Academic literature on the topic 'Shadow or reality?'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shadow or reality?.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shadow or reality?"
Supan, Peter, Ines Stuppacher, and Michael Haller. "Image Based Shadowing in Real-Time Augmented Reality." International Journal of Virtual Reality 5, no. 3 (January 1, 2006): 1–7. http://dx.doi.org/10.20870/ijvr.2006.5.3.2692.
Full textOsti, Francesco, Gian Maria Santi, and Gianni Caligiana. "Real Time Shadow Mapping for Augmented Reality Photorealistic Rendering." Applied Sciences 9, no. 11 (May 30, 2019): 2225. http://dx.doi.org/10.3390/app9112225.
Full textCasas Cambra, Llogari, Matthias Fauconneau, Maggie Kosek, Kieran Mclister, and Kenny Mitchell. "Enhanced Shadow Retargeting with Light-Source Estimation Using Flat Fresnel Lenses." Computers 8, no. 2 (April 2, 2019): 29. http://dx.doi.org/10.3390/computers8020029.
Full textKim, Hyungil, Jessica D. Isleib, and Joseph L. Gabbard. "Virtual Shadow." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 60, no. 1 (September 2016): 2093–97. http://dx.doi.org/10.1177/1541931213601474.
Full textPeretz, Eyal. "Introduction: Reality and Its Shadow." Yearbook of Comparative Literature 56, no. 1 (2010): 1–5. http://dx.doi.org/10.1353/cgl.2010.0001.
Full textWood, Geof. "Labels: A Shadow Across Reality." Development and Change 16, no. 3 (July 1985): 343–45. http://dx.doi.org/10.1111/j.1467-7660.1985.tb00213.x.
Full textLee, Sangyoon, and Hyunki Hong. "Use of Gradient-Based Shadow Detection for Estimating Environmental Illumination Distribution." Applied Sciences 8, no. 11 (November 15, 2018): 2255. http://dx.doi.org/10.3390/app8112255.
Full textThapa, Neelam. "Navigating Shadows: Unraveling the Fluidity of Reality and Borders in Amitav Ghosh's "The Shadow Lines" (1988)." International Journal of Science and Research (IJSR) 12, no. 11 (November 5, 2023): 1862–65. http://dx.doi.org/10.21275/sr231126140140.
Full textRoper, Matthew. "Mormonism: Shadow or Reality?. 5th ed." Review of Books on the Book of Mormon 4 (1992) (January 1, 1992): 169–215. http://dx.doi.org/10.2307/44796520.
Full textObukhov, Artem D., Andrey A. Volkov, Nadezhda A. Vekhteva, Daniil V. Teselkin, and Alexey E. Arkhipov. "Human motion capture algorithm for creating digital shadows of the movement process." Journal of Physics: Conference Series 2388, no. 1 (December 1, 2022): 012033. http://dx.doi.org/10.1088/1742-6596/2388/1/012033.
Full textDissertations / Theses on the topic "Shadow or reality?"
Chrysanthou, Yiorgos. "Shadow computation for 3D interaction and animation." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244505.
Full textCatchpole, Jason James. "Adaptive Vision Based Scene Registration for Outdoor Augmented Reality." The University of Waikato, 2008. http://hdl.handle.net/10289/2581.
Full textCöster, Jonatan. "The effects of shadows on depth perception in augmented reality on a mobile device." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249663.
Full textMänniskor använder flera olika indikatorer för att uppfatta djup i datorgrafik, bland annat skärpedjup, den relativa storleken hos objekt i perspektiv och skuggor. Denna studie fokuserar på skuggor i förstärkt verklighet. Ett experiment genomfördes, vars syfte var att mäta effekterna av att låta virtuella objekt kasta skuggor på fysiska objekt. Användare fick utföra en uppgift som gick ut på att placera ett virtuellt objekt på ett fysiskt bord i förstärkt verklighet som visades på en mobil enhet. Det virtuella objektet var antingen en kub eller en sfär. För att mäta effekterna av att objekten kastade skuggor så mättes tiden det tog användare att slutföra uppgiften, samt positioneringsfelet. Med hjälp av frågeformulär gjordes även kvalitativa mätningar. Resultaten visade att både positioneringsfelet och tiden för att slutföra uppgiften minskade när objekten kastade skuggor. Resultaten visade också att användarna verkade mer säkra när de placerade objekten, när objekten kastade skuggor. De kvantitativa och kvalitativa resultaten från experimentet visade att användarna tyckte att det var lättare att avgöra positionen på det virtuella objektet i förhållande till det fysiska objektet när det virtuella objektet kastade skuggor.
Black, John. "Chasing shadows : a look at the treatment of light and shade in painters' quest for spatial realism in 13th and 14th century Italy." Thesis, University of Glasgow, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247734.
Full textDikman, David. "Ambient Occlusion i Realtid." Thesis, University of Skövde, School of Humanities and Informatics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1109.
Full textAmbient Occlusion är en teknik för ambient ljussättning i digitala tredimensionella scener. Sådana scener ljussätts vanligtvis med en konstant mängd ambient ljus på samtliga ytor oberoende av ytornas vinkel och position gentemot olika ljuskällor i scenen. Detta ger ett platt och kalt intryck och utan vidare ljussättningstekniker är det ytterst svårt att urskönja detaljer i scenen. Ambient Occlusion åthjälper detta genom att reducera mängden ambient ljus i vissa delar av scenen. Ambient ljus är en enkel approximation av det reflekterade diffusa ljuset som antas nå nästan överallt i scenen. Genom att sänka det ambienta ljuset på punkter i scenen med tät eller täckande geometri så ger Ambient Occlusion ett intryck av att det sekundära diffusa ljuset ej når dessa platser. Pappret undersöker en äldre variant av Ambient Occlusion där mängden ambient ljus beräknas statiskt för en scen och sparas i texturer. Vidare undersöks nyare metoder där mängden ambient ljus beräknas dynamiskt på den renderade scenen i Pixel Shaders. Det senare tillvägagångssättet kallas Image Based Ambient Occlusion eller Screen Space Ambient Occlusion. Detta nya tillvägagångssätt jämförs mot den traditionella angreppsvinkeln med förberäknade texturer. Teknikerna utvärderas och jämförs mot varandra i avseende på tids- och minneskomplexitet, enkelhet och visuellt resultat utöver specifika egenskaper för de enskilda teknikerna. Arbetets resultat beskrivs i slutet av rapporten. I resultatet presenteras hur shaderteknikerna pga sina brister inte är applicerbara i alla scener.
Löf, Melker Tobias. "Färgblindkorrigering i realtid." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-14084.
Full textSalát, Marek. "Prototypování fotografické kompozice pomocí rozšířené reality." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255388.
Full textCurry, Tommy J. "Cast Upon The Shadows: Essays Toward The Culturalogic Turn In Critical Race Theory." OpenSIUC, 2009. https://opensiuc.lib.siu.edu/dissertations/59.
Full textJiddi, Salma. "Photometric registration of indoor real scenes using an RGB-D camera with application to mixed reality." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S015/document.
Full textThe overarching goal of Mixed Reality (MR) is to provide the users with the illusion that virtual and real objects coexist indistinguishably in the same space. An effective illusion requires an accurate registration between both worlds. This registration must be geometrically and photometrically coherent. In this thesis, we propose novel photometric registration methods to estimate the illumination and reflectance of real scenes. Specifically, we propose new approaches which address three main challenges: (1) use of a single RGB-D camera. (2) estimation of both diffuse and specular reflectance properties. (3) estimation of the 3D position and color of multiple dynamic light sources. Within our first contribution, we consider indoor real scenes where both geometry and illumination are static. As the sensor browses the scene, specular reflections can be observed throughout a sequence of RGB-D images. These visual cues are very informative about the illumination and reflectance of scene surfaces. Hence, we model these cues to recover both diffuse and specular reflectance properties as well as the 3D position of multiple light sources. Our algorithm allows convincing MR results such as realistic virtual shadows and correct real specularity removal. Shadows are omnipresent and result from the occlusion of light by existing geometry. They therefore represent interesting cues to reconstruct the photometric properties of the scene. Presence of texture in this context is a critical scenario. In fact, separating texture from illumination effects is often handled via approaches which require user interaction or do not satisfy mixed reality processing time requirements. We address these limitations and propose a method which estimates the 3D position and intensity of light sources. The proposed approach handles dynamic light sources and runs at an interactive frame rate. The existence of a light source is more likely if it is supported by more than one cue. We therefore address the problem of estimating illumination and reflectance properties by jointly analysing specular reflections and cast shadows. The proposed approach takes advantage of information brought by both cues to handle a large variety of scenes. Our approach is capable of handling any textured surface and considers both static and dynamic light sources. Its effectiveness is demonstrated through a range of applications including real-time mixed reality and retexturing. Since the detection of cast shadows and specular reflections are at the heart of this thesis, we further propose a deep-learning framework to jointly detect both cues in indoor real scenes
Henriksson, Petter. "INVERKAN AV UPPLÖSNING OCH RENDERINGS PRECISION PÅ VOLYMETRISK ELD I REALTID i realtids Spel : En balans mellan prestanda och utseende." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-9456.
Full textBooks on the topic "Shadow or reality?"
Williams, Robert Ian. Bible-only Christianity: Shadow or reality? Bangor is y Coed, UK: Ecclesia Press, 1997.
Find full textSanford, John A. Evil : the shadow side of reality. New York: Crossroad, 1985.
Find full textWilliams, Tad. City of golden shadow. New York: DAW Books, 1996.
Find full textWilliams, Tad. Otherland: City of golden shadow. New York: DAW Books, 1998.
Find full textWilliams, Tad. Otherland: City of golden shadow. New York: DAW Books, 1998.
Find full textWillis, William James. The shadow world: Life between the news media and reality. New York: Praeger, 1991.
Find full textRees, Rod. The shadow wars. New York, NY: William Morrow, an imprint of HarperCollinsPublishers, 2013.
Find full textLeach, Karoline. In the shadow of the dreamchild: The myth and reality of Lewis Carroll. London: Peter Owen, 2009.
Find full textShalit, Erel. The hero and his shadow: Psychopolitical aspects of myth and reality in Israel. Lanham: University Press of America, 1999.
Find full textVasarely, Fondation, ed. Réalités hybrides =: Hybrid realities. [Paris]: Archibooks, 2005.
Find full textBook chapters on the topic "Shadow or reality?"
Levinas, Emmanuel. "Reality and Its Shadow." In Phaenomenologica, 1–13. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4364-3_1.
Full textGarfinkle, Adam. "The June War and the New Reality." In Israel and Jordan in the Shadow of War, 51–98. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21770-0_3.
Full textSyahputra, Mohammad Fadly, Muhammad Iqbal Rizki Siregar, and Romi Fadillah Rahmat. "Realistic Shadow Augmented Reality of Rare Animals from Indonesia." In Lecture Notes in Computer Science, 382–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95270-3_32.
Full textYang, Minghao, Guangzheng Fei, Minyong Shi, and Yongsong Zhan. "A Simple, Efficient Method for Real-Time Simulation of Smoke Shadow." In Advances in Artificial Reality and Tele-Existence, 633–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11941354_65.
Full textStanaya, I. Komang Try Adi, I. Wayan Mudra, and I. Gst Ngr Dwijaksara. "Evaluation of UI/UX Usability in Augmented Reality Application of Balinese Shadow Puppet Panca Pandawa." In Proceedings of the 4th Borobudur International Symposium on Humanities and Social Science 2022 (BIS-HSS 2022), 261–67. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-118-0_29.
Full textSato, Imari, Yoichi Sato, and Katsushi Ikeuchi. "Illumination Distribution from Shadows." In Modeling from Reality, 161–77. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0797-0_7.
Full textDove, Michael R. "“Bitter Shade”." In Bitter Shade, 92–109. Yale University Press, 2021. http://dx.doi.org/10.12987/yale/9780300251746.003.0005.
Full textLevinas, Emmanuel. "Reality and its Shadow." In The Continental Aesthetics Reader, 139–51. Routledge, 2017. http://dx.doi.org/10.4324/9781351226387-8.
Full textWeinstock, Jeffrey Andrew. "Shadow Play." In Nosferatu in the 21st Century, 25–40. Liverpool University Press, 2023. http://dx.doi.org/10.3828/liverpool/9781800856400.003.0003.
Full textSorensen, Roy. "Plato." In Nothing, 119–37. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199742837.003.0009.
Full textConference papers on the topic "Shadow or reality?"
Sakaguchi, Saki, Takuma Tanaka, and Mitsunori Matsushita. "Layered shadow." In VRIC 2013: Virtual Reality International Conference - Laval Virtual. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2466816.2466830.
Full textYasumoto, Masasuke, and Takehiro Teraoka. "Shadow Shooter." In VRIC '15: Virtual Reality International Conference - Laval Virtual 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2806173.2806193.
Full textNing, Ma, Peng Yue, and Zhang Leilei. "Shadow play." In 2020 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2020. http://dx.doi.org/10.1109/icvrv51359.2020.00105.
Full textObushi, Noriyasu, and Makoto Koshino. "Temari and Shadow." In VRIC '18: Virtual Reality International Conference - Laval Virtual VRIC '18. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3234253.3234321.
Full textManabe, Shinnosuke, Sei Ikeda, Asako Kimura, and Fumihisa Shibata. "Shadow Inducers: Inconspicuous Highlights for Casting Virtual Shadows on OST-HMOs." In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019. http://dx.doi.org/10.1109/vr.2019.8798049.
Full textHaller, Michael, Stephan Drab, and Werner Hartmann. "A real-time shadow approach for an augmented reality application using shadow volumes." In the ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/1008653.1008665.
Full textNoh, Zakiah, and Mohd Shahrizal Sunar. "A Review of Shadow Techniques in Augmented Reality." In 2009 Second International Conference on Machine Vision. IEEE, 2009. http://dx.doi.org/10.1109/icmv.2009.41.
Full textHe, Yihao. "Shadow Costar: Exploring Collaborative Performances in Virtual Reality." In HAI '23: International Conference on Human-Agent Interaction. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3623809.3623943.
Full textYan, Zifei, Ziyuan Jia, Yuehua Chen, and Haolun Ding. "The Interactive Narration of Chinese Shadow Play." In 2016 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2016. http://dx.doi.org/10.1109/icvrv.2016.63.
Full textXiong, Yuan, Hongrui Chen, Jingru Wang, Zhe Zhu, and Zhong Zhou. "DSNet: Deep Shadow Network for Illumination Estimation." In 2021 IEEE Virtual Reality and 3D User Interfaces (VR). IEEE, 2021. http://dx.doi.org/10.1109/vr50410.2021.00039.
Full textReports on the topic "Shadow or reality?"
Petrunoff, Nick, Amanda Dominello, Ally Hamer, Liz King, Nikki Woolley, and Sian Rudge. Strategies to increase shade in public playgrounds: A realist review. The Sax Institute, December 2022. http://dx.doi.org/10.57022/ssdy7898.
Full textBeavers, Calvin, Chad Day, Austin Krietemeyer, Scott Peterson, Yushin Ahn, and Xiaojun Li. Mapping of Pavement Conditions Using Smartphone/Tablet LiDAR Case Study: Sensor Performance Comparison. Mineta Transportation Institute, July 2024. http://dx.doi.org/10.31979/mti.2024.2224.
Full text