Academic literature on the topic 'Shape Control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shape Control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shape Control"
Katie, Lu. "Silver Nanoparticles: Reducing Environmental Toxicity Through Shape Control." ESSENCE International Journal for Environmental Rehabilitation and Conservation 9, no. 1 (August 15, 2018): 14–22. http://dx.doi.org/10.31786/09756272.18.9.1.103.
Full textNyirő -Kósa, Ilona, Dorottya Csákberényi Nagy, and Mihály Pósfai. "Size and shape control of precipitated magnetite nanoparticles." European Journal of Mineralogy 21, no. 2 (April 22, 2009): 293–302. http://dx.doi.org/10.1127/0935-1221/2009/0021-1920.
Full textFREEMANTLE, MICHAEL. "NANOPARTICLE SHAPE CONTROL." Chemical & Engineering News 79, no. 49 (December 3, 2001): 10. http://dx.doi.org/10.1021/cen-v079n049.p010a.
Full textKoconis, David B., Låszló P. Kollår, and George S. Springer. "Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified." Journal of Composite Materials 28, no. 5 (March 1994): 459–82. http://dx.doi.org/10.1177/002199839402800504.
Full textJensen, Robert E. "Control of mitochondrial shape." Current Opinion in Cell Biology 17, no. 4 (August 2005): 384–88. http://dx.doi.org/10.1016/j.ceb.2005.06.011.
Full textBikeev, E. V., M. G. Matylenko, D. O. Shendalev, Yu V. Vilkov, F. K. Sin’kovsky, Y. V. Kolovskiy, and A. I. Kuklina. "Spacecraft reflector shape control." IOP Conference Series: Materials Science and Engineering 734 (January 29, 2020): 012031. http://dx.doi.org/10.1088/1757-899x/734/1/012031.
Full textDeckelnick, Klaus, Philip J. Herbert, and Michael Hinze. "A novel W1,∞ approach to shape optimisation with Lipschitz domains." ESAIM: Control, Optimisation and Calculus of Variations 28 (2022): 2. http://dx.doi.org/10.1051/cocv/2021108.
Full textABELS, ARTUR, and MAARJA KRUUSMAA. "SHAPE CONTROL OF AN ANTHROPOMORPHIC TAILORING ROBOT MANNEQUIN." International Journal of Humanoid Robotics 10, no. 02 (June 2013): 1350002. http://dx.doi.org/10.1142/s0219843613500023.
Full textTohgo, Keiichiro, Yuki Tochigi, Hiroyasu Araki, and Yoshinobu Shimamura. "OS17-1-2 Deformation and mechanical response of shape-control plate using NiTi shape memory alloy wire." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _OS17–1–2——_OS17–1–2—. http://dx.doi.org/10.1299/jsmeatem.2007.6._os17-1-2-.
Full textYang, Li Po, and Bing Qiang Yu. "Shape Detecting and Shape Control of Cold Rolling Strip." Advanced Materials Research 311-313 (August 2011): 902–5. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.902.
Full textDissertations / Theses on the topic "Shape Control"
Kelly, Brian L. "Beam shape control using shape memory alloys." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA358806.
Full text"December 1998." Thesis advisor(s): Brij N. Agrawal, Gangbing Song. Includes bibliographical references (p. 55). Also available online.
Norfleet, Walton A. (Walton Arthur) 1973. "Algorithms for closed loop shape control." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8559.
Full textIncludes bibliographical references (p. 147-149).
The stretch forming process is used to make structural sheet metal parts in the aerospace industry. The development of stretch forming tools has long been plagued by significant challenges. First, the low production volumes within the aerospace industry and the large numbers of stretch formed parts make the process capital intensive. Second, the development of stretch forming tooling has long been more of an art than a science. This results in poorly designed tools, poor quality parts, and lengthy tooling development cycles. A stretch forming tool capable of rapid reconfiguration was previously designed to address these issues. This tool is used in conjunction with a self-tuning shape control algorithm, which guides the die to the correct shape. There have been many simulations, and lab scale successes with these algorithms, but production scale implementations have experienced difficulties. These problems are related to the method of system identification and process variation. To better understand these issues, analysis and simulation are performed on the various forms of the algorithm. These investigations led to a greater understanding of the algorithms and the synthesis of an improved algorithm. In conclusion, a greater understanding of previously developed algorithms is presented. The system identification is mapped as a Point Spread Function applied through a cyclic convolution. This view provides insight into how the system identification is applied and allows system coupling to be quantified. Furthermore, through improved understanding a new algorithm is synthesized. This new algorithm offers an implementable solution that is optimized for performance, robustness to variation, and ease of use.
by Walton A. Norfleet.
S.M.
Ruscelli, Francesco. "Shape-based compliance control for snake robots." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11985/.
Full textMa, Chaoyang. "Particle shape distribution control in crystallisation processes." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531612.
Full textZhang, Jun. "Shape control in synthesis of functional nanocrystals." Diss., Online access via UMI:, 2009.
Find full textElshafei, Mostafa Adnan. "Smart composite plate shape control using piezoelectric materials." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA320548.
Full textDissertation supervisor(s): B.N. Agrawal. "September 1996." Includes bibliographical references (p. 111-118). Also available online.
Selden, Brian A. 1980. "Segmented binary control of shape memory actuator systems." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30307.
Full textIncludes bibliographical references (p. 51).
A new approach to the design and control of shape memory alloy (SMA) actuators is presented. SMA wires are divided into many segments and their thermal states are controlled individually as a group of finite state machines. Instead of driving a current to the entire SMA wire and controlling the wire length based on the analogue strain-temperature characteristics, the new method controls the binary state (hot or cold) of individual segments and thereby the total displacement is proportional to the length of the heated segments, i.e. austenite phase. Although the thermo-mechanical properties of SMA are highly nonlinear and uncertain with a prominent hysteresis, Segmented Binary Control is robust and stable, providing characteristics similar to a stepping motor. However, the heating and cooling of each segment to its bi-stable states entail longer time and larger energy for transition. An efficient method for improving speed of response and power consumption is developed by exploiting the inherent hysteresis of SMA. Instead of keeping the extreme temperatures continuously, the temperatures return to intermediate "hold" temperatures closer to room temperature but sufficient to keep constant phase. Coordination of the multitude of segments having independent thermal states allows for faster response with little latency time even for thick SMA wires. Based on stress dependent thermo-mechanical characteristics, the hold temperature satisfying a given Stress Margin is obtained. The new control method is implemented using the Peltier effect thermoelectric devices for selective segment-by-segment heating and cooling. Experiments demonstrate effectiveness of the proposed method.
by Brian A. Selden.
S.M.
Punhani, Amitesh. "Shape and Vibration Control of Smart Laminated Plates." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1205990432.
Full textEhlers, Righardt Frederick. "Feedback control of a shape memory alloy actuator for control surface deflection." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19977.
Full textENGLISH ABSTRACT: The successful design, implementation and testing of a feedback control system for tab-deflection control of a shape memory alloy (SMA) based control surface actuator is presented. The research is performed as part of the Control Surfaces in Confined Spaces (CoSICS) research project conducted at Stellenbosch University. The research group investigates ways to provide control surface actuation in size-restricted spaces in commercial aircraft such as the Airbus A320 and A330. This is achieved by investigating the concept of trailing edge tabs to reduce the required torque load, resulting in reduced actuator requirements enabling the use of smaller actuators. This thesis contributes to the project by investigating the possibility of using SMA-based actuators in reduced hinge moment requirement applications. An SMA-based tab actuator demonstrator design is presented. Mathematical models are derived for the SMA material, thermodynamics and actuator geometry. The models are combined to formulate an SMA-based control surface actuator model. The model is utilised in four tracking feedback controller designs; two based on linear and two based on non-linear control techniques. The manufactured prototype is presented along with the incorporated hardware for controller implementation. System identification follows and validates the three mathematical models. Practical verification of the model and two of the controllers is conducted. The unimplemented controllers are implemented through a validated model simulation. Controller evaluation, based on the dynamic controller performance, is conducted. The results validate the concept of using an SMA actuator for tab-deflection control and indicate important limitations for the intended application.
AFRIKAANSE OPSOMMING: Die tesis behels die ontwerp, implementering en toetsing van ’n terugvoer beheerstelsel vir hulpvlak defleksie beheer van ’n vorm-geheue allooi (SMA) gebaseerde aktueerder. Die navorsing vorm deel van die Beheervlakke in Begrensde Ruimtes (CoSICS) navorsingsprojek by Stellenbosch Universiteit. Die CoSICS navorsing behels ’n ondersoek na beheervlak aktueering in beknopte spasies in kommersiële vliegtuie soos die Airbus A320 en A330. Die probleem word aangespreek deur ’n ondersoek na aerodinamiese hulpvlakke wat ’n vermindering in skarnier moment tot gevolg het en sodoende die aktueerder vereistes verminder. Hierdie tesis dra by tot die projek deur die moontlikheid van die gebruik van SMAgebaseerde aktueerders in verminderde skarnier moment vereiste toepassings te ondersoek. ‘n SMA gebaseerde hulpvlak demonstrasie aktueerder ontwerp word voorgelê. Wiskundige modelle vir die SMA materiaal, termodinamika en prototipe geometrie is geformuleer en gekombineer om ‘n SMA gebaseerde beheervlak aktueerder model te ontwikkel. Die model word in vier beheerder ontwerpe toegepas. Twee ontwerpe is op liniëre en twee op nie-liniëre beheer tegnieke gebaseer. Die prototipe en nodige hardeware vir beheerder implementasie is voorgedra. Stelsel identifikasie is toegepas en verifieer die drie wiskundige modelle. Praktiese verifikasie van die model en twee beheerders is gedoen. Die ongeïmplementeerde beheerders is deur die geverifieerde aktueerder model gesimuleer. ‘n Beheerder evaluasie gebaseer op die dinamiese beheerder gedrag word toegepas. Die evaluasie beklemtoon kritiese aspekte en beperkinge in verband met SMA aktueering. Die resultate regverdig die gebruik van ‘n SMA aktueerder vir hulpvlak defleksie beheer en beklemtoon belangrike beperkinge ten opsigte van die voorgestelde toepassing.
Nader, Manfred. "Compensation of vibrations in smart structures : shape control, experimental realization and feedback control /." Linz : Trauner, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9783854993865.
Full textBooks on the topic "Shape Control"
Wijst, Marc Van der. Shape control of structures and materials with shape memory alloys. Eindhoven: Eindhoven University, 1998.
Find full textSchulz, Volker, and Diaraf Seck, eds. Shape Optimization, Homogenization and Optimal Control. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90469-6.
Full textLeung, C. N. Smoothing and interpolating curves with shape control. Uxbridge: Brunel University, 1987.
Find full textW, Moses Robert, and Langley Research Center, eds. A feasibility study to control airfoil shape using THUNDER. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textGiuseppe, Da Prato, and Zolésio J. P, eds. Partial differential equation methods in control and shape analysis. New York: Marcel Dekker, 1997.
Find full textCipolla, Roberto. Active visual inference of surface shape. Berlin: Springer₋Verlag, 1996.
Find full textOla, Kristensson Per. Discrete and continuous shape writing for text entry and control. Linko ping: Department of Computer and Information Science, Linko ping University, 2007.
Find full textP, Zolésio J., ed. Moving shape analysis and control: Applications to fluid structure interactions. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textP, Zolésio J., and Working Conference "Boundary Control and Boundary Variation" (5th : 1992 : Sophia-Antipolis, France), eds. Boundary control and variation. New York: M. Dekker, 1994.
Find full textLaporte, Emmanuel. Numerical Methods in Sensitivity Analysis and Shape Optimization. Boston, MA: Birkhäuser Boston, 2003.
Find full textBook chapters on the topic "Shape Control"
Sinapius, Johannes Michael, Christian Hühne, Hossein Sadri, and Johannes Riemenschneider. "Active Shape Control." In Adaptronics – Smart Structures and Materials, 155–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61399-3_5.
Full textWu, Zhaohui, and Wei Wu. "Nanoscale Shape Control." In 21st Century Nanoscience – A Handbook, 21–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780367341558-21.
Full textWang, Liang, Ratessiea Lett, Sergio D. Felicelli, and John T. Berry. "Microstructure Characterization of Magnesium Control Arm Castings." In Shape Casting, 215–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062050.ch26.
Full textHaslinger, Jaroslav. "Contact Shape Optimization." In Optimal Design and Control, 189–98. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-0839-6_12.
Full textAshrafiuon, Hashem, and Mohammad H. Elahinia. "Control of SMA Actuators." In Shape Memory Alloy Actuators, 125–54. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118426913.ch4.
Full textNick, Peter. "Control of plant shape." In Plant Microtubules, 25–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22300-0_2.
Full textManzoni, Andrea, Alfio Quarteroni, and Sandro Salsa. "Shape Optimization Problems." In Optimal Control of Partial Differential Equations, 373–421. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77226-0_11.
Full textArian, Eyal, and Shlomo Ta’asan. "Shape Optimization in One Shot." In Optimal Design and Control, 23–40. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-0839-6_2.
Full textMertmann, Matthias. "Processing and Quality Control of Binary NiTi Shape Memory Alloys." In Shape Memory Implants, 24–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59768-8_2.
Full textAriola, Marco, and Alfredo Pironti. "Plasma Shape Control at JET." In Magnetic Control of Tokamak Plasmas, 143–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29890-0_10.
Full textConference papers on the topic "Shape Control"
Unel, M., and W. A. Wolovich. "Shape control using primitive decompositions." In Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications. IEEE, 1999. http://dx.doi.org/10.1109/sma.1999.749323.
Full textDellas, F., L. Moccozet, N. Magnenat-Thalmann, M. Mortara, G. Patan'e, M. Spagnuolo, and B. Falcidieno. "Knowledge-based extraction of control skeletons for animation." In Shape Modeling International 2007. IEEE, 2007. http://dx.doi.org/10.1109/smi.2007.24.
Full textGrasberger, Herbert, Andrea Weidlich, Alexander Wilkie, and Brian Wyvill. "Precise Construction and Control of Implicit Fillets in the BlobTree." In 2010 Shape Modeling International (SMI). IEEE, 2010. http://dx.doi.org/10.1109/smi.2010.37.
Full textChiew-Lan Tai and Kia-Fock Loe. "Alpha-spline: a C/sup 2/ continuous spline with weights and tension control." In Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications. IEEE, 1999. http://dx.doi.org/10.1109/sma.1999.749333.
Full textPoole, Daniel J., Christian B. Allen, and T. Rendall. "Optimal Domain Element Shapes for Free-Form Aerodynamic Shape Control." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0762.
Full textHenrickson, James V., Robert E. Skelton, and John Valasek. "Shape Control of Tensegrity Airfoils." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1864.
Full textHenrickson, James V., Robert E. Skelton, and John Valasek. "Shape Control of Tensegrity Structures." In AIAA SPACE 2015 Conference and Exposition. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-4502.
Full textLindner, Douglas K., and Karl M. Reichard. "Spatial filters for shape control." In Aerospace Sensing, edited by John A. Breakwell. SPIE, 1992. http://dx.doi.org/10.1117/12.138155.
Full textSu, Bo, Ramiel Oshana, Mina Menaker, Yogev Barak, and Xuelong Shi. "Shape control using sidewall imaging." In Microlithography 2000, edited by Neal T. Sullivan. SPIE, 2000. http://dx.doi.org/10.1117/12.386476.
Full textLobitz, D., J. Grossman, J. Allen, T. Rice, C. Liang, and F. Davidson. "Shape control of solar collectors using shape memory alloy actuators." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1117.
Full textReports on the topic "Shape Control"
Kota, Sridhar. Shape Control of Adaptive Structures Using Compliant Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada376131.
Full textJameson, Antony, and Juan J. Alonso. Advances in Aerodynamic Shape Optimization Using Control Theory. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada418452.
Full textInman, Daniel J. Shape Memory Actuators for Tab-Assisted Control Surfaces. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada377471.
Full textMohar, Jacob Steven, Ekaterina Dolgopolova, and Jennifer Ann Hollingsworth. Size and Shape Control of Gallium-Iron Oxide Nanoparticles. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1545738.
Full textWinters, Scott Eric. Development of Control Models and a Robust Multivariable Controller for Surface Shape Control. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/15005369.
Full textSacks, Ryan, Eric Loomis, Paul Keiter, and Harry Robey. Assessment of double shell ablator asymmetry sources and shape control. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1808803.
Full textBirman, Victor. Functionally Graded Shape Memory Alloy Composites Optimized for Passive Vibration Control. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada459593.
Full textBaz, Amr M., Karim R. Iman, and John J. McCoy. Active Control of Flexible Space Structures Using the Nitinol Shape Memory Actuators. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada205948.
Full textHumphreys, D. A., J. A. Leuer, A. G. Kellman, S. W. Haney, R. H. Bulmer, L. D. Pearlstein, and A. Portone. Toward a design for the ITER plasma shape and stability control system. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10177570.
Full textSchuster, Eugenio. Final Technical Report: Integrated Shape, Current Profile, and Rotation Profile Control in DIII-D. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1098261.
Full text