.doi.org/10.1017/s0022112010001710.
Full textZuo, Feng-Yuan, Antonio Memmolo, Guo-ping Huang, and Sergio Pirozzoli. "Direct numerical simulation of conical shock wave–turbulent boundary layer interaction." Journal of Fluid Mechanics 877 (August 19, 2019): 167–95. http://dx.doi.org/10.1017/jfm.2019.558.
Full textWang, Ziao, Juntao Chang, Yiming Li, Ruoyu Chen, Wenxin Hou, Jifeng Guo, and Lianjie Yue. "Oscillation of the shock train under synchronous variation of incoming Mach number and backpressure." Physics of Fluids 34, no. 4 (April 2022): 046104. http://dx.doi.org/10.1063/5.0087526.
Full textPasha, Amjad A., and Khalid A. Juhany. "Effect of wall temperature on separation bubble size in laminar hypersonic shock/boundary layer interaction flows." Advances in Mechanical Engineering 11, no. 11 (November 2019): 168781401988555. http://dx.doi.org/10.1177/1687814019885556.
Full textWANG, CHENGPENG, XUANG TIAN, and KEMING CHENG. "NUMERICAL INVESTIGATIONS OF PSEUDO-SHOCK WAVES IN VARIABLE CROSS-SECTION DUCTS." Modern Physics Letters B 23, no. 03 (January 30, 2009): 485–88. http://dx.doi.org/10.1142/s0217984909018710.
Full textMurugan, Jayaprakash N., and Raghuraman N. Govardhan. "Shock wave–boundary layer interaction in supersonic flow over a forward-facing step." Journal of Fluid Mechanics 807 (October 18, 2016): 258–302. http://dx.doi.org/10.1017/jfm.2016.574.
Full textXiang, X., and H. Babinsky. "Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels." Journal of Fluid Mechanics 862 (January 16, 2019): 1060–83. http://dx.doi.org/10.1017/jfm.2018.983.
Full textPANARAS, ARGYRIS G. "The effect of the structure of swept-shock-wave/turbulent-boundary-layer interactions on turbulence modelling." Journal of Fluid Mechanics 338 (May 10, 1997): 203–30. http://dx.doi.org/10.1017/s0022112097004825.
Full textKarnick, Pradeepa T., and Kartik Venkatraman. "Shock–boundary layer interaction and energetics in transonic flutter." Journal of Fluid Mechanics 832 (October 26, 2017): 212–40. http://dx.doi.org/10.1017/jfm.2017.629.
Full textMa, Xiaogang, Jian Fan, Yunkai Wu, Xiaowei Liu, and Rui Xue. "Study on the mechanism of shock wave and boundary layer interaction control using high-frequency pulsed arc discharge plasma." Physics of Fluids 34, no. 8 (August 2022): 086102. http://dx.doi.org/10.1063/5.0095487.
Full textQi, Han, Xinliang Li, Xiangxin Ji, Fulin Tong, and Changping Yu. "Large-eddy simulation of a hypersonic turbulent boundary layer over a compression corner." AIP Advances 13, no. 2 (February 1, 2023): 025265. http://dx.doi.org/10.1063/5.0139966.
Full textBeketaeva, Asel, Amr H. Abdalla, and Yekaterina Moisseyeva. "Investigation of Vortex Structures for Supersonic Jet Interaction Flowfield." Applied Mechanics and Materials 798 (October 2015): 546–50. http://dx.doi.org/10.4028/www.scientific.net/amm.798.546.
Full textPasha, Amjad A., Khalid A. Juhany, and Subramania N. Pillai. "One-equation turbulence models applied to practical scramjet inlet." International Journal of Turbo & Jet-Engines 39, no. 2 (June 4, 2021): 241–49. http://dx.doi.org/10.1515/tjj-2021-0013.
Full textLi, Xin, Yue Zhang, Hang Yu, Zheng-Kang Lin, Hui-Jun Tan, and Shu Sun. "Görtler vortices behavior and prediction in dual-incident shock-wave/turbulent-boundary-layer interactions." Physics of Fluids 34, no. 10 (October 2022): 106103. http://dx.doi.org/10.1063/5.0100718.
Full textBrusniak, Leon, and David S. Dolling. "Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions." Journal of Fluid Mechanics 273 (August 25, 1994): 375–409. http://dx.doi.org/10.1017/s0022112094001989.
Full textPasquariello, Vito, Stefan Hickel, and Nikolaus A. Adams. "Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number." Journal of Fluid Mechanics 823 (June 22, 2017): 617–57. http://dx.doi.org/10.1017/jfm.2017.308.
Full textJi, Xiangxin, Xinliang Li, Fulin Tong, and Changping Yu. "Large eddy simulation of shock wave/turbulent boundary layer interaction under incipient and fully separated conditions." Physics of Fluids 35, no. 4 (April 2023): 046106. http://dx.doi.org/10.1063/5.0147829.
Full textSchreiber, H. A., and H. Starken. "An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade." Journal of Turbomachinery 114, no. 3 (July 1, 1992): 494–503. http://dx.doi.org/10.1115/1.2929170.
Full textSimeonides, G., and W. Haase. "Experimental and computational investigations of hypersonic flow about compression ramps." Journal of Fluid Mechanics 283 (January 25, 1995): 17–42. http://dx.doi.org/10.1017/s0022112095002229.
Full textRUBAN, A. I., D. ARAKI, R. YAPALPARVI, and J. S. B. GAJJAR. "On unsteady boundary-layer separation in supersonic flow. Part 1. Upstream moving separation point." Journal of Fluid Mechanics 678 (April 15, 2011): 124–55. http://dx.doi.org/10.1017/jfm.2011.104.
Full textKaldellis, J. K. "Parametrical Investigation of the Interaction Between Turbulent Wall Shear Layers and Normal Shock Waves, Including Separation." Journal of Fluids Engineering 115, no. 1 (March 1, 1993): 48–55. http://dx.doi.org/10.1115/1.2910112.
Full textSong, Mo-Ru, and Bo Yang. "Analysis on the unsteady flow structures in the tip region of axial compressor." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235, no. 6 (February 14, 2021): 1272–87. http://dx.doi.org/10.1177/0957650921995111.
Full textBonne, N., V. Brion, E. Garnier, R. Bur, P. Molton, D. Sipp, and L. Jacquin. "Analysis of the two-dimensional dynamics of a Mach 1.6 shock wave/transitional boundary layer interaction using a RANS based resolvent approach." Journal of Fluid Mechanics 862 (January 16, 2019): 1166–202. http://dx.doi.org/10.1017/jfm.2018.932.
Full textPickles, J. D., B. R. Mettu, P. K. Subbareddy, and V. Narayanaswamy. "On the mean structure of sharp-fin-induced shock wave/turbulent boundary layer interactions over a cylindrical surface." Journal of Fluid Mechanics 865 (February 18, 2019): 212–46. http://dx.doi.org/10.1017/jfm.2019.53.
Full textPriebe, Stephan, Jonathan H. Tu, Clarence W. Rowley, and M. Pino Martín. "Low-frequency dynamics in a shock-induced separated flow." Journal of Fluid Mechanics 807 (October 20, 2016): 441–77. http://dx.doi.org/10.1017/jfm.2016.557.
Full textWu, Yanhui, Guangyao An, Zhiyang Chen, and Bo Wang. "Computational analysis of vortices near casing in a transonic axial compressor rotor." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (December 5, 2017): 710–24. http://dx.doi.org/10.1177/0954410017740922.
Full textCHEN, LI-WEI, CHANG-YUE XU, and XI-YUN LU. "Numerical investigation of the compressible flow past an aerofoil." Journal of Fluid Mechanics 643 (December 17, 2009): 97–126. http://dx.doi.org/10.1017/s0022112009991960.
Full textGANAPATHISUBRAMANI, B., N. T. CLEMENS, and D. S. DOLLING. "Low-frequency dynamics of shock-induced separation in a compression ramp interaction." Journal of Fluid Mechanics 636 (September 25, 2009): 397–425. http://dx.doi.org/10.1017/s0022112009007952.
Full textHe, Z. W., and S. Y. Zhang. "Lip Separate Flow Blowing and Analysis of Coherence of Inlet." Journal of Engineering for Gas Turbines and Power 108, no. 3 (July 1, 1986): 562–65. http://dx.doi.org/10.1115/1.3239947.
Full textSansica, Andrea, Neil D. Sandham, and Zhiwei Hu. "Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble." Journal of Fluid Mechanics 798 (May 31, 2016): 5–26. http://dx.doi.org/10.1017/jfm.2016.297.
Full textKNIGHT, D., M. GNEDIN, R. BECHT, and A. ZHELTOVODOV. "Numerical simulation of crossing-shock-wave/turbulent-boundary-layer interaction using a two-equation model of turbulence." Journal of Fluid Mechanics 409 (April 25, 2000): 121–47. http://dx.doi.org/10.1017/s0022112099007764.
Full textGANAPATHISUBRAMANI, B., N. T. CLEMENS, and D. S. DOLLING. "Effects of upstream boundary layer on the unsteadiness of shock-induced separation." Journal of Fluid Mechanics 585 (August 7, 2007): 369–94. http://dx.doi.org/10.1017/s0022112007006799.
Full textWang, Lican, Yilong Zhao, Qiancheng Wang, Yuxin Zhao, Ruoling Zhang, and Li Ma. "Three-dimensional characteristics of crossing shock wave/turbulent boundary layer interaction in a double fin with and without micro-ramp control." AIP Advances 12, no. 9 (September 1, 2022): 095309. http://dx.doi.org/10.1063/5.0102986.
Full textHung, Nguyen Manh, and Hoang Thi Bich Ngoc. "Experimental study of laminar separation phenomenon combining with numerical calculations." Vietnam Journal of Mechanics 33, no. 2 (June 10, 2011): 95–104. http://dx.doi.org/10.15625/0866-7136/33/2/41.
Full textVanstone, Leon, Mustafa Nail Musta, Serdar Seckin, and Noel Clemens. "Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2." Journal of Fluid Mechanics 841 (February 19, 2018): 1–27. http://dx.doi.org/10.1017/jfm.2018.8.
Full text