Academic literature on the topic 'Shelf life of foods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shelf life of foods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shelf life of foods"
Vasavada, Purnendu C. "Shelf life evaluation of foods." Trends in Food Science & Technology 7, no. 2 (February 1996): 69–70. http://dx.doi.org/10.1016/0924-2244(96)81349-5.
Full textKroger, Manfred. "Shelf-life evaluation of foods." LWT - Food Science and Technology 28, no. 4 (January 1995): 453. http://dx.doi.org/10.1016/0023-6438(95)90040-3.
Full textSkovgaard, Niels. "Shelf-life evaluation of foods." International Journal of Food Microbiology 65, no. 1-2 (April 2001): 141–42. http://dx.doi.org/10.1016/s0168-1605(00)00494-3.
Full textStiles, M. E. "Refrigerated Foods with Extended Shelf Life." Canadian Institute of Food Science and Technology Journal 21, no. 4 (October 1988): 372. http://dx.doi.org/10.1016/s0315-5463(88)70970-0.
Full textLIVINGSTON, G. E. "EXTENDED SHELF-LIFE CHILLED PREPARED FOODS." Foodservice Research International 3, no. 4 (December 1985): 221–30. http://dx.doi.org/10.1111/j.1745-4506.1985.tb00069.x.
Full textCaggiano, Giuseppina, Giusy Diella, Paolo Trerotoli, Marco Lopuzzo, Francesco Triggiano, Massimo Ricci, Vincenzo Marcotrigiano, Maria Teresa Montagna, and Osvalda De Giglio. "A Pilot Survey on Hygienic–Sanitary Characteristics of Ready-To-Eat Sauces and Pesto." International Journal of Environmental Research and Public Health 17, no. 14 (July 12, 2020): 5005. http://dx.doi.org/10.3390/ijerph17145005.
Full textClodoveo, Maria Lisa, Marilena Muraglia, Vincenzo Fino, Francesca Curci, Giuseppe Fracchiolla, and Filomena Faustina Rina Corbo. "Overview on Innovative Packaging Methods Aimed to Increase the Shelf-Life of Cook-Chill Foods." Foods 10, no. 9 (September 3, 2021): 2086. http://dx.doi.org/10.3390/foods10092086.
Full textUdayakumar, Srusti, Dissanayake M. D. Rasika, Hasitha Priyashantha, Janak K. Vidanarachchi, and Chaminda Senaka Ranadheera. "Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages." Applied Sciences 12, no. 22 (November 18, 2022): 11737. http://dx.doi.org/10.3390/app122211737.
Full textKearsley, M. W. "The shelf life of foods and beverages." Food Chemistry 26, no. 4 (January 1987): 316–17. http://dx.doi.org/10.1016/0308-8146(87)90074-4.
Full textDawson, Paul, Wesam Al-Jeddawi, and Nanne Remington. "Effect of Freezing on the Shelf Life of Salmon." International Journal of Food Science 2018 (August 12, 2018): 1–12. http://dx.doi.org/10.1155/2018/1686121.
Full textDissertations / Theses on the topic "Shelf life of foods"
Gibson, Michael W. "Physico-chemical and shelf-life between baked and extruded pet foods." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20410.
Full textGrain Science and Industry
Sajid Alavi
The U.S. pet food market was approximately worth $22 billion in 2013. Further growth is predicted at a pace faster than most major human food product categories. More than 60% of pet food products are processed using extrusion, and a significant proportion is produced using baking. However, research is lacking on fundamental process and product differences between extrusion and baking. The current study focuses on this aspect and also in-depth characterization of process and product quality. Three iso-nutritional diets were formulated for dry expanded dog food using 0%, 7% and 15% fresh meat inclusion. Major variations between diets were inclusion rates of mechanically deboned chicken, cereal grains, and poultry fat. Each diet was processed with a single screw extruder using various thermal and/or mechanical energy inputs (obtained by varying pre-conditioner stem injection and/or extruder screw speeds). Diets were also processed by baking using a 30 foot experimental oven at 425°F, although the fresh meat inclusion was at 0%, 10% and 20% levels. Proximate analysis of products was conducted. Products were also characterized for physico-chemical properties such as bulk density, piece density, expansion ratio, degree of gelatinization and textural attributes. As fresh meat inclusion increased (0–15%), expansion ratio (4.1–3.5) decreased irrespective of extrusion treatment. Expansion was not evident in the baked kibbles, and bulk and piece densities were up to 56% higher for baked versus extruded kibbles. Textural analysis of extruded kibbles revealed serrated force-deformation response, typical of cellular products, with peak hardness of 2.9–1.5 kgf. On the other hand, baked products had a ‘smooth’ force-deformation response with higher peak hardness than extruded products (up to 3 kgf). Microbial counts for baked products were higher than extruded products, and rancidity profiles as obtained from gas chromatography also had marked differences. The extrusion process was characterized by detailed mass and energy balance analyses, and compared with baking that lacks mechanical energy input. Results from this study provide a useful bench-mark for dry expanded pet food product quality and commonly used processing technologies.
Tyrer, Helen Linsey. "The effect of storage temperature on the measured predicted shelf life of chilled prepared foods." Thesis, Manchester Metropolitan University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266441.
Full textLarsen, Ross Allen Andrew. "Food Shelf Life: Estimation and Experimental Design." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1315.pdf.
Full textWeber, Rebecca J. "Shelf life extension of corn tortillas." Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1115.
Full textYoung, Helen M. "Factors affecting the quality and shelf-life of cooked chilled foods with special reference to full meal vending." Thesis, Bournemouth University, 1986. http://eprints.bournemouth.ac.uk/424/.
Full textFeliciano, Lizanel. "Shelf-life Extension of Seafood Using Sanitized Ice." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1252965039.
Full textMohammadbeygy, Tina. "Shelf life extension of preformed pizza using ultraviolet light." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123317.
Full textLa pizza pré-cuisinée est couramment contaminée par la moisissure. Puisque la contamination pourrait se produire durant les procédés d'après cuisson, d'autres mesures, en plus de l'emballage, sont nécessaires pour assurer la sécurité permanente des pizzas pré-cuisinée. Cette recherche a examiné l'utilisation de la lumière UV pulsée pour décontaminer Penicillium roqueforti sur la surface de l'agar solide, du pain et de pizzas préformées.Dans la première étape de la présente étude, les paramètres critiques du procédé ont été optimisés pour améliorer l'efficacité des traitements à la lumière pulsée. Les boîtes de Petri inoculées avec Penicillium roqueforti ont été traitées 10 min dans une chambre de traitement pour les trois premiers niveaux d'efficacité (5, 10 et 15 cm). Les résultats démontrent que 30, 75 et 90 pour cent de la surface du plateau a été exposée à la lumière pulsée à 5, 10 et 15 cm respectivement de la source lumineuse. La réduction en log de la population de E. coli traitée par la lumière UV pulsée varie de 1.4 à 2.05 log UFC ml-1.Dans la deuxième phase de l'étude, la cohérence de la croissance des moisissures (Penicillium roqueforti) sur la surface du pain plat a été étudiée en utilisant deux méthodes différentes d'inoculation : par inoculation ponctuelle aléatoire et par étalement. Deux populations d'inoculum différentes (102 et 103 UFC ml-1) ont également été utilisées pour évaluer l'effet de la densité de l'inoculum sur la distribution et la cohérence de la croissance de moisissures. Les échantillons inoculés avec 102 UFC ml-1 ont donné une distribution des colonies plus homogène. À la troisième phase de cette étude, l'analyse sensorielle et microbiologique, ont été utilisées pour évaluer l'efficacité du traitement à la lumière pulsée pour prolonger la durée de vie de la pizza et du pain. Jusqu'à 40 jours de prolongement de la durée de conservation a été obtenue pour 8, 32 et 40 pour cent des échantillons après un traitement à la lumière pulsée minimal, intermédiaire et maximal, respectivement. Dans la quatrième phase de l'étude, l'efficacité d'une lumière UV pulsée à large spectre a été évaluée pour la décontamination de Penicillium roqueforti sur la surface de l'agar solide. La population de Penicillium roqueforti a été réduite après 10 minutes d'exposition à la lumière pulsée par 3.74, 5.36 et 6.14 log UFC ml-1 respectivement pour 500, 750 et 1000 V. Les résultats présentés dans cette étude indiquent que d'inactivation a été mieux décrite par le modèle de Weibull avec la plus petite erreur de moyenne quadratique (RMSE) (R2 ≥ 0.92). Finalement, dans la dernière phase de l'étude, des méthodes dépendantes ou indépendantes des conditions de culture ont été appliquées pour étudier l'écologie des pizzas pré-cuisinées. La moyenne de la population des bactéries mésophiles aérobies (BMA), des bactéries mésophiles anaérobies (BMNA), des bactéries lactiques (BL), des moisissures et des levures (M+L) étaient respectivement de 6.6 ± 0.5, inférieur à 2.4, 2.8 ± 0.6 et 5.4 ± 0.4 log UFC g-1. Les méthodes moléculaires incorporant la PCR conventionnelle ciblant le gène de l'ARNr 18S des champignons, le clonage TA de fragments amplifiés par PCR et le séquençage ont été réalisées pour détecter les champignons altérant les pizzas pré-cuisinées naturellement contaminées. L'approche du clonage a permis l'identification présumée de souches de Saccharomyces cerevisiae, Saccharomyces sp. WW- W23, Penicillium expansum, Penicillium freii, Penicillium sp. HSL, Penicillium sp. ljg1, Rhodotorula mucilaginosa, Monascus fuliginosus, Hordeum jubatum , Geotrichum galactomyces ainsi que des champignons et eucaryotes non cultivés.Dans l'ensemble, la lumière UV pulsée a démontré avoir un potentiel d'utilisation pour la décontamination des microorganismes altérant les surfaces d'agar solide et les produits de boulangerie.
Gray, Morgan. "Evaluation of oxidized rendered protein meals in pet foods." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20379.
Full textGrain Science and Industry
Greg Aldrich
Rendered protein meal is an important source of dietary protein and fat in pet food. However, fats in rendered meals can oxidize rapidly if not protected. The most common measurement of oxidation is the peroxide value (PV), but the analysis is highly variable. Additionally, the incorporation of oxidized protein further shortens its shelf life. Therefore, our objectives were to evaluate methods to measure fat quality in rendered protein meals and to determine the effect of increasingly oxidized protein meals on the shelf life of extruded pet foods. In Experiment 1, samples of five chicken byproduct meals (CBPM) from each of three locations and five beef meat and bone meals (BMBM) from each of two locations were analyzed for PV, anisidine value (AV), and thiobarbituric acid reactive substances (TBARS). The PV varied by method and location (P < 0.05). The alternative oxidation analytical methods, AV and TBARS, were not strongly correlated to PV (R² > 0.01). In Experiment 2, one metric ton of each unpreserved CBPM and unpreserved BMBM were collected and left unpreserved (U) or preserved with either ethoxyquin (E) or mixed tocopherols (T). These were held at ambient conditions (25°C, 51% RH) and monitored for PV and AV until values plateaued (41 and 63 days for CBPM and BMBM, respectively). Each “aged” meal was then incorporated into a model extruded cat food diet (~30% protein). Samples of kibble for each treatment were collected and stored at an elevated temperature and humidity (40°C, 70% RH) for 18 weeks and an ambient temperature and humidity (~22°C, 45% RH) for 12 months. The initial reduction (P < 0.05) in PV of the U (highly oxidized) BMBM and CBPM after processing suggests oxidation levels were diluted by food production. The oxidized meal led to a shorter shelf life (P < 0.05) in the finished food by PV analysis; but, sensory analysis by quick assessment did not completely corroborate these findings. These results suggest that PV doesn’t fully describe rendered protein meal stability or have a direct impact on shelf life for consumers; but may have a negative impact on pets due to oxidized lipid consumption.
Lambert, Anne. "Effects of modified atmosphere packaging and low-dose irradiation on the shelf life and microbiological safety of fresh pork." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70219.
Full textChitundu, Elizabeth Malama. "Studies on the shelf life of macadamia nuts." Thesis, Richmond, N.S.W. : School of Food Science, Faculty of Science and Technology, University of Western Sydney, Hawkesbury, 1994. http://handle.uws.edu.au:8081/1959.7/37.
Full textBooks on the topic "Shelf life of foods"
D, Man C. M., and Jones A. A, eds. Shelf life evaluation of foods. Gaithersburg, Md: Aspen Publishers, 1999.
Find full textD, Man C. M., and Jones A. A, eds. Shelf-life evaluation of foods. 2nd ed. Gaithersburg, MD: Aspen Publishers, 2000.
Find full textMan, C. M. D., and A. A. Jones, eds. Shelf Life Evaluation of Foods. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5.
Full textMan, C. M. D. Shelf Life Evaluation of Foods. Boston, MA: Springer US, 1994.
Find full textKroll, Dorothy. Shelf life technology for processed foods. Norwalk, CT: Business Communications Co., 1995.
Find full textCadwallader, Keith R., and Hugo Weenen, eds. Freshness and Shelf Life of Foods. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0836.
Full textTaormina, Peter J., and Margaret D. Hardin, eds. Food Safety and Quality-Based Shelf Life of Perishable Foods. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54375-4.
Full textMan, Dominic. Shelf life. Oxford: Blackwell Science, 2002.
Find full textMan, Dominic. Shelf life. Oxford: Blackwell Science, 2002.
Find full text1922-, Charalambous George, ed. Shelf life studies of foods and beverages: Chemical, biological, physical, and nutritional aspects. Amsterdam: Elsevier, 1993.
Find full textBook chapters on the topic "Shelf life of foods"
Symons, H. "Frozen foods." In Shelf Life Evaluation of Foods, 296–316. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5_15.
Full textMakroo, H. A., Preetisagar Talukdar, Baby Z. Hmar, and Pranjal Pratim Das. "Frozen Foods." In Shelf Life and Food Safety, 155–64. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-9.
Full textMajid, Darakshan, Sajad Ahmad Sofi, Abida Jabeen, Farhana Mehraj Allai, H. A. Makroo, and Shahnaz Parveen Wani. "Dried Foods." In Shelf Life and Food Safety, 141–54. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-8.
Full textNishad, Jyoti, Smruthi Jayarajan, and K. Rama Krishna. "Chemical Treatment of Foods." In Shelf Life and Food Safety, 197–226. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-12.
Full textTongbram, Thoithoi, Jinku Bora, and H. A. Makroo. "Fresh and Refrigerated Foods." In Shelf Life and Food Safety, 113–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-7.
Full textKaur, Gurkirat, Swati Kapoor, and Neeraj Gandhi. "Foods with Edible Coatings." In Shelf Life and Food Safety, 321–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-17.
Full textManzoor, Arshied, Bisma Jan, Insha Zahoor, Nadira Anjum, Aarifa Nabi, Farhana Mehraj Allai, Qurat Ul Eain Hyder Rizvi, Rayees Ahmad Shiekh, Mohd Aaqib Sheikh, and Saghir Ahmad. "Thermal Treatment of Foods." In Shelf Life and Food Safety, 165–80. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-10.
Full textRashed, Mahmoud Said, Mabrouk Sobhy, and Shivani Pathania. "Active Packaging of Foods." In Shelf Life and Food Safety, 253–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-14.
Full textChoudhury, Nitamani, Farheena Iftikhar, and H. A. Makroo. "Non-Thermal Processing of Foods." In Shelf Life and Food Safety, 181–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-11.
Full textSingh, R. P. "Scientific principles of shelf life evaluation." In Shelf Life Evaluation of Foods, 3–26. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5_1.
Full textConference papers on the topic "Shelf life of foods"
Perchonok, Michele H., Beverly Swango, Irene Stevens, and Michelle Clynch. "Shelf Life Determination of Thermally Processed Foods." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2621.
Full textSkudra, Liga, Karlis Loba, and Daiga Kunkulberga. "Shelf life assessment of meat pies." In 13th Baltic Conference on Food Science and Technology “FOOD. NUTRITION. WELL-BEING”. Latvia University of Life Sciences and Technologies. Faculty of Food Technology, 2019. http://dx.doi.org/10.22616/foodbalt.2019.046.
Full textbinti Ahmad Yazid, Nur Amalia, Noorsuhana binti Mohd Yusof, and Nurul Asyikin Md Zaki. "Edible Coating Incorporated with Essential Oil for Enhancing Shelf-Life of Fruits: A Review." In 5th International Conference on Global Sustainability and Chemical Engineering 2021 (ICGSCE2021). Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-b5i87r.
Full textChang, Zhe, Jenneke Heising, and Matthijs Dekker. "Antioxidant and antimicrobial active packaging systems." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mqgt2284.
Full textU., Alan, Endy S., Wagiman, and Jumeri W. "Quality Deterioration and Shelf Life Determination of Purwaceng Coffee based on Packaging Variation using Accelerated Shelf Life Testing (ASLT)." In The Food Ingredient Asia Conference (FiAC). SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010546800003108.
Full textFarkas, Daniel F., and Joseph A. Kapp. "Recent Advances in High Pressure Food Processing Equipment and Equipment Requirements to Meet New Process Needs." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1157.
Full textNurrochman, Andrieanto, Arviansyah Hermawan, Karunia Budisatrio, and Ekavianty Prajatelistia. "Effect of cinnamon oil on banana peel film as antibacterial agents to extent shelf-life of foods." In 1ST INTERNATIONAL SEMINAR ON ADVANCES IN METALLURGY AND MATERIALS (i-SENAMM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016283.
Full textMaldonado-Alvarado, Pedro, and María Trujillo. "Gluten-Free Couscous Made from Quinoa Sprouts: Study of Shelf Life." In la ValSe-Food 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/blsf2022017009.
Full textBalasubramaniam, V. M. (Bala). "Non-Thermal Preservation of Fruit Juices." In ASME 2008 Citrus Engineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/cec2008-5404.
Full textPopov, V., D. P. Janevska, and R. Gospavic. "An HACCP approach integrating quantitative microbial risk assessment and shelf life prediction." In FOOD AND ENVIRONMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/fenv130121.
Full textReports on the topic "Shelf life of foods"
Cairo, Jessica, Iulia Gherman, and Paul Cook. The effects of consumer freezing of food on its use-by date. Food Standards Agency, July 2021. http://dx.doi.org/10.46756/sci.fsa.ret874.
Full textFriedman, Haya, Julia Vrebalov, and James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, October 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Full textHolthuysen, Nancy, Stefanie Kremer, and Hilke Bos-Brouwers. The effect of date marking terminology of products with a long shelf life on food discarding behaviour of consumers. Wageningen: Wageningen Food & Biobased Research, 2017. http://dx.doi.org/10.18174/428726.
Full textFriedman, Haya, Julia Vrebalov, James Giovannoni, and Edna Pesis. Unravelling the Mode of Action of Ripening-Specific MADS-box Genes for Development of Tools to Improve Banana Fruit Shelf-life and Quality. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592116.bard.
Full textPoverenov, Elena, Tara McHugh, and Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Full textSoden, J. M., and R. E. Anderson. W88 integrated circuit shelf life program. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/565606.
Full textLITTLE (ARTHUR D) INC CAMBRIDGE MA. Shelf-Life Specifications for Mission Readiness. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada263030.
Full textPereira da Silva, F. I. Strawberry taste assessment during shelf life. Wageningen: Wageningen Food & Biobased Research, 2017. http://dx.doi.org/10.18174/503222.
Full textDoyle, J. P. Seafood Shelf Life as a Function of Temperature. Alaska Sea Grant, University of Alaska Fairbanks, 1989. http://dx.doi.org/10.4027/sslft.1989.
Full textCrowder, Stephen V. Statistical Framework for Planning a Component Shelf Life Program. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1346330.
Full text