Journal articles on the topic 'Shape memory assisted self-healing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Shape memory assisted self-healing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Luo, Xiaofan, and Patrick T. Mather. "Shape Memory Assisted Self-Healing Coating." ACS Macro Letters 2, no. 2 (February 2013): 152–56. http://dx.doi.org/10.1021/mz400017x.
Full textXie, Fang, Zhongxin Ping, Wanting Xu, Fenghua Zhang, Yuzhen Dong, Lianjie Li, Chengsen Zhang, and Xiaobo Gong. "A Metal Coordination-Based Supramolecular Elastomer with Shape Memory-Assisted Self-Healing Effect." Polymers 14, no. 22 (November 12, 2022): 4879. http://dx.doi.org/10.3390/polym14224879.
Full textBhattacharya, Swapnil, Richard Hailstone, and Christopher L. Lewis. "Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality." ACS Applied Materials & Interfaces 12, no. 41 (September 15, 2020): 46733–42. http://dx.doi.org/10.1021/acsami.0c13645.
Full textMenon, Aishwarya V., Giridhar Madras, and Suryasarathi Bose. "The journey of self-healing and shape memory polyurethanes from bench to translational research." Polymer Chemistry 10, no. 32 (2019): 4370–88. http://dx.doi.org/10.1039/c9py00854c.
Full textXu, Yurun, and Dajun Chen. "Shape memory-assisted self-healing polyurethane inspired by a suture technique." Journal of Materials Science 53, no. 14 (April 20, 2018): 10582–92. http://dx.doi.org/10.1007/s10853-018-2346-9.
Full textYang, Li, Xili Lu, Zhanhua Wang, and Hesheng Xia. "Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function." Polymer Chemistry 9, no. 16 (2018): 2166–72. http://dx.doi.org/10.1039/c8py00162f.
Full textWang, Q., J. Meng, Y. Ma, and L. Xia. "Thermally assisted self-healing and shape memory behaviour of natural rubber based composites." Express Polymer Letters 15, no. 10 (2021): 929–39. http://dx.doi.org/10.3144/expresspolymlett.2021.75.
Full textRodriguez, Erika D., Xiaofan Luo, and Patrick T. Mather. "Linear/Network Poly(ε-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH)." ACS Applied Materials & Interfaces 3, no. 2 (January 21, 2011): 152–61. http://dx.doi.org/10.1021/am101012c.
Full textRučigaj, Aleš, Rok Ambrožič, and Matjaž Krajnc. "Thermally Assisted Self‐Healing and Shape Memory Behavior of Diphenolic Acid‐Based Benzoxazines." Macromolecular Materials and Engineering 305, no. 12 (October 12, 2020): 2000463. http://dx.doi.org/10.1002/mame.202000463.
Full textShojaei, Amir, Soodabeh Sharafi, and Guoqiang Li. "A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect." Mechanics of Materials 81 (February 2015): 25–40. http://dx.doi.org/10.1016/j.mechmat.2014.10.008.
Full textWu, X. L., W. M. Huang, Z. G. Seow, W. S. Chin, W. G. Yang, and K. Y. Sun. "Two-step shape recovery in heating-responsive shape memory polytetrafluoroethylene and its thermally assisted self-healing." Smart Materials and Structures 22, no. 12 (November 14, 2013): 125023. http://dx.doi.org/10.1088/0964-1726/22/12/125023.
Full textDong, Yuhua, Yuanyuan Yin, Xueyan Du, Chunmei Liu, and Qiong Zhou. "Effect of MXene@PANI on the self-healing property of shape memory-assisted coating." Synthetic Metals 291 (December 2022): 117162. http://dx.doi.org/10.1016/j.synthmet.2022.117162.
Full textDzhardimalieva, Gulzhian I., Bal C. Yadav, Igor E. Uflyand, Cesar M. Oliva González, Boris I. Kharisov, Oxana V. Kharissova, and Beatriz Ortega García. "A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators." Journal of Materials Research 36, no. 6 (March 28, 2021): 1225–40. http://dx.doi.org/10.1557/s43578-021-00149-x.
Full textLazauskas, Algirdas, Dalius Jucius, Valentinas Baltrušaitis, Rimantas Gudaitis, Igoris Prosyčevas, Brigita Abakevičienė, Asta Guobienė, Mindaugas Andrulevičius, and Viktoras Grigaliūnas. "Shape-Memory Assisted Scratch-Healing of Transparent Thiol-Ene Coatings." Materials 12, no. 3 (February 4, 2019): 482. http://dx.doi.org/10.3390/ma12030482.
Full textHuang, Jiarong, Zhou Gong, and Yukun Chen. "A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds." Polymer 242 (March 2022): 124569. http://dx.doi.org/10.1016/j.polymer.2022.124569.
Full textRen, Du, Yujie Chen, Hua Li, Hafeez Ur Rehman, Yunli Cai, and Hezhou Liu. "High-efficiency dual-responsive shape memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites." Colloids and Surfaces A: Physicochemical and Engineering Aspects 580 (November 2019): 123731. http://dx.doi.org/10.1016/j.colsurfa.2019.123731.
Full textWang, C. C., W. M. Huang, Z. Ding, Y. Zhao, H. Purnawali, L. X. Zheng, H. Fan, and C. B. He. "Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function." Smart Materials and Structures 21, no. 11 (September 21, 2012): 115010. http://dx.doi.org/10.1088/0964-1726/21/11/115010.
Full textCao, Ying, Jiatian Zhang, Dandan Zhang, Yan Lv, Jie Li, Yiting Xu, Kaibin He, et al. "A novel shape memory-assisted and thermo-induced self-healing boron nitride/epoxy composites based on Diels–Alder reaction." Journal of Materials Science 55, no. 25 (May 26, 2020): 11325–38. http://dx.doi.org/10.1007/s10853-020-04842-w.
Full textChen, Yi, Xing Zhao, Yan Li, Zhao-Yuan Jin, Yi Yang, Ming-Bo Yang, and Bo Yin. "Light- and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics." Journal of Materials Chemistry C 9, no. 16 (2021): 5515–27. http://dx.doi.org/10.1039/d1tc00468a.
Full textLazauskas, Algirdas, Dalius Jucius, Brigita Abakevičienė, Asta Guobienė, and Mindaugas Andrulevičius. "Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance." Polymers 13, no. 19 (October 7, 2021): 3439. http://dx.doi.org/10.3390/polym13193439.
Full textShi, Xiangchao, Yachao Zhang, Dong Wu, Tao Wu, Shaojun Jiang, Yunlong Jiao, Sizhu Wu, et al. "Femtosecond Laser-Assisted Top-Restricted Self-Growth Re-Entrant Structures on Shape Memory Polymer for Dynamic Pressure Resistance." Langmuir 36, no. 41 (September 23, 2020): 12346–56. http://dx.doi.org/10.1021/acs.langmuir.0c02335.
Full textMkhize-Mthembu, Ntokozo S., Khulekani Luthuli, Nontuthuko Phewa, and Siphiwe Madondo. "Using Memory Work To Recall Childhood Experiences of Learning: Collaborative Reflections on Four Self-Study Projects." Educational Research for Social Change 11, no. 2 (October 28, 2022): 1–15. http://dx.doi.org/10.17159/2221-4070/2021/v11i2a2.
Full textXie, Qiaolian, Qiaoling Meng, Wenwei Yu, Rongna Xu, Zhiyu Wu, Xiaoming Wang, and Hongliu Yu. "Design of a soft bionic elbow exoskeleton based on shape memory alloy spring actuators." Mechanical Sciences 14, no. 1 (March 27, 2023): 159–70. http://dx.doi.org/10.5194/ms-14-159-2023.
Full textAccorsi, Mauricio. "Virtual planning for vertical control using temporary anchorage devices." APOS Trends in Orthodontics 5 (June 26, 2015): 162–65. http://dx.doi.org/10.4103/2321-1407.159414.
Full textHornat, Chris C., and Marek W. Urban. "Shape memory effects in self-healing polymers." Progress in Polymer Science 102 (March 2020): 101208. http://dx.doi.org/10.1016/j.progpolymsci.2020.101208.
Full textWang, C. C., Z. Ding, H. Purnawali, W. M. Huang, H. Fan, and L. Sun. "Repeated Instant Self-healing Shape Memory Composites." Journal of Materials Engineering and Performance 21, no. 12 (September 11, 2012): 2663–69. http://dx.doi.org/10.1007/s11665-012-0374-1.
Full textKong, Deyan, Jie Li, Anru Guo, Xintong Zhang, and Xinli Xiao. "Self-healing high temperature shape memory polymer." European Polymer Journal 120 (November 2019): 109279. http://dx.doi.org/10.1016/j.eurpolymj.2019.109279.
Full textZang, Xiaoling, Yonglin He, Zizheng Fang, Xusheng Wang, Junhui Ji, Yapei Wang, and Mianqi Xue. "Self‐Healing and Shape‐Memory Superconducting Devices." Macromolecular Materials and Engineering 305, no. 2 (December 17, 2019): 1900581. http://dx.doi.org/10.1002/mame.201900581.
Full textLee, Jeong Hwan, Ronan Hinchet, Sung Kyun Kim, Sanghyun Kim, and Sang-Woo Kim. "Shape memory polymer-based self-healing triboelectric nanogenerator." Energy & Environmental Science 8, no. 12 (2015): 3605–13. http://dx.doi.org/10.1039/c5ee02711j.
Full textBellah, Masum, Michael Nosonovsky, and Pradeep Rohatgi. "Shape Memory Alloy Reinforced Self-Healing Metal Matrix Composites." Applied Sciences 13, no. 12 (June 6, 2023): 6884. http://dx.doi.org/10.3390/app13126884.
Full textHabault, Damien, Hongji Zhang, and Yue Zhao. "Light-triggered self-healing and shape-memory polymers." Chemical Society Reviews 42, no. 17 (2013): 7244. http://dx.doi.org/10.1039/c3cs35489j.
Full textSalowitz, Nathan, Ameralys Correa, Trishika Santebennur, Afsaneh Dorri Moghadam, Xiaojun Yan, and Pradeep Rohatgi. "Mechanics of nickel–titanium shape memory alloys undergoing partially constrained recovery for self-healing materials." Journal of Intelligent Material Systems and Structures 29, no. 15 (June 18, 2018): 3025–36. http://dx.doi.org/10.1177/1045389x18781260.
Full textJacobson, Nathan D., and Jude Iroh. "Shape Memory Corrosion-Resistant Polymeric Materials." International Journal of Polymer Science 2021 (June 29, 2021): 1–18. http://dx.doi.org/10.1155/2021/5558457.
Full textSaeedi, Ali, and Mahmood M. Shokrieh. "A novel self-healing composite made of thermally reversible polymer and shape memory alloy reinforcement." Journal of Intelligent Material Systems and Structures 30, no. 10 (April 17, 2019): 1585–93. http://dx.doi.org/10.1177/1045389x19844015.
Full textWang, Qi, Yutao Li, Jianbin Xiao, and Lin Xia. "Intelligent Eucommia ulmoides Rubber/Ionomer Blends with Thermally Activated Shape Memory and Self-Healing Properties." Polymers 15, no. 5 (February 26, 2023): 1182. http://dx.doi.org/10.3390/polym15051182.
Full textLuo, Hongsheng, Huaquan Wang, Huankai Zhou, Xingdong Zhou, Jinlian Hu, Guobin Yi, Zhifeng Hao, and Wenjing Lin. "Shape Memory-Enhanced Electrical Self-Healing of Stretchable Electrodes." Applied Sciences 8, no. 3 (March 7, 2018): 392. http://dx.doi.org/10.3390/app8030392.
Full textQuadrini, Fabrizio, Denise Bellisario, Leandro Iorio, Loredana Santo, Panagiotis Pappas, Nikolaos Koutroumanis, George Anagnostopoulos, and Costas Galiotis. "Shape Memory Composite Sandwich Structures with Self-Healing Properties." Polymers 13, no. 18 (September 10, 2021): 3056. http://dx.doi.org/10.3390/polym13183056.
Full textKazemi-Lari, Mohammad A., Mohammad H. Malakooti, and Henry A. Sodano. "Active photo-thermal self-healing of shape memory polyurethanes." Smart Materials and Structures 26, no. 5 (April 5, 2017): 055003. http://dx.doi.org/10.1088/1361-665x/aa677d.
Full textRohatgi, P. K. "Al-shape memory alloy self-healing metal matrix composite." Materials Science and Engineering: A 619 (December 2014): 73–76. http://dx.doi.org/10.1016/j.msea.2014.09.050.
Full textGyarmati, Benjámin, Barnabás Áron Szilágyi, and András Szilágyi. "Reversible interactions in self-healing and shape memory hydrogels." European Polymer Journal 93 (August 2017): 642–69. http://dx.doi.org/10.1016/j.eurpolymj.2017.05.020.
Full textLi, Shuai, Jun Zhang, Jianjun Chen, Ming Yao, Xuepeng Liu, and Zhiguo Jiang. "Self-Healing Polycarbonate-Based Polyurethane with Shape Memory Behavior." Macromolecular Research 27, no. 7 (May 30, 2019): 649–56. http://dx.doi.org/10.1007/s13233-019-7090-8.
Full textBirjandi Nejad, Hossein, Katie L. Garrison, and Patrick T. Mather. "Comparative analysis of shape memory-based self-healing coatings." Journal of Polymer Science Part B: Polymer Physics 54, no. 14 (April 13, 2016): 1415–26. http://dx.doi.org/10.1002/polb.24061.
Full textNguyen, Le-Thu T., Thuy Thu Truong, Ha Tran Nguyen, Lam Le, Viet Quoc Nguyen, Thang Van Le, and Anh Tuan Luu. "Healable shape memory (thio)urethane thermosets." Polymer Chemistry 6, no. 16 (2015): 3143–54. http://dx.doi.org/10.1039/c5py00126a.
Full textZhou, Huankai, Hongsheng Luo, Xingdong Zhou, Huaquan Wang, Yangrong Yao, Wenjing Lin, and Guobin Yi. "Healable, Flexible Supercapacitors Based on Shape Memory Polymers." Applied Sciences 8, no. 10 (September 25, 2018): 1732. http://dx.doi.org/10.3390/app8101732.
Full textHassan, M. R., M. Mehrpouya, Sattar Emamian, and M. N. Sheikholeslam. "Review of Self-Healing Effect on Shape Memory Alloy (SMA) Structures." Advanced Materials Research 701 (May 2013): 87–92. http://dx.doi.org/10.4028/www.scientific.net/amr.701.87.
Full textSun, Siqin, Chaoxian Chen, Jianghong Zhang, and Jianshe Hu. "Biodegradable smart materials with self-healing and shape memory function for wound healing." RSC Advances 13, no. 5 (2023): 3155–63. http://dx.doi.org/10.1039/d2ra07493a.
Full textNji, Jones, and Guoqiang Li. "A biomimic shape memory polymer based self-healing particulate composite." Polymer 51, no. 25 (November 2010): 6021–29. http://dx.doi.org/10.1016/j.polymer.2010.10.021.
Full textNeuser, S., V. Michaud, and S. R. White. "Improving solvent-based self-healing materials through shape memory alloys." Polymer 53, no. 2 (January 2012): 370–78. http://dx.doi.org/10.1016/j.polymer.2011.12.020.
Full textFeng, Xianqi, Gongzheng Zhang, Bo Xu, Haoyang Jiang, Quanming Bai, and Huanjun Li. "Self-healing elastomer assembly towards three-dimensional shape memory devices." RSC Advances 5, no. 86 (2015): 70000–70004. http://dx.doi.org/10.1039/c5ra13537k.
Full textWang, Luntao, Leping Deng, Dawei Zhang, Hongchang Qian, Cuiwei Du, Xiaogang Li, Johannes M. C. Mol, and Herman A. Terryn. "Shape memory composite (SMC) self-healing coatings for corrosion protection." Progress in Organic Coatings 97 (August 2016): 261–68. http://dx.doi.org/10.1016/j.porgcoat.2016.04.041.
Full text