Academic literature on the topic 'Shimura varietie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shimura varietie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shimura varietie"
Scholze, Peter. "Perfectoid Shimura varieties." Japanese Journal of Mathematics 11, no. 1 (November 17, 2015): 15–32. http://dx.doi.org/10.1007/s11537-016-1484-6.
Full textGiacomini, Michele. "Holomorphic curves in Shimura varieties." Archiv der Mathematik 111, no. 4 (August 17, 2018): 379–88. http://dx.doi.org/10.1007/s00013-018-1227-4.
Full textGao, Ziyang. "Towards the Andre–Oort conjecture for mixed Shimura varieties: The Ax–Lindemann theorem and lower bounds for Galois orbits of special points." Journal für die reine und angewandte Mathematik (Crelles Journal) 2017, no. 732 (November 1, 2017): 85–146. http://dx.doi.org/10.1515/crelle-2014-0127.
Full textFargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Reductions of Shimura Varieties." Oberwolfach Reports 9, no. 3 (2012): 1961–2011. http://dx.doi.org/10.4171/owr/2012/32.
Full textFargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Reductions of Shimura Varieties." Oberwolfach Reports 12, no. 3 (2015): 2265–328. http://dx.doi.org/10.4171/owr/2015/39.
Full textFargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Arithmetic of Shimura Varieties." Oberwolfach Reports 16, no. 1 (February 26, 2020): 65–131. http://dx.doi.org/10.4171/owr/2019/2.
Full textEdixhoven, Bas, and Andrei Yafaev. "Subvarieties of Shimura varieties." Annals of Mathematics 157, no. 2 (March 1, 2003): 621–45. http://dx.doi.org/10.4007/annals.2003.157.621.
Full textMilne, J. S. "Descent for Shimura varieties." Michigan Mathematical Journal 46, no. 1 (May 1999): 203–8. http://dx.doi.org/10.1307/mmj/1030132370.
Full textBoyer, Pascal. "Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires." Compositio Mathematica 146, no. 2 (January 26, 2010): 367–403. http://dx.doi.org/10.1112/s0010437x09004588.
Full textShin, Sug Woo. "A stable trace formula for Igusa varieties." Journal of the Institute of Mathematics of Jussieu 9, no. 4 (March 23, 2010): 847–95. http://dx.doi.org/10.1017/s1474748010000046.
Full textDissertations / Theses on the topic "Shimura varietie"
GROSSELLI, GIAN PAOLO. "Shimura varieties in the Prym loci of Galois covers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/356638.
Full textIn this thesis we study Shimura subvarieties in the moduli space of complex abelian varieties. These subvarieties arise from families of Galois covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to the projective line. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, we build several Shimura subvarieties contained in the Prym loci.
Yafaev, Andrei. "Sous-varietes des varietes de shimura." Rennes 1, 2000. http://www.theses.fr/2000REN10151.
Full textPink, Richard. "Arithmetical compactification of mixed Shimura varieties." Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/24807098.html.
Full textHa, Eugene. "Quantum statistical mechanics of Shimura varieties." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980749964.
Full textSoylu, Cihan. "Special Cycles on GSpin Shimura Varieties:." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107320.
Full textThe results in this dissertation are on the intersection behavior of certain special cycles on GSpin(n, 2) Shimura varieties for n > 1. In particular, we will determine when the intersection of the special cycles defined by a collection of special endomorphisms consists of isolated points in terms of the fundamental matrix of this collection. These generalize the corresponding results in the lower dimensional cases proved by Kudla and Rapoport
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Chen, Ke. "Special subvarieties of mixed shimura varieties." Paris 11, 2009. http://www.theses.fr/2009PA112177.
Full textThis thesis studies the André-Oort conjecture for mixed Shimura varieties. The main result is: let M be a mixed Shimura variety defined by a mixed Shimura datum (P,Y), C a fixed Q-torus of P, and Z an arbitrary closed subvariety in M, then the set of maximal C-special subvarieties of M contained in Z is finite. The proof follows the strategy applied by L. Clozel, E. Ullmo, and A. Yafaev in the pure case, which relies on Ratner's theory on ergodic properties of unipotent flows on homogeneous spaces. Besides, a minoration on the degree of the Galois orbit of a special subvariety is proved in the mixed case, adapted from the pure case established by E. Ullmo and A. Yafaev. Finally, a relative version of the Manin-Mumford conjecture is proved in characteristic zero: let A be an abelian S-scheme of characteristic zero, then the Zariski closure of a sequence of torsion subschemes in A remains a finite union of torsion subschemes
Li, Hao. "Congruence relation for GSpin Shimura varieties:." Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109206.
Full textI prove the Chai-Faltings version of the Eichler-Shimura congruence relation for simple GSpin Shimura varieties with hyperspecial level structures at a prime p
Thesis (PhD) — Boston College, 2021
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Fiori, Andrew. "Questions in the theory of orthogonal shimura varieties." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119536.
Full textLe but de cette thèse est l'exploration d'une variété de questions sur les variétés de Shimura de type orthogonal. On commence par une introduction à la théorie de ces espaces. Àpres, dans le but de caractériser les points spéciauxsur les variétés de Shimura de type orthogonal, on décrit les tores algébriques maximaux dans les groupes orthogonaux. Finalement, dans le but d'obtenir des formules explicites pour la dimension des espaces de formes modulaires sur les variétés de Shimura de type orthogonal, on trouve des formules pour les densités locales des réseaux. On se concentre sur les réseaux qui proviennent de la restriction de formes Hermitiennes.
Bultel, Oliver. "On the mod p-reduction of ordinary CM-points." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388853.
Full textJohansson, Hans Christian. "Classicality of overconvergent automorphic forms on some Shimura varieties." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/12897.
Full textBooks on the topic "Shimura varietie"
Fargues, Laurent. Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. Paris: Société Mathématique de France, 2004.
Find full textBenjamin, Howard, and Kudla Stephen S. 1950-, eds. Arithmetic divisors on orthogonal and unitary Shimura varieties. Paris: Société Mathématique de France, 2020.
Find full textHida, Haruzo. p-Adic Automorphic Forms on Shimura Varieties. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4684-9390-0.
Full textDung, Nguyen Chi. Geometric pullback formula for unitary Shimura varieties. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textAtanasov, Stanislav Ivanov. Derived Hecke Operators on Unitary Shimura Varieties. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textHida, Haruzo. p-Adic Automorphic Forms on Shimura Varieties. New York, NY: Springer New York, 2004.
Find full textHarris, Michael. Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Paris, France: Société Mathématique de France, 2001.
Find full textHarris, Michael. Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Paris, France: Société mathématique de France, 2001.
Find full textOn the cohomology of certain noncompact Shimura varieties. Princeton: Princeton University Press, 2010.
Find full textAutomorphic forms and Shimura varieties of PGSp (2). Singapore: World Scientific Pub., 2005.
Find full textBook chapters on the topic "Shimura varietie"
Hida, Haruzo. "Shimura Varieties." In Springer Monographs in Mathematics, 303–28. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4684-9390-0_7.
Full textRotger, Victor. "Shimura Curves Embedded in Igusa’s Threefold." In Modular Curves and Abelian Varieties, 263–76. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7919-4_16.
Full textGross, Benedict H. "Incoherent Definite Spaces and Shimura Varieties." In Simons Symposia, 187–215. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68506-5_5.
Full textHida, Haruzo. "Modular Curves as Shimura Variety." In Springer Monographs in Mathematics, 281–334. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6657-4_7.
Full textVenkataramana, T. N. "Lefschetz Properties of Subvarieties of Shimura Varieties." In Current Trends in Number Theory, 265–70. Gurgaon: Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-09-5_24.
Full textCarlson, James A., and Carlos Simpson. "Shimura Varieties of Weight Two Hodge Structures." In Lecture Notes in Mathematics, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077525.
Full textBurgos Gil, José Ignacio. "Chapter X: Arakelov Theory on Shimura Varieties." In Lecture Notes in Mathematics, 377–401. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57559-5_11.
Full textHida, Haruzo. "Invariants, Shimura Variety, and Hecke Algebra." In Springer Monographs in Mathematics, 83–144. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6657-4_3.
Full textWedhorn, Torsten. "The Dimension of Oort Strata of Shimura Varieties of Pel-Type." In Moduli of Abelian Varieties, 441–71. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8303-0_15.
Full textRohde, Jan Christian. "An Introduction to Hodge Structures and Shimura Varieties." In Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 11–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00639-5_2.
Full textConference papers on the topic "Shimura varietie"
PAPPAS, GEORGIOS. "ARITHMETIC MODELS FOR SHIMURA VARIETIES." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0059.
Full textMorel, Sophie. "The Intersection Complex as a Weight Truncation and an Application to Shimura Varieties." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0053.
Full textReports on the topic "Shimura varietie"
Blumwald, Eduardo, and Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7587732.bard.
Full text