Academic literature on the topic 'Shirshov P'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shirshov P.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Shirshov P"

1

Politova, N. V., L. I. Lobkovsky, and V. P. Shevchenko. "XXIV INTERNATIONAL SCIENTIFIC CONFERENCE (SCHOOL) ON MARINE GEOLOGY IN MEMORY OF ACADEMICIAN ALEXANDER P. LISITZIN." Journal of Oceanological Research 50, no. 1 (April 28, 2022): 129–34. http://dx.doi.org/10.29006/1564-2291.jor-2022.50(1).13.

Full text
Abstract:
XXIV International Scientific conference (School) on marine geology in memory of Academician Alexander P. Lisitzin was held in Moscow in the Shirshov Institute of Oceanology of RAS on April, 11–15, 2022.
APA, Harvard, Vancouver, ISO, and other styles
2

Zubin, A. B. "TO THE 85th ANNIVERSARY OF VADIM PAKA." Journal of Oceanological Research 49, no. 2 (September 1, 2021): 132–44. http://dx.doi.org/10.29006/1564-2291.jor-2021.49(2).11.

Full text
Abstract:
On April 28, 2021, Vadim Timofeevich Paka, a well – known scientist in the field of oceanological instrumentation, Doctor of Physical and mathematical Sciences, professor, chief researcher of the Laboratory of Geoecology and former long-term director of the Atlantic Department of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, turned 85.
APA, Harvard, Vancouver, ISO, and other styles
3

Nisha, Ananthan, Pandaram Maheswari, Santhanakumar Subanya, Ponnusamy Munusamy Anbarasan, Karuppaiya Balasundaram Rajesh, and Zbigniew Jaroszewicz. "Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor." Photonics Letters of Poland 13, no. 3 (September 30, 2021): 58. http://dx.doi.org/10.4302/plp.v13i3.1114.

Full text
Abstract:
We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, "Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, "A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, "Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, "Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, "Optical Properties and Fermi Surface of Nickel", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, "Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, "Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, "Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, "Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, "On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
4

Kobelyanskaya, Jana, Valentyna P. Bobykina, and Halina Piekarek-Jankowska. "Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea)**This transborder research was inspired by the Laboratory of Coastal Systems, Atlantic Department of the P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, by the Department of Marine Geology, Institute of Oceanography, University of Gdańsk and by the system project ‘InnoDoktorant – Scholarships for Ph.D. students, 1st edition’, co-financed by the European Union within the framework of the European Social Fund. The authors are particularly indebted to Dr B. V. Chubarenko, Dr V. L. Boldyrev, Dr V. A. Chechko, D. A. Domnin, V. Y. Kurchenko and K. V. Karmanov. The data of the winds speed and directions was supplied by the ARMAAG Foundation." Oceanologia 53, no. 4 (November 2011): 1027–43. http://dx.doi.org/10.5697/oc.53-4.1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moseev, D. S., and L. A. Sergienko. "Coastal vegetation of the river estuaries on the Kanin peninsula." Vegetation of Russia, no. 39 (2020): 47–74. http://dx.doi.org/10.31111/vegrus/2020.39.47.

Full text
Abstract:
The study of the Kanin Peninsula coastal vegetation started at the beginning of the 20th century (Grigoryev, 1929) and was continued in 1932 by famous researcher A. A. Korchagin who described plant cover in the estuaries of the Nes, Mgla, Vizhas rivers and introduced the first classification of halophytic plant communities of that area (Korchagin, 1935). The data on the analogous vegetation on the shores of the White and Barents seas (in the estuaries of the Chizha, Chesha, and Semzha rivers) were obtained by the first author of this paper in the course of two expeditions: in 2014 (organized with the support of the Russian Geographical Society) and 2017 (Shirshov’s institute of oceanology of the RAS). According to the Braun-Blanquet floristic classification the Prodromus includes 13 associations and 2community types which belong to 7 alliances within 4 orders and 4 classes. Two associations, previously described by A. Korchagin (1935) on marshes in the southern part of the peninsula following the ecological-floristic approach, are validated: Alopecuro arundinacei–Caricetum salinae Korchagin 1935 ex Moseev et Sergienko, Agrostio stramineae–Alopecuretum arundinacei Korchagin 1935 ex Moseev et Sergienko. A new variantof the ass. Puccinellietum phryganodis is described — P. p.var. Tripolium vulgare var.nov. The vegetation on marshes of the studied area is similar with that in the southern part of the Kanin Peninsula (according to the Korchagin’ relevés), as well as on the western coast of the White Sea (associations Agrostio stramineae–Alopecuretum arundinacei, Alopecuro arundinacei–Caricetum salinae, Festucetum rubrae, Plantaginetum maritimae, Salicornietum europaeae, Scirpeto–Hippuridetum tetraphyllae, Triglochino–Caricetum subspathaceae) established by N. V. Babina (2002) and on the southeastern coast of the Barents Sea (Caricetum subspathaceae, Festuco–Caricetum glareosae (syn.: Caricetum glareosae Molenaar, 1974), Scirpeto–Hippuridetum tetraphyllae, Puccinellietum phryganodis (Matveyeva, Lavrinenko, 2011; Lavrinenko, Lavrinenko, 2018). The ass. Caricetum aquatilis is quite common for the lowland mires and lake shores of the taiga zone European part of Russia (Raspopov, 1985; Teteryuk, 2008). There are three geographical groups of syntaxa in the rivers’ estuaries: typical arctic (Caricetum subspathaceae, Puccinellietum phryganodis), hypoarctic (Agrostio stramineae–Alopecuretum arundinacei, Alopecuro arundinacei–Caricetum salinae, Festuco–Caricetum glareosae, Salicornietum europaeae, Scirpeto–Hippuridetum tetraphyllae, Matricario–Leymetum arenarii, Triglochino–Caricetum subspathaceae), and boreal (Caricetum aquatilis, Festucetum rubrae,Plantaginetum maritimae, Triglochinetum maritimi), that reflects the zonal gradient on the Kanin Peninsula from the forest-tundra to the southern and typical tundra subzones. New data expand information on the species composition and structure of salt marsh vegetation of the Arctic seas coasts which can be used in recommendations for maintaining a stable state and protections to oil spills of these the extremely vulnerable communities which are the very important as the reindeer’ pastures and as well as the waterfowl and near-water migratory bird nesting habitats.
APA, Harvard, Vancouver, ISO, and other styles
6

"THE RUSSIAN OUTPOST OF PURE SCIENCE IN THE GLOBAL OCEAN (TO THE 75-TH ANNIVERSARY OF SIO RAS, 1946–2021)." Journal of Oceanological Research 49, no. 3 (December 27, 2021): 12–32. http://dx.doi.org/10.29006/1564-2291.jor-2021.49(3).2.

Full text
Abstract:
A brief overview of the main historical events that accompanied the formation and establishment of the Laboratory of Oceanology in the Academy of Sciences in 1941 is given. Then, a few years later, the Laboratory was transformed into the Institute of Oceanology, the director of which was appointed the Minister of the Merchant Fleet of the USSR, Academician P. P. Shirshov. By his initiative in 1949, the Institute became the owner of its first large research vessel "Vityaz". It is shown that the entire history of the institute and its research team was primarily based on the development and generalization of the results of regular sea and ocean expeditions. The article provides general information about the results obtained in the recent past, and their development and deepening in the works of the institute at present.
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Wanxin, Jinhui Wang, Zheng Li, Yang Pan, Dai Zhang, Dongmei Zhao, Qian Li, Zhihui Yang, and Jiehua Zhu. "First Report of Pectobacterium versatile Causing Aerial Stem Rot of Potato in China." Plant Disease, August 12, 2021. http://dx.doi.org/10.1094/pdis-06-21-1264-pdn.

Full text
Abstract:
Pectobacterium species cause blackleg, soft rot and stem rot in potato and many other vegetable crops (Charkowski 2015). In July 2020, potato plants showing characteristic symptoms of aerial stem rot were observed in a field (cv. Xisen 6) in Fengning Manchu Autonomous County, Chengde, Hebei Province (North China). The disease incidence in that field (5 ha in size) was more than 50%. Putative pectolytic bacteria were obtained from symptomatic stem tissues (light brown and water-soaked stem sections) by culturing on the crystal violet pectate (CVP) medium. Bacterial colonies producing pits, were restreaked and purified on Luria-Bertani (LB) agar. The isolates causing stem rot were gram negative and rod shaped, negative for oxidase, urease, indole production, gelatin liquefaction and acid production from maltose and D-sorbitol. All isolates were catalase positive, produced acid from lactose, rhamnose, saccharose, raffinose and D-arabinose, and were tolerant to 5% NaCl, and able to utilize citrate. The bacterial gDNA was extracted using the EasyPure Bacteria Genomic DNA Kit (TransGen Biotech). The 16S rDNA region was amplified by PCR using the universal primer pair 27F/1492R and sequenced. Result of the Blastn analysis of the 16S rDNA amplicons (MZ379788, MZ379789) suggested that the isolates FN20111 and FN20121 belonged to the genus Pectobacterium. To determine the species of the stem rot Pectobacterium isolates, multi-locus sequence analysis (MLSA) was performed with six housekeeping genes acnA, gapA, icdA, mdh, proA and rpoS (MZ403781-MZ403792), and phylogenetic tree was reconstructed using RAxML v8.2.12 (https://github.com/stamatak/standard-RAxML). The result of phylogenetic analysis showed that the stem rot Pectobacterium isolates FN20111 and FN20121 clustered with P. versatile (syn. ‘Candidatus Pectobacterium maceratum’) strains CFBP6051T (Portier et al. 2019), SCC1 (Niemi et al. 2017) and F131 (Shirshikov et al. 2018). And the isolates FN20111 and FN20121 were more closely related to the type strain CFBP6051T than to strains SCC1 and F131. Potato seedlings (cv. Xisen 6 and Favorita) were inoculated with the isolates FN20111 and FN20121 by injecting 100 µl of bacterial suspensions (108 CFU·mL-1) into the upper parts of the stems of potato plants, or injected with 100 µl of 0.9% saline solution as control. The seedlings were grown at 28°C and 50% relative humidity. Three days post-inoculation, only the bacteria-inoculated seedlings showed diseased symptoms resembling to those observed in the field. Bacterial colonies were obtained from the infected stems and were identified using the same PCR primers of housekeeping genes as described above, fulfill Koch’s postulates. P. versatile causing soft rot and blackleg on potato plants has been reported in Finland (Niemi et al. 2017), Russia (Shirshikov et al. 2018), Netherlands (Portier et al. 2019), Poland (Waleron et al. 2019) and in New York State (Ma et al. 2021). To our knowledge, this is the first report of P. versatile causing aerial stem rot of potato in China.
APA, Harvard, Vancouver, ISO, and other styles
8

Marković, Sanja, Sonja Milić Komić, Aleksandra Jelušić, Renata Iličić, Ferenc Bagi, Slaviša Stanković, and Tatjana Popović. "First report of Pectobacterium versatile causing blackleg of potato in Serbia." Plant Disease, August 19, 2021. http://dx.doi.org/10.1094/pdis-06-21-1128-pdn.

Full text
Abstract:
Potato blackleg is frequently observed on the production fields in the Bačka region of Vojvodina province, which is one of the largest potato-growing areas in Serbia. This disease usually occurs during June and July. In July 2020, blackleg symptoms in the form of stem necrotic lesions, vascular discoloration, hollow stems, and wilting of whole plants were noted on potato cultivar VR808 on a field 28 ha in size located in Maglić village (GPS coordinates 45.349325 N, 19.542768 E). Disease incidence was estimated at 20−25%. Isolations were performed from 12 potato samples on Crystal Violet Pectate medium (CVP). Stem sections consisted of brown lesions and healthy tissue (c.10 cm) were surface sterilized with ethyl alcohol 70% (w/v) and rinsed with sterile distilled water. Small pieces of tissue were taken at the edges of stem lesions (between healthy and diseased tissue) were soaked in phosphate buffer saline for 20 min and plated using a standard procedure (Klement et al. 1990). Single colonies that formed pits after 48 hours at 26 °C were re-streaked onto Nutrient Agar (NA) where creamy white colonies with smooth surfaces were formed. A total of 30 isolates were selected and DNA isolated from the colonies was further analyzed by polymerase chain reaction (PCR) using the partial dnaX gene (DNA polymerase subunit III gamma/tau) with primer pair dnaXf/dnaXr for Pectobacterium and Dickeya species identification (Slawiak et al. 2009). A single characteristic band of 535 bp was amplified in all isolates (Slawiak et al. 2009). DNA sequence alignment showed two distinct groups of isolates (Fig.S1), which were genetically uniform within each group. Using BLASTn search, it was established that the dnaX sequence of the first group (consisting of 19 Serbian potato isolates) had 99.79% identity with NCBI-deposited Pectobacterium versatile strains 14A and 3-2 from potato from Belarus (Acc. No. CP034276 and CP024842, respectively) as well as SCC1 from Finland (Acc. No. CP021894). The remaining 11 dnaX sequences had 100% identity with Pectobacterium carotovorum subsp. carotovorum strain CFBP7081 originating from water in Spain (Acc. No. MK516961). The partial dnaX sequences of three Serbian P. versatile isolates (Pv1320, Pv1520, and Pv1620) and one P. carotovorum subsp. carotovorum (Pcc2520) were deposited in GenBank under Acc. No. MW839571, MW805306, MW839572, and MW805307, respectively. These results, indicating combined infection in the observed field, signify the first identification of P. versatile in Serbia. Multilocus sequence analysis (MLSA) performed with proA (proAF1/ proAR1) and mdh (mdh2/mdh4) genes (Ma et al. 2007; Moleleki et al. 2013) grouped three tested Serbian potato P. versatile isolates together with P. versatile strains from NCBI (Fig.S2). For both tested genes, BLASTn search revealed 100% homology with P. versatile strain SCC1 from Finland. Three Serbian P. versatile potato isolates were deposited under Acc. Nos. MZ682623-25 for proA and MZ682620-22 for mdh genes. According to the routine tests suggested for Pectobacteriaceae (Schaad et al. 2001), Serbian isolates possessed microbiological traits identical to P. versatile description (Portier et al. 2019). Pathogenicity was performed on potato cultivar VR808 with three selected P. versatile isolates (Pv1320, Pv1520, and Pv1620) in the following assays: (i) surface-sterilized tuber slices with holes in the center filled with 100 µL of bacterial suspensions (adjusted to 109 CFU mL-1) to test the isolates’ ability to cause soft rot, and (ii) young, four-week old plants with developed 3rd true leaf (c. 30 cm tall) were inoculated by injecting stems with bacterial suspension adjusted to 107 - 108 CFU mL-1 at a height 5 cm above the soil line. Negative controls were treated with sterile distilled water. Inoculated plants were kept under controlled conditions (25 °C temperature and >70% relative humidity). Each assay was replicated twice. Soft rot appeared on tuber slices 24 h after inoculation. On inoculated stems, initial symptoms manifested as greasy elongated spots at inoculation sites two days after inoculation (DAI), and subsequently extended along the vascular tissue and became necrotic. Whole plant's decay was recorded in five DAI, while negative controls remained healthy. To complete Koch's postulates, bacteria were re-isolated from symptomatic potato plants and confirmed by PCR and sequencing of dnaX. This first report of P. versatile in potato indicates that blackleg currently present in Serbia is caused by a diverse bacterial population. This pathogen was first identified in genome comparison as ‘Candidatus Pectobacterium maceratum’ (Shirshikov et al. 2018) and was later renamed as Pectobacterium versatile sp. nov. (Portier et al. 2019). Thus far, bacterium Pectobacterium carotovorum subsp. brasiliensis has been recognized as dominant pathogen on most of the infected fields in Vojvodina province, and was recently noted on one plot subjected to a combined infection with Dickeya dianthicola (Marković et al. 2021). Findings achieved in this study are highly relevant, as they point to the diversity in potato blackleg pathogens, likely due to the increasingly widespread distribution of imported seed potatoes.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Shirshov P"

1

Байдак, Леонід Андрійович. "Становлення та діяльність дніпропетровської гідробіологічної школи техногенно трансформованих прісноводних екосистем (30-ті – 90-ті рр. XX ст.)." Thesis, Дніпропетровський державний аграрно-економічний університет, 2014. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17175.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата історичних наук за спеціальністю 07.00.07 – історія науки і техніки. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2014. Дисертаційна робота є комплексним дослідженням, присвяченим висвітленню основних етапів наукової діяльності дніпропетровської гідробіологічної школи: дослідження техногенно-трансформованих прісноводних екосистем впродовж 1930–1990 рр. Показано процес формування наукового колективу, який першим у межах Радянського Союзу та одним з перших у світі розпочав дослідження трансформації прісноводних екосистем, що є актуальним у сучасних умовах стрімкого погіршення стану водних екосистем. Вперше запропонована періодизація становлення і розвитку дніпропетровської гідробіологічної школи, виділено чотири основні періоди. Виявлено, що різні періоди розвитку лідерами дніпропетровської гідробіологічної школи були такі видатні вчені, як Д. О. Свіренко (1927–1941 рр.), Г. Б. Мельников (1944–1973 рр.), А. І. Дворецький (з 1976 р.). Показано, що початковий період наукової діяльності видатного вченого-гідробіолога, полярника, академіка П. П. Ширшова мав вагомий вплив на становлення наукового світогляду вченого в майбутньому. Окреслено основні теоретичні й практичні надбання вчених, одержані при дослідженні Каховського і Дніпродзержинського водосховищ на Дніпрі, річок Донбасу і Приазов’я, водоакумулюючих водосховищ Криму, водних екосистем Придніпров’я. Окреслені новаторські напрями наукових досліджень, започатковані науковцями гідробіологічної школи, зокрема, дослідження розвитку технічної, космічної гідробіології та прісноводної радіоекології в Україні.
Thesis for the degree of candidate of historical sciences, specialty 07.00.07-History of Science and Technology. - National Technical University "Kharkiv Polytechnic Institute", Kharkiv,2014. The thesis is a complex research, devoted to coverage of the main stages of scientific Dnepropetrovsk hydrobiological school: a study of man-caused transformed freshwater ecosystems throughout the 1930 – 1990s. The work reflects the process of the research team formation. For the first time the periodization of formation and development of the Dnepropetrovsk hydrobiological school is proposed and four main periods are highlighted. It is revealed that such recognized scholars as D.A. Svirenko (1927–1941), G.B. Melnikov (1944–1973) A.I. Dvoretsky (from 1976) were leaders of Dnepropetrovsk hydrobiological school at different periods of its development. It is shown that the initial period of the scientific work of the famous scientisthydrobiologist, polar, academician P.P. Shirshov had a significant influence on the formation of a scientific outlook of the scientist in the future. The basic theoretical and practical achievements received by scientists in the study of Kakhovskoe and Dniprodzerghinskoe reservoirs located upon the Dnieper river; rivers of Donbass and Pryazov’ye, water-accumulating reservoirs of the Crimea, water ecosystems of Prydnieprov’ye are outlined. Innovative areas of research, started by scientists from the hydrobiological school, in particular, the study of technical, space hydrobiology and freshwater radioecology in Ukraine are designated.
APA, Harvard, Vancouver, ISO, and other styles
2

Байдак, Леонід Андрійович. "Становлення та діяльність дніпропетровської гідробіологічної школи техногенно трансформованих прісноводних екосистем (30-ті – 90-ті рр. XX ст.)." Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17172.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата історичних наук за спеціальністю 07.00.07 – історія науки і техніки. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2014. Дисертаційна робота є комплексним дослідженням, присвяченим висвітленню основних етапів наукової діяльності дніпропетровської гідробіологічної школи: дослідження техногенно-трансформованих прісноводних екосистем впродовж 1930–1990 рр. Показано процес формування наукового колективу, який першим у межах Радянського Союзу та одним з перших у світі розпочав дослідження трансформації прісноводних екосистем, що є актуальним у сучасних умовах стрімкого погіршення стану водних екосистем. Вперше запропонована періодизація становлення і розвитку дніпропетровської гідробіологічної школи, виділено чотири основні періоди. Виявлено, що різні періоди розвитку лідерами дніпропетровської гідробіологічної школи були такі видатні вчені, як Д. О. Свіренко (1927–1941 рр.), Г. Б. Мельников (1944–1973 рр.), А. І. Дворецький (з 1976 р.). Показано, що початковий період наукової діяльності видатного вченого-гідробіолога, полярника, академіка П. П. Ширшова мав вагомий вплив на становлення наукового світогляду вченого в майбутньому. Окреслено основні теоретичні й практичні надбання вчених, одержані при дослідженні Каховського і Дніпродзержинського водосховищ на Дніпрі, річок Донбасу і Приазов’я, водоакумулюючих водосховищ Криму, водних екосистем Придніпров’я. Окреслені новаторські напрями наукових досліджень, започатковані науковцями гідробіологічної школи, зокрема, дослідження розвитку технічної, космічної гідробіології та прісноводної радіоекології в Україні.
Thesis for the degree of candidate of historical sciences, specialty 07.00.07-History of Science and Technology. - National Technical University "Kharkiv Polytechnic Institute", Kharkiv,2014. The thesis is a complex research, devoted to coverage of the main stages of scientific Dnepropetrovsk hydrobiological school: a study of man-caused transformed freshwater ecosystems throughout the 1930 – 1990s. The work reflects the process of the research team formation. For the first time the periodization of formation and development of the Dnepropetrovsk hydrobiological school is proposed and four main periods are highlighted. It is revealed that such recognized scholars as D.A. Svirenko (1927–1941), G.B. Melnikov (1944–1973) A.I. Dvoretsky (from 1976) were leaders of Dnepropetrovsk hydrobiological school at different periods of its development. It is shown that the initial period of the scientific work of the famous scientisthydrobiologist, polar, academician P.P. Shirshov had a significant influence on the formation of a scientific outlook of the scientist in the future. The basic theoretical and practical achievements received by scientists in the study of Kakhovskoe and Dniprodzerghinskoe reservoirs located upon the Dnieper river; rivers of Donbass and Pryazov’ye, water-accumulating reservoirs of the Crimea, water ecosystems of Prydnieprov’ye are outlined. Innovative areas of research, started by scientists from the hydrobiological school, in particular, the study of technical, space hydrobiology and freshwater radioecology in Ukraine are designated.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Shirshov P"

1

KURTEPOV, V. M. "The Laboratory of Acoustic Wave Propagation of the P. P. Shirshov Institute of Oceanology." In History of Russian Underwater Acoustics, 418–28. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790941_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TYNYANKIN, I. I. "The P. P. Shirshov Institute of Oceanology: Its Place and Role in Home Hydroacoustics." In History of Russian Underwater Acoustics, 411–17. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790941_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography