Journal articles on the topic 'Shakura-Sunyaev disk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Shakura-Sunyaev disk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Berdina, L. A., V. S. Tsvetkova, and V. M. Shulga. "Super-Eddington accretion in the Q2237+0305 quasar?" Astronomy & Astrophysics 645 (January 2021): A78. http://dx.doi.org/10.1051/0004-6361/202039379.
Full textGu, Wei-Min, and Ju-Fu Lu. "Bimodal Accretion Disks: Shakura-Sunyaev Disk–Advection-dominated Accretion Flow Transitions." Astrophysical Journal 540, no. 1 (September 1, 2000): L33—L36. http://dx.doi.org/10.1086/312864.
Full textLominadze, J. G. "Nature of Turbulence: Governing Factor of Accretion Disk Dynamics." Highlights of Astronomy 11, no. 2 (1998): 786–89. http://dx.doi.org/10.1017/s1539299600018785.
Full textPiotrovich, Mikhail, Stanislava Buliga, and Tinatin Natsvlishvili. "Determination of the Magnetic Field Strength and Geometry in the Accretion Disks of AGNs by Optical Spectropolarimetry." Universe 7, no. 6 (June 18, 2021): 202. http://dx.doi.org/10.3390/universe7060202.
Full textHuré, Jean Marc, Suzy Collin, and Guillaume Pineau Des Forêts. "Structure of Outer Regions of Accretion Disks in AGN: Non Irradiated, Vertically Averaged Accretion Disks." Symposium - International Astronomical Union 159 (1994): 483. http://dx.doi.org/10.1017/s0074180900176594.
Full textDudorov, A. E., and R. E. Pudritz. "An MHD Model of Be Stars with Disks." International Astronomical Union Colloquium 175 (2000): 611–16. http://dx.doi.org/10.1017/s0252921100056633.
Full textKadam, Kundan, E. Vorobyov, Zs Regály, Á. Kóspál, and P. Ábráham. "Global Protoplanetary Disk Simulations: Dead Zone Formation and FUor Outbursts." Proceedings of the International Astronomical Union 14, S345 (August 2018): 324–25. http://dx.doi.org/10.1017/s1743921319001650.
Full textMao, Shunyuan, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris. "PPDONet: Deep Operator Networks for Fast Prediction of Steady-state Solutions in Disk–Planet Systems." Astrophysical Journal Letters 950, no. 2 (June 1, 2023): L12. http://dx.doi.org/10.3847/2041-8213/acd77f.
Full textMineshige, S. "Accretion Disk Instabilities." International Astronomical Union Colloquium 134 (1993): 83–103. http://dx.doi.org/10.1017/s0252921100013968.
Full textOlson, Edward C. "Photometric Effects of Accretion Disks in Long-Period Eclipsing Binaries." International Astronomical Union Colloquium 107 (1989): 23–34. http://dx.doi.org/10.1017/s0252921100087649.
Full textLu, Ju-Fu, Wei-Min Gu, and Yi-Qing Lin. "Mode Transitions of Black Hole Accretion Disks." Symposium - International Astronomical Union 214 (2003): 91–94. http://dx.doi.org/10.1017/s0074180900194197.
Full textBogovalov, Sergey. "Ratio of kinetic-to-bolometric luminosity at the “cold” disk accretion onto black holes." Proceedings of the International Astronomical Union 14, S342 (May 2018): 205–8. http://dx.doi.org/10.1017/s1743921318003848.
Full textLu, Ju-Fu, Yi-Qing Lin, and Wei-Min Gu. "The Shakura-Sunyaev Disk Can Smoothly Match an Advection-dominated Accretion Flow." Astrophysical Journal 602, no. 1 (February 2, 2004): L37—L40. http://dx.doi.org/10.1086/382209.
Full textPan, Liu-bin, Ju-fu Lu, and Wei-min Gu. "Transition from a Shakura-Sunyaev disk to an advection-dominated accretion flow." Chinese Astronomy and Astrophysics 26, no. 1 (January 2002): 7–13. http://dx.doi.org/10.1016/s0275-1062(02)00038-3.
Full textMUKHOPADHYAY, BANIBRATA. "ESTIMATE OF THE SHAKURA–SUNYAEV VISCOSITY PARAMETER IN THE KEPLERIAN ACCRETION DISK FROM HYDRODYNAMIC TURBULENCE." International Journal of Modern Physics D 17, no. 03n04 (March 2008): 467–73. http://dx.doi.org/10.1142/s0218271808012139.
Full textPiotrovich, M. Yu, V. L. Afanasiev, S. D. Buliga, and T. M. Natsvlishvili. "Determination of supermassive black hole spins in active galactic nuclei." International Journal of Modern Physics A 35, no. 02n03 (January 30, 2020): 2040054. http://dx.doi.org/10.1142/s0217751x20400540.
Full textBi, Jiaqing, and Jeffrey Fung. "Dust Dynamics in Transitional Disks: Clumping and Disk Recession." Astrophysical Journal 928, no. 1 (March 1, 2022): 74. http://dx.doi.org/10.3847/1538-4357/ac53ac.
Full textFujita, M., and T. Okuda. "Two-Dimensional Accretion Disk Models of a Neutron Star." Symposium - International Astronomical Union 188 (1998): 374–75. http://dx.doi.org/10.1017/s0074180900115608.
Full textMa, Zhen Guo, and Xi Zhen Zhang. "Prediction of the Black-Hole Mass in 3C 273 by Multiband Observations." Symposium - International Astronomical Union 214 (2003): 281–86. http://dx.doi.org/10.1017/s0074180900194574.
Full textMishra, Bhupendra, P. Chris Fragile, Jessica Anderson, Aidan Blankenship, Hui Li, and Krzysztof Nalewajko. "The Role of Strong Magnetic Fields in Stabilizing Highly Luminous Thin Disks." Astrophysical Journal 939, no. 1 (October 31, 2022): 31. http://dx.doi.org/10.3847/1538-4357/ac938b.
Full textGranada, A., C. E. Jones, and T. A. A. Sigut. "The Viscosity Parameter for Late-type Stable Be Stars." Astrophysical Journal 922, no. 2 (November 26, 2021): 148. http://dx.doi.org/10.3847/1538-4357/ac222f.
Full textMartin, Rebecca G., Philip J. Armitage, Stephen H. Lubow, and Daniel J. Price. "Tidal Truncation of Circumplanetary Disks Fails above a Critical Disk Aspect Ratio." Astrophysical Journal 953, no. 1 (July 28, 2023): 2. http://dx.doi.org/10.3847/1538-4357/ace345.
Full textPanotopoulos, Grigoris, Ángel Rincón, and Ilídio Lopes. "Binary X-ray Sources in Massive Brans–Dicke Gravity." Universe 8, no. 5 (May 19, 2022): 285. http://dx.doi.org/10.3390/universe8050285.
Full textTrapman, Leon, Benoît Tabone, Giovanni Rosotti, and Ke Zhang. "Effect of MHD Wind-driven Disk Evolution on the Observed Sizes of Protoplanetary Disks." Astrophysical Journal 926, no. 1 (February 1, 2022): 61. http://dx.doi.org/10.3847/1538-4357/ac3ed5.
Full textKolesnichenko, Aleksandr Vladimirovich. "Modification alpha formalism of Shakura–Sunyaev for the coefficient of turbulent viscosity in an astrophysical disk of finite thickness." Keldysh Institute Preprints, no. 1-e (2022): 1–32. http://dx.doi.org/10.20948/prepr-2022-1-e.
Full textPeterson, Bradley M. "Space Telescope and Optical Reverberation Mapping Project: A Leap Forward in Reverberation Mapping." Proceedings of the International Astronomical Union 12, S324 (September 2016): 215–18. http://dx.doi.org/10.1017/s1743921316012680.
Full textGurzadyan, Vahagn G. "General Discussion of Accretion Disks." Symposium - International Astronomical Union 194 (1999): 321–22. http://dx.doi.org/10.1017/s0074180900162205.
Full textChen, Yi-Xian, Yan-Fei Jiang, Jeremy Goodman, and Eve C. Ostriker. "3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks: Effects of Radiation Pressure." Astrophysical Journal 948, no. 2 (May 1, 2023): 120. http://dx.doi.org/10.3847/1538-4357/acc023.
Full textBogovalov, S. V. "Ratio of the jet power to the bolometric luminosity of the disk during accretion onto a black hole." International Journal of Modern Physics D 28, no. 02 (January 2019): 1950032. http://dx.doi.org/10.1142/s0218271819500329.
Full textLiu, Hauyu Baobab, An-Li Tsai, Wen Ping Chen, Jin Zhong Liu, Xuan Zhang, Shuo Ma, Vardan Elbakyan, et al. "Millimeter-sized Dust Grains Surviving the Water-sublimating Temperature in the Inner 10 au of the FU Ori Disk." Astrophysical Journal 923, no. 2 (December 1, 2021): 270. http://dx.doi.org/10.3847/1538-4357/ac31b9.
Full textKara, Erin, Missagh Mehdipour, Gerard A. Kriss, Edward M. Cackett, Nahum Arav, Aaron J. Barth, Doyee Byun, et al. "AGN STORM 2. I. First results: A Change in the Weather of Mrk 817." Astrophysical Journal 922, no. 2 (November 26, 2021): 151. http://dx.doi.org/10.3847/1538-4357/ac2159.
Full textHomayouni, Y., Megan R. Sturm, Jonathan R. Trump, Keith Horne, C. J. Grier, Yue Shen, W. N. Brandt, et al. "The Sloan Digital Sky Survey Reverberation Mapping Project: UV–Optical Accretion Disk Measurements with the Hubble Space Telescope." Astrophysical Journal 926, no. 2 (February 1, 2022): 225. http://dx.doi.org/10.3847/1538-4357/ac478b.
Full textProga, Daniel, Janet E. Drew, and James M. Stone. "Radiation driven winds from CV accretion disks." International Astronomical Union Colloquium 163 (1997): 782. http://dx.doi.org/10.1017/s0252921100043967.
Full textAfanasiev, V. L., Yu N. Gnedin, M. Yu Piotrovich, S. D. Buliga, and T. M. Natsvlishvili. "Determination of Supermassive Black Hole Spins Based on the Standard Shakura–Sunyaev Accretion Disk Model and Polarimetric Observations." Astronomy Letters 44, no. 6 (June 2018): 362–69. http://dx.doi.org/10.1134/s1063773718060014.
Full textRodriguez, Antonio C., and Lynne A. Hillenbrand. "Application of a Steady-state Accretion Disk Model to Spectrophotometry and High-resolution Spectra of Two Recent FU Ori Outbursts." Astrophysical Journal 927, no. 2 (March 1, 2022): 144. http://dx.doi.org/10.3847/1538-4357/ac496b.
Full textGutiérrez, E. M., F. L. Vieyro, and G. E. Romero. "Nonthermal processes in hot accretion flows onto supermassive black holes: An inhomogeneous model." Astronomy & Astrophysics 649 (May 2021): A87. http://dx.doi.org/10.1051/0004-6361/202039671.
Full textBogovalov, Sergey. "Physics of “Cold” Disk Accretion onto Black Holes Driven by Magnetized Winds." Galaxies 7, no. 1 (January 14, 2019): 18. http://dx.doi.org/10.3390/galaxies7010018.
Full textRiffert, H., T. Dörrer, R. Staubert, and H. Ruder. "The Vertical Structures of Accretion Disks in AGN." Symposium - International Astronomical Union 159 (1994): 478. http://dx.doi.org/10.1017/s0074180900176557.
Full textRomanova, M. M., and R. V. E. Lovelace. "Simultaneous Implosive Accretion and Jet Formation in Quasars: Correlation of Optical Outbursts by VLBI Jets." Symposium - International Astronomical Union 159 (1994): 490. http://dx.doi.org/10.1017/s0074180900176661.
Full textLyu, Bing, Qingwen Wu, Zhen Yan, Wenfei Yu, and Hao Liu. "WISE View of Changing-look Active Galactic Nuclei: Evidence for a Transitional Stage of AGNs." Astrophysical Journal 927, no. 2 (March 1, 2022): 227. http://dx.doi.org/10.3847/1538-4357/ac5256.
Full textFian, C., D. Chelouche, S. Kaspi, C. Sobrino Figaredo, S. Catalan, and T. Lewis. "Continuum reverberation mapping of the quasar PG 2130+099." Astronomy & Astrophysics 659 (February 25, 2022): A13. http://dx.doi.org/10.1051/0004-6361/202141509.
Full textDelage, Timmy N., Satoshi Okuzumi, Mario Flock, Paola Pinilla, and Natalia Dzyurkevich. "Steady-state accretion in magnetized protoplanetary disks." Astronomy & Astrophysics 658 (February 2022): A97. http://dx.doi.org/10.1051/0004-6361/202141689.
Full textZuo, Wenwen, Xue-Bing Wu, Yi-Qing Liu, and Cheng-Liang Jiao. "The correlations between optical variability and physical parameters of quasars in SDSS Stripe 82." Proceedings of the International Astronomical Union 8, S290 (August 2012): 373–74. http://dx.doi.org/10.1017/s1743921312020467.
Full textDong, Aijun, Chang Liu, Qijun Zhi, Ziyi You, Qibin Sun, and Bowen Du. "Spectral and Timing Properties of H 1743-322 in the “Faint” 2005 Normal Outburst." Universe 8, no. 5 (May 6, 2022): 273. http://dx.doi.org/10.3390/universe8050273.
Full textBarnier, S., P. O. Petrucci, J. Ferreira, G. Marcel, R. Belmont, M. Clavel, S. Corbel, et al. "Clues on jet behavior from simultaneous radio-X-ray fits of GX 339-4." Astronomy & Astrophysics 657 (December 21, 2021): A11. http://dx.doi.org/10.1051/0004-6361/202141182.
Full textJust, O., V. Vijayan, Z. Xiong, S. Goriely, T. Soultanis, A. Bauswein, J. Guilet, H. Th Janka, and G. Martínez-Pinedo. "End-to-end Kilonova Models of Neutron Star Mergers with Delayed Black Hole Formation." Astrophysical Journal Letters 951, no. 1 (July 1, 2023): L12. http://dx.doi.org/10.3847/2041-8213/acdad2.
Full textYi-Qing, Lin, Lu Ju-Fu, and Gu Wei-Min. "Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow." Chinese Physics Letters 20, no. 7 (June 17, 2003): 1179–82. http://dx.doi.org/10.1088/0256-307x/20/7/360.
Full textJiao, Cheng-Liang, and Xue-Bing Wu. "Outflows from Accretion Disks around Compact Objects." Proceedings of the International Astronomical Union 8, S290 (August 2012): 82–85. http://dx.doi.org/10.1017/s1743921312019266.
Full textPariev, V. I., E. G. Blackman, and S. A. Boldyrev. "Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disc model." Astronomy & Astrophysics 407, no. 2 (August 2003): 403–21. http://dx.doi.org/10.1051/0004-6361:20030868.
Full textCASSARO, P., F. SCHILLIRÓ, V. COSTA, G. BELVEDERE, R. A. ZAPPALÁ, and G. LANZAFAME. "THE ENGINE OF OUTFLOWS IN AGN: THE ROLE OF PHYSICAL TURBULENT VISCOSITY." International Journal of Modern Physics D 17, no. 09 (September 2008): 1635–40. http://dx.doi.org/10.1142/s0218271808013248.
Full text