To see the other types of publications on this topic, follow the link: Sewage purification.

Dissertations / Theses on the topic 'Sewage purification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sewage purification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Palazolo, Paul Joseph. "Use of genetic algorithms in bounded search for design of biological nitrification/denitrification waste treatment systems." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/32777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cao, Keping. "Simultaneous Removal of Carbon and Nitrogen by Using a Single Bioreactor for Land Limited Application." Thesis, Water Resources Research Center, University of Hawaii at Manoa, 1998. http://hdl.handle.net/10125/22230.

Full text
Abstract:
An Entrapped-Mixed-Microbial-Cell (EMMC) process was investigated for its simultaneous removal of carbon and nitrogen in a single bioreactor with the influent COD/N ratio varying from 4 to 15 and influent alkalinity of 140 mg CaCO3/L and 230 mg CaCO3/L. The reactor was operated with alternate schedules of intermittent aeration. Two different sizes of carriers (10 * 10 * 10 mm3 and 20 * 20 * 20 mm3) were studied. The medium carrier (10 * 10 * 10 mm3) system presents higher nitrogen removal and COD removal compared to the large carrier system. The nitrogen removal efficiency is related to the ratio of COD/N in the influent. With the increase of the COD/N ration in the influent, the nitrogen removal efficiency is increased. The average reductions of nitrogen were over 92% and the average reductions of SCOD and BOD5 are over 95% and 97%, respectively, in the medium carrier system. This is operated at the HRT of 12 hours and 0.5 hour aeration and 2 hours of non-aeration, and the COD/N ratio of 15 in the influent. Changing alkalinity from 140 to 230 mg CaCO3/L has no effect in both large and medium carriers for the nitrogen removal efficiency. The pH, oxidation – reduction potential (ORP) and dissolved oxygen (DO) were used to monitor the biological nitrogen removal. It was found that the ORP (range from -100 to 300 mV) can be used to provide better effluent quality measured as total-nitrogen of less than 10 mg/L. Also, the impact of influent COD/N ratio on the effluent quality (measured as Inorg.-nitrogen) for the EMMC process is very important. Compared to other two compact biological wastewater treatment processes, membrane bioreactor (MBR) and moving bed biofilm reactor (MBBR), the EMMC process with the intermittent aeration has higher removal efficiencies of carbon and nitrogen, easier operation, lower O&M cost, lower energy requirement, and more compact. The total cost requirement is less than $3.27 per 1000 gallons (3.785 m 3) of treated settled domestic sewage per day. It is apparent that the EMMC process is technically feasible for the simultaneous removal of carbon and nitrogen under the operation on a schedule of intermittent aeration and suitable to be used for replacement or upgrading of existing treatment plant at land limited area.
APA, Harvard, Vancouver, ISO, and other styles
3

Mao, Yanping, and 毛艷萍. "Biological removal of phosphorus and nitrogen from wastewater : new insights from metagenomic and metatranscriptomic approaches." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zapf-Gilje, Reidar. "Treatment and disposal of secondary sewage effluent through snowmaking." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/26034.

Full text
Abstract:
When secondary sewage effluent is converted to snow, the nutrients and residual organics become concentrated in the early meltwater discharge through melt-freeze processes within the snow-pack. The early season melt comes off relatively slowly. Providing the soil can absorb the early melt, the bulk of the nutrients will be removed even if later season melt rates exceeds the soil's infil-trability. This could provide an inexpensive method for nutrient removal from secondary sewage effluents. Laboratory experiments showed that the degree of impurity concentration was largely independent of the number of diurnal melt-freeze cycles, snow depth, snow temperature and initial concentration of impurity in the snow. As a result, the removal of impurities from a snowpack can be expressed in terms of the cumulative melt discharge. A simple exponential decay process was found to describe the impurity removal well for most cases. The first 20% of the melt removed, on the average, 65% of the phosphorus and 86% of the nitrogen from snow made from sewage effluent; and 92% of the potassium chloride from snow made from potassium chloride solution. Stripping of ammonia during snow production and melting increased the overall nitrogen removal to about 90%. A field investigation of salt movement through a natural snowpack confirmed the laboratory results.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
5

Li, June Yonghong. "A study of ozonation kinetics of phenolic compounds in single and solute systems." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/20821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Jingming. "Characteristics of a novel anaerobic fluidized bed reactor for waste water treatment." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/25318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kulati, Thanduxolo Cullinan. "Evaluation of physiochemical qualities and heavy metal levels of the final effluents of some wastewater treatment facilities in the Eastern Cape Province of South Africa." Thesis, University of Fort Hare, 2016. http://hdl.handle.net/10353/1547.

Full text
Abstract:
Water is the most abundant substance in nature and vital for life activities. The major water sources for use are surface water bodies such as rivers and lakes, and underground aquifers and pore spaces down the water table (Ring, 2003). Water derived from these sources is not necessarily pure since it contains dissolved inorganic and organic substances, living organisms (viruses, bacteria, etc). For these reasons, water intended for domestic uses should be free from toxic substances and microorganisms that are of health significance (WHO, 2005). The availability and quality of water always have played an important role in determining the quality of life. Water quality is closely linked to water use and to the state of economic development (Chennakrishnan et al., 2008). Ground and surface waters can be contaminated by several sources. In urban areas, the careless disposal of industrial effluents and other wastes may contribute greatly to the poor quality of water (Mathuthu et al., 1997). In most developing countries, most areas are located on the watersheds which are the end points of effluents discharged from various industries (Oberholster and Ashton, 2008). South Africa, as a developing country, is experiencing rapid demographic changes due to urbanization, industrialization and population growth. The country has also been identified as being water-scarce, which can lead to a challenge of meeting the increasing water demand due to industrialization and urbanization. Such population growth increase may result in an increase in wastewater output, especially around urban areas.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Feiyun, and 孙飞云. "A membrane bioreactor (MBR) for a biological nutrient removal system: treatment performance, membrane foulingmechanism and its mitigation strategy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44903856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morrison, Kirk Murray. "An assessment of the potential for biological phosphorus removal in Canadian wastewater treatment plants." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28507.

Full text
Abstract:
This thesis assesses the potential for enhanced biological phosphorus (Bio-P) removal in Canadian wastewater treatment plants. Retrofit designs incorporating Bio-P removal were prepared for nine wastewater treatment plants across Canada, and were compared against chemical phosphorus removal technologies. Incremental capital and operating costs were calculated and internal rates of return (IRR's) for the capital investment required to install the Bio-P removal facilities were calculated. Based on these results, an assessment of the potential use for the technology in Canada is made. Of the nine plants studied, results indicate that Bio-P removal is economically superior to chemical phosphorus removal for the Calgary Bonnybrook, Edmonton Gold Bar, Saskatoon Mclvor Weir and Regina wastewater treatment plants. In general, Bio-P removal appears to offer significant economic advantages to plants located in Alberta and Saskatchewan because of the high cost of phosphorus removal chemicals in these provinces. The present low cost of phosphorus removal chemicals in Ontario and Quebec likely limits the viability of Bio-P removal to large (greater than 300,000 m³/d), suitably configured plants. In British Columbia, where Bio-P removal is presently used in the Okanagan Valley, the absence of widespread provincial phosphorus removal standards makes future Bio-P installations unlikely. The potential for Bio-P removal in Manitoba, the Maritimes and the Yukon and Northwest Territories is again limited by the absence of phosphorus removal standards in these parts of Canada. Results also indicate that the use of an anoxic/anaerobic/ aerobic process in the bioreactor, in conjunction with primary sludge fermentation through gravity thickening, is very applicable to Canadian plants and offers potential capital and operating cost savings relative to other Bio-P processes. The common practice of anaerobic sludge digestion, combined with sludge dewatering and land application, was found to be unfavourable from a Bio-P perspective unless the resulting supernatant/filtrate streams can be re-used or disposed of outside of the mainstream treatment process. Through the preparation of the retrofit designs, it was determined that certain aspects of Bio-P technology require additional research in order to optimize treatment plant design. These include kinetic modelling; short SRT Bio-P removal; the anorexic/anaerobic/aerobic process; the use of gravity thickening for primary sludge fermentation; and phosphorus release during anaerobic digestion.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, N. P. (Nelson Paul). "The affect of anaerobic volume reduction on the University of Cape Town (UCT) biological phosphorus removal process." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29631.

Full text
Abstract:
The objective of this research was to optimize the bio-P process as applied to a weak sewage with respect to HRT in each of the process zones. This goal was to be achieved by changing the HRT of the various zones with all other operating characteristics being held constant. The experimental work during this study involved two initially identical process trains operated in the University of Cape Town (UCT) mode. The aerobic zones of both trains were divided into four equal sized complete-mix cells to allow observations of phosphate uptake and poly-β-hydroxyalkanoate (PHA) consumption under aerobic conditions. After steady-state was established, the anaerobic HRT was reduced to 50% of the original value in the experimental module by reducing the anaerobic reactor volume. At the same time, the mixed liquor of both trains was drained, mixed and reapportioned to the two processes, thereby assuring equivalent starting conditions. Results of this study showed that both processes performed identically prior to the anaerobic HRT change. After the anaerobic HRT change, there was a forty day period where P removal and effluent P were the same in both process trains. This was so, even though the anaerobic P release was considerably less in the experimental module. Subsequently, a change in influent sewage type corresponded to a change in P removal and effluent P in the two process trains. An examination of the process parameters showed that the anoxic zone of the experimental module, after the anaerobic HRT change and the sewage change, consistently removed less P or released more P than in the control module. As a result, the control module out-performed the experimental module. Batch tests and tests to better characterize the influent sewage were then conducted in an attempt to determine the reasons for the different P removal characteristics. Under the test conditions, it appeared that the original anaerobic HRT was excessive. This was preferable to an insufficient anaerobic HRT, such as in the experimental module, however. The anoxic zone may have been too large, too small or just right for optimum P removal depending on the influent sewage characteristics. Optimizing the bio-P process by reducing the aerobic zone HRT appeared to have the greatest potential.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
11

Du, Plessis Sydney Charles. "Investigation of process parameters and development of a mathematical model for the purposes of control design and implementation for a wastewater treatment process." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1194.

Full text
Abstract:
Thesis (DTech (Electrical Engineering))--Cape Peninsula University of Technology, 2009
The problem for effective and optimal control of wastewater treabnent plants is very important recently because of the increased requirements to the qualitY of the effluent The activated sludge process is a type of wastewater process characterized with complex dynamics and because of this proper control design and implementation strategies are necessary and important for its operation. Since the early seventies, when a major leap forward was made by the widespread introduction of dissolved oxygen control, little progress has been made. The most critical phase in the solution of any control problem is the modelling stage. The primary building block of any modem control exercise is to construct and identify a model for the system to be controlled. The existing full Activated Sludge Model 1 (ASM1) and especially University of Cape Town (UCT) models of the biological processes in the activated sludge process, called in the thesis biological models, are highly complex because they are characterised with a lot of variables that are difficult to be measured on-line, complex dependencies and nonlinear interconnections between the biological variables, many kinetic parameters that are difficult to be determined, . different time scales for the process dynamics. The project considers reduction of the impact of the complexity of the process model over the methods for control design and proposes a solution to the above difficulties by development of a reduced model with small number of variables, but still with the same characteristics as the original full model for the purposes of real time.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhao, Kang, and 趙鈧. "An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196027.

Full text
Abstract:
Phosphorus (P) is an important pollutant of concern in wastewater that causes eutrophication and algal blooms in water body. On the other hand, P is a valuable natural resource for agricultural and industrial use. With the rapid depletion of mineral phosphorus on earth, there is a need to recover phosphorus from wastewater. In this study, a new chemical and biological process facilitated with iron dosing has been developed for P removal and recovery during wastewater treatment. The system consists of a main stream identical to the conventional activated sludge process in an aerobic sequencing batch reactor (SBR) for P removal and a side stream of sludge recirculation through an anaerobic SBR (AnSBR) for P release and recovery from the P-rich sludge. In the aerobic SBR treating a synthetic domestic wastewater, Fe(III) (FeCl3) was dosed to remove P by precipitation and adsorption. Fe(III) dosing at a Fe/P molar ratio of 1.5:1 could reduce the P concentration from more than 10 mg/L to below 1 mg/L in the final effluent. Compared to other dosing periods, dosing Fe(III) right before the SBR settling could achieve the best result in sludge flocculation and P removal. Meanwhile, organic removal was well maintained as 90% of the chemical oxygen demand (COD) was degraded in the aerobic SBR. In the AnSBR, phosphate precipitated with ferric iron in the sludge was released owing to microbial Fe(III) reduction, and a positive correlation was found between the phosphate and ferrous iron concentrations in the sludge suspension. Chemical tests showed that significant P release from Fe(III)-P occurred only if the acidic condition and the reducing condition were combined. For the AnSBR sludge, a higher organic loading, lower pH and higher biomass concentration resulted in a higher level of Fe(III) reduction and P release. Organic acidogenesis prevailed in the reactor and lowered the pH to ~4.5, which facilitated the P release from the solid phase into the liquid phase. With a solids retention time (SRT) of 10 days, the anaerobic supernatant contained a phosphate concentration of up to 70 mg/L, while the settled sludge was returned to the aerobic SBR. The phosphate could be readily recovered from the supernatant with Fe-induced precipitation by aeration and pH adjustment, and the overall P recovery could be achieved at about 70%. In addition to the treatment performance, the speciation of P in the aerobic sludge and the anaerobic sludge also was investigated. A significant change in the immediately available P and the redox-sensitive P was found in the sludge through the aerobic-anaerobic cycle. Such chemical transformation is believed to be crucial to the P removal and recovery during the wastewater treatment process.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
13

Hijazi, Amal. "Nitrogen and phosphorus transformations in fixed-film biofilters subjected to aeration/no-aeration cycles." Thesis, Queensland University of Technology, 1998. https://eprints.qut.edu.au/36070/6/36070_Digitised_Thesis.pdf.

Full text
Abstract:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.
APA, Harvard, Vancouver, ISO, and other styles
14

Chung, King Chuen. "Biological processes involved in two wetland plants and their associated bacteria for the treatment of municipal wastewaters." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Casher, Thomas Christopher. "Biological excess phosphorus removal under high rate operating conditions in a suspended growth treatment process." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29464.

Full text
Abstract:
The primary objective of this research was to determine if efficient biological phosphorus removal could be established under low sludge retention time of 2 days and a nominal hydraulic retention time of 4 to 6 hours. The two-stage Phoredox process was selected because of the practical application of retrofitting high rate treatment plants to achieve bio-P removal without the additional tankage required for an anoxic section and the additional expense of a recycle system. It has been shown that nitrate recycled into the anaerobic reactor impacts on bio-P removal and the two-stage Phoredox process provides no control over nitrates entering the anaerobic reactor. Therefore a secondary objective of this research was to determine if a low sludge retention time mode of operation could be used as an effective way to prevent nitrification in the activated sludge treatment process. Another objective was to observe mixed liquor settling characteristics of the two-stage Phoredox process operated under high rate conditions. A pilot scale two-stage Phoredox activated sludge treatment process operating under high rate conditions was used to meet these objectives. The desired bio-P removal biomass was not observed under SRT operating conditions of 2, 3 and 5 days. Partway into the research a sludge bulking condition developed which was identified as filamentous growth. On two occasions this severe filamentous growth resulted in the process failing and the system being restarted. On one occasion after the system was restarted using a seed sludge from a three-stage Phoredox pilot plant, a bio-P removal biomass was present. This condition only lasted for a short period and ended as filamentous growth began to become dominant. The process failed because of this phenomenon. The system was restarted using a seed sludge and again filamentous growth dominated. Chlorine addition was found to be the only method to control this phenomenon and was continued to the end of the research. The desired bio-P removal biomass was not observed even during the last period of the research when the SRT was increased to 8 days. During this research a stable bio-P removal biomass was not established. For a short period a bio-P removal biomass was present but failed to persist. Nitrification never became established at any time. Sludge settleability was poor due to filamentous growth which developed partway into the research and was present throughout the remainder of the study. Chlorine addition was the only method found that remedied this settling problem.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
16

黃金華 and Kam-wah Wong. "Deritrification in the activated sludge process with controlled anoxicconditions in the aeration tank." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31208423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Wen, and 陳雯. "A membrane bioreactor(MBR) for an innovative biological nitrogen removal process." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bocken, Stephan. "D.O. control and O.U.R. estimation in the activated sludge process." Master's thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/22156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ko, Chun-wa Johnason, and 高振華. "Sewage treatment in private sector." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31253404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Weinberg, Marla Kaye. "The effectiveness of an electrochemical treatment process and its applications in textile wastewater treatment." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/8697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shah, Anup G. "Fate and effect of the antioxidant ethoxyquin on a mixed methanogenic culture." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/19904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Whitehead, Alan Joseph. "Experimental culture of duckweed (Lemnaceae) for treatment of domestic sewage." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26665.

Full text
Abstract:
The culture of the floating aquatic plant, duckweed (Lemna minor), as an agent of domestic sewage treatment was studied in a clarification lagoon at Duncan, British Columbia, during the summer of 1986. Duckweed was grown in plastic fabric tanks (3700 L volume, 1.85 m deep, 2.25 m² water surface area) receiving 290 L of sewage per day or 12.8 d hydraulic retention time. Three treatments were tested: cropped duckweed, uncropped duckweed, and no duckweed. Water quality, plant growth and tissue composition were monitored on the basis of weekly sampling. Removals of VSS, COD, total-N and total-P were greater in the presence than in the absence of duckweed. Unmeasured imports of N and P masked the effect of plant uptake on reducing nutrient concentrations in the tank effluents. Sustainable duckweed yields were possible at both cropping rates, despite a severe infestation of aphids. Dry matter yields of 2.0 g/m².d and 6.4 g/m².d were obtained at the 15%/week and 50%/week cropping rates, respectively. Duckweed contained 6.1 - 6.4% N and 1.1 - 1.4% P (dry wt.). Plant harvest removed 0.14 g N/m².d and 0.03 g P/m².d at the 15%./week and 0.31 g N/m².d and 0.07 g P/m².d at the 50%/week cropping rates. Cropping increased the fraction of total-N and total-P loading that could be removed via plant uptake. Performance of the experimental treatments is analyzed in the light of concentration data, mass balances, and mass flux estimations. Possible sources of unmeasured N and P imports are discussed, and recommendations for future research are provided. The results suggest that duckweed may hold promise under certain conditions as a means of polishing sewage lagoon effluent.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
23

Cheung, Chi-shing, and 張志成. "Economic valuation of UV disinfection in Hong Kong sewage." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31255802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wamono, Anthony Walekhwa. "Micro-Pore Parametrics for Optimal Hyperfiltration of Conservative Contaminants." Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26568.

Full text
Abstract:
In compacted Na-montmorillonite membranes, the pore-size, and surface charge will influence filtration processes of solutes. A dead-end hyperfiltration setup was utilized to: (a) study the intrinsic retention, membrane filtration coefficient, and solution flux of different membrane configurations and (b) model nitrate break-through effluent concentrations through the membrane. Scanning electron microscopy and solute analytical techniques were employed to assess what critical components of micro-pore parametrics would prevail in a non-bio stimulated remediation of simulated agricultural wastewater. Although high content bentonite membrane configurations (5 g clay at 2500 psi) offered better solute rejections with a 30 percent increase in the cell concentration, the compaction of the membrane had the most deterministic influence on the solution flux. The results reveal hyperfiltration of nitrate ions is a function of the compaction pressure and composition of bentonite in the mixed soils. High content bentonite membranes compacted at the optimal pressures offer promising solutions to nitrate contaminant remediation.
APA, Harvard, Vancouver, ISO, and other styles
25

Anderson, Bruce Campbell. "Improvements in the aerobic digestion of waste activated sludge through chemical control of mixed liquor pH : pilot-scale investigations." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/30558.

Full text
Abstract:
Pilot-scale ambient and low temperature research into the enhancement of aerobic digestion of waste activated sludge, through control of mixed liquor pH (MLpH), was performed using an extended aeration and a high rate waste sludge. To offset MLpH decreases encountered during nitrification, Ca(OH)₂ and NaHCO₃ were used to control MLpH in the series pH 6, 7 and 8. The performance and behaviour of the digesters, under both controlled and uncontrolled MLpH conditions, were monitored through parameters related to volatile mass reduction, sludge mass metabolism, quality of digested end-product and soluble characteristics of the digester effluent. Volatile mass reduction was significantly affected by MLpH control, under certain conditions. Improvements in reduction performance of >100% over the uncontrolled condition were noted, depending on sludge origin; however, it was concluded that only certain temperature ranges should be targeted for the most effective use of MLpH control, since use of MLpH control in ranges wherein little improvement would be realized was felt to be uneconomical. Analysis of volatile mass reduction rates, based on a series of 1 day batch conditions (necessitated by the reactor flow scheme and the variability of the digestion process), demonstrated that reactor performance oscillated around a mean performance value; MLpH control acted to reduce these oscillations, such that the digesters performed closer to the mean value more of the time. Temperature sensitivity coefficients were quite variable, and a single value did not describe all situations. It was proposed that θ was influenced by digestion system, operating temperature, sludge type and MLpH level. The use of this coefficient for determining the operating ranges most suitable for MLpH control was advanced. The fate of the nutrients nitrogen and phosphorus were greatly influenced by MLpH control. The use of Ca(OH)₂ resulted in less release of phosphorus from the solid phase, with subsequently low effluent PO₄-P concentrations in the neutral MLpH range. The drawback of this reaction was found to be the production of inert inorganic sludge solids, thereby illustrating the need for a trade-off between the various benefits and drawbacks of the enhanced digestion process. Nitrification proceeded at all temperatures, and in conditions previously thought to be inhibitory to the chemolithotrophic organisms. Digester effluent quality was improved through MLpH control, but substantial concentrations of NOx-N were observed under some conditions. Based on direct comparisons with previous lab-scale research, it was concluded that the enhancement process had very good potential for implementation at the full-scale level, either for the improvement of existing underdesigned processes, or for the initial design of more efficient aerobic digestion facilities.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
26

Rossouw, Pieter Arnold. "Alternatiewe lae koste rioolstelsels." Thesis, Cape Technikon, 1992. http://hdl.handle.net/20.500.11838/2625.

Full text
Abstract:
Thesis (M.Dip. Tech (Civil Engineering))--Cape Technikon, 1992.
Statistieke toon dat die bevolking in suid-Afrika binne die volgende 25 jaar gaan verdubbel, terwyl die stedelike bevolking gedurende dieselfde tyd gaan vervierdubbel. Daar word verwag dat die grootste bevolkingstoename in die lae inkomstegroep, waarvan die grootste deelongeskoold is, gaan plaasvind. Verskeie stede en dorpe in ons land kan uit ondervinding oor die afgelope 4 of 5 jaar getuig van die onaanvaarbare gesondheidsrisiko wat deur onbeheerde en onbeplande plakkery meegebring word. Aangesien konvensionele gravitasieriolering baie duur is om te installeer en die metodes wat vir die verwerking en suiwering van die afvalwater gebruik word soms 'n hoogs tegnologiese en dus duur grondslag het, is dit noodsaaklik om alternatiewe vorms van rioolverwydering en rioolsuiwering te ondersoek. Die klem moet val op 'n bekostigbare en geskikte alternatiewe vorm van sanitasie. uit hierdie ondersoek het dit geblyk dat rioolverwyderingstelsels hoofsaaklik in drie groepe verdeel kan word. Eerstens is daar die stelsels waar die riool op die terrein verwerk word, tweedens kan riool vanaf die terrein op 'n ander neutrale terrein verwerk word of, in die derde geval kan 'n kombinasie van die twee stelsels gebruik word. Die term 'verwerking op terrein' verwys na die verwerking of gedeeltelike verwerking van riool op terrein. Stelsels wat onder hierdie kategorie ressorteer, is gewoonlik die goedkoopste, maar hou in sommige gevalle 'n gesondheids- en besoedelingsgevaar in. Die volgende stelsels word onder hierdie kategorie geklassifiseer: Putlatrines, Giet-Spoel stelsels, Reid se reuklose klosette, Septiese tenks en Aqua- Privies
APA, Harvard, Vancouver, ISO, and other styles
27

楊龍元 and Lung-yuen Christopher Yeong. "Removal of wastewater cod and nitrogen using fibrous packing media." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31210636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xie, Zhaoming, and 謝昭明. "Electrochemical wastewater treatment for denitrification and toxic organic degradation using Ti-based SnO2 and RuO2 electrodes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37824120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhou, Yanmin, and 周延敏. "Impacts of temperature and salinity on nitrification rate and microbial community in laboratory scale sequencing batch reactors(SBRs)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47050718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Visser, Gunnar Lieb. "Permeable reaction barrier system for the treatment of textile wastewater using cobalt oxide." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2631.

Full text
Abstract:
Thesis (MEng (Chemical Engineering))--Cape Peninsula University of Technology, 2018.
Advanced oxidation processes (AOPs) have gained considerable interest in the wastewater treatment industry. Low selectivity to organic pollutants and the high oxidation potentials provided by the free radicals produced from these processes are the root of this interest. Hydroxyl radical based AOPs seemed to dominate the field but recently sulphate radical based AOPs started to become more popular due to their even higher oxidation potential. The textile industry is known to be a considerable contributor to wastewater production. Many pollutants in this wastewater are organic pollutants which are very persistent to the more traditional treatment processes such as biological treatment and membrane filtration. Numerous studies have shown the potential and success of catalytic AOPs for the degradation of organic pollutants in wastewater. One such process is the use of a cobalt oxide nano-catalyst in conjunction with a peroxymonosulfate (PMS) oxidizer (Co3O4/PMS). The shortcoming with nano-catalysts however are the difficulty of recovering the catalyst in a slurry system or the effective immobilization of the catalyst in a continuous system. To address the issue of nano-catalyst immobilization, two different methods were used in the study to effectively immobilize the catalyst in a substrate. The methods were compared by utilizing the permeable reaction barriers in a continuous flow reactor. A bench scale reactor of 2.4 L/hr was designed and used to study the effect of PMS, catalyst mass and flow rate on the degradation efficiency and to determine the residence time and catalyst per PRB cross-sectional area ratio. A scale up rationale was formulated based on a constant residence time and the catalyst mass per PRB cross-sectional area ratio. Two design correlations were developed to predict the size of the permeable barrier and the catalyst mass required for the scale up PRB system. These parameters were used to design a reactor 30 times that of the bench scale reactor. In both reactors the optimum degradation occurred within 2 minutes indicating the success for catalyst immobilization and the development of a continuous reactor utilizing the Co3O4/PMS advanced oxidation technology.
APA, Harvard, Vancouver, ISO, and other styles
31

Russo, Stephen Leonard. "Anaerobic treatment of a paper plant effluent." Master's thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/21988.

Full text
Abstract:
The objective of this study was to investigate the anaerobic biological treatment of an organic-bearing wastewater from a particular paper manufacturing process at laboratory scale. The process produces paper by re-pulping waste paper. Effluent from the process has a Chemical Oxygen Demand (COD) concentration of approximately 4500 mg/l with a sulphate content of approximately 300 mg SO₄²⁻/l. The upflow anaerobic sludge bed (UASB) reactor was selected for the study. Important information derived from the laboratory treatability study was: (l) the extent of COD removal possible; (2) the effluent quality; (3) the maximum COD leading rate (kgCOD/m³ reactor/day) which can be achieved while maintaining reasonable COD removal, and the influence on loading rate of temperature: (4) the nature of the sludge produced in the reactor with particular reference to the extent of pelletisation: and (5) the effect of reactor effluent recycling on alkalinity requirements.
APA, Harvard, Vancouver, ISO, and other styles
32

Clayton, John Andrew. "Denitrification kinetics in biological nitrogen and phosphorus removal activated sludge systems." Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/21139.

Full text
Abstract:
In order to size the anoxic reactors in nutrient (N and P) removal activated sludge plants, it is essential to know the denitrification kinetics that are operative in such systems. To date, denitrification kinetics have been accurately defined only for systems that remove N alone; little research has been performed on denitrification in N and P removal plants.
APA, Harvard, Vancouver, ISO, and other styles
33

Enongene, Godlove Nkwelle. "The enzymology of enhanced hydrolysis within the biosulphidogenic recycling sludge bed reactor (RSBR)." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1015744.

Full text
Abstract:
The hydrolysis of complex organic heteropolymers contained in municipal wastewater to simpler monomers by extracellular hydrolytic enzymes is generally considered the rate-limiting step of the biodegradation process. Previous studies of the Recycling Sludge Bed Reactor (RSBR) revealed that the hydrolysis of complex particulate organics, such as those contained in primary sludge (PS), was enhanced under anaerobic biosulphidogenic conditions. Although the mechanism was not fully understood, it appeared to involve the interaction of sulfide and sludge flocs. The current study was conducted using a 3500 ml laboratory-scale RSBR fed sieved PS at a loading rate of 0.5 kg COD/m³.day and an initial chemical oxygen demand (COD) to sulfate ratio (COD:SO₄) of 1:1. There was no significant accumulation of undigested sludge in the reactor over the 60-day experimental period and the quantity of SO₄ reduced indicated that the yield of soluble products from PS was at least as high as those reported previously for this system (> 50%). In the current study, the specific activities of a range of extracellular hydrolytic enzymes (L-alanine aminopeptidase, L-leucine aminopeptidase, arylsulphatase, α-glucosidase, β- glucosidase, protease and lipase) were monitored in a sulfide gradient within a biosulphidogenic RSBR. Data obtained indicated that the specific enzymatic activities increased with the depth of the RSBR and also correlated with a number of the physicochemical parameters including sulfide, alkalinity and sulfate. The activities of α- glucosidase and β-glucosidase were higher than that of the other enzymes studied. Lipase activity was relatively low and studies conducted on the enzyme-enzyme interaction using specific enzyme inhibitors indicated that lipases were probably being digested by the proteases. Further studies to determine the impact of sulfide on the enzymes, showed an increase in the enzyme activity with increasing sulfide concentration. Possible direct affects were investigated by looking for changes in the Michaelis constant (Km) and the maximal velocity (Vmax) of the crude enzymes with varying sulfide concentrations (250, 400 and 500 mg/l) using natural and synthetic substrates. The results showed no significant difference in both the Km and the Vmax for any of the hydrolytic enzymes except for the protease. The latter showed a statistically significant increase in the Km with increasing sulfide concentration. Although this indicated a direct interaction, this difference was not large enough to be of biochemical significance and was consequently not solely responsible for the enhanced hydrolysis observed in the RSBR. Investigation into the floc characteristics indicated that the biosulphidogenic RSBR flocs were generally small in size and became more dendritic with the depth of the RSBR. Based on the above data, the previously proposed descriptive models of enhanced hydrolysis of particulate organic matter in a biosulphidogenic RSBR has been revised. It is thought that the effect of sulfide on the hydrolysis step is primarily indirect and that the reduction in floc size and alteration of the floc shape to a more dendritic form is central to the success of the process.
APA, Harvard, Vancouver, ISO, and other styles
34

Mitta, Pramod R. "Utilization of fixed film media in BNR activated sludge systems." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-03302010-020644/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

凌偉忠 and Wai-chung Jackson Ling. "Biological nutrient removal in sequencing batch reactors using fibrouspacking medium." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31213388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Guo, Lei. "Optimization of BNR from wastewater using SBR and A²O processes." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yan, Qingmei, and 嚴慶梅. "Biological nitrogen removal of saline wastewater by ammoniumoxidizers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42182116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brannan, Kenneth P. "Substrate stabilization in the anaerobic stage of a biological phosphorus removal system." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/49992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Karl, Joanna Robin. "Gravity Sedimentation: A One-Dimensional Numerical Model." PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4594.

Full text
Abstract:
A large fraction of the current cost of wastewater treatment is from the treatment and disposal of wastewater sludge. Improved design, energy efficiency, and performance of dewatering facilities could significantly decrease transport and disposal costs. Dewatering facilities are designed based on field experience, trial and error, pilot plant testing, and/or full scale testing. Design is generally time-consuming and expensive. A full-scale test typically consists_ of side-by-side operation of 4 to 5 full-scale dewatering units for several weeks to more than 6 months. Theoretical modeling of the physics of dewatering units such as the belt filter press, based on laboratory determined sludge properties, would better predict dewatering performance. This research developed a numerical computer model of the physics of gravity sedimentation. The model simulated the gravity sedimentation portion of the belt filter press. The model was developed from a physically-based numerical computer model of cake filtration by Wells (1990). As opposed to the cake filtration model, the inertial and gravity terms were retained in the gravity sedimentation model. Although in the cake filtration model, the inertial terms were shown to be negligible, according to Dixon, Souter, and Buchanan (1985), inertial effects in gravity sedimentation cannot generally be ignored. The region where inertia is important is the narrow interface between suspension and sediment. In the cake filtration model the gravity term was negligible due to the relatively large magnitude of the applied pressure; but in the gravity sedimentation model, since there was no applied pressure, it was necessary to consider the effect of gravity. _ Two final governing equations were developed - solid continuity and total momentum with continuity ("momentum"). ·The finite difference equations used a "space-staggered" mesh. The solid continuity equation was solved using an explicit formulation, with a forward difference in time and central difference in space. The "momentum" equation used a fully implicit formulation with a forward difference in time. The modeler could choose either a central difference or forward difference in space. Non-linear terms were linearized. Boundary Conditions and constitutive relationships were determined. Numerical errors in the numerical model were analyzed. The model was calibrated to known data and verified with additional data. The model was extremely sensitive to the constitutive relationships used, but relatively unaffected by the At or the use of central difference or forward difference for the spatial derivative term in the "momentum" equation. Correlations of the calibrated model to data with a low initial concentration show that the constitutive parameters approximate the data, but not very well. Model runs with low initial concentration required the addition of artificial viscosity to remain stable. The gravity term was always significant, whereas the inertial terms were many orders of magnitude less than gravity. However, the lower the initial concentration, the larger the inertial terms. In addition to the belt filter press, the model can also be applied to cake filtration and design of gravity sedimentation tanks as well.
APA, Harvard, Vancouver, ISO, and other styles
40

Molwantwa, Jennifer Balatedi. "The hydrolysis of primary sewage sludge under biosulphidogenic conditions." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1004020.

Full text
Abstract:
The potential for using readily available and cost-effective complex carbon sources such as primary sewage sludge for a range of environmental remediation processes, including biological sulphate reduction, biological nutrient removal and the bioremediation of acid mine drainage, has been constrained by the slow rate of solubilization and low yield of soluble products, which drive the above mentioned processes. Previous work conducted by the Environmental Biotechnology Group at Rhodes University indicated that the degradation of primary sewage sludge was enhanced under sulphate reducing conditions. This was proven in both laboratory and pilot-scale (Reciprocating Sludge Bed Reactor) systems, where the particulate matter accumulated in the sludge bed and the molecules in smaller flocs were rapidly solubilized. The current study was aimed at investigating in more detail the factors that govern the enhanced hydrolysis under sulphate reducing conditions, and to develop a descriptive model to explain the underlying mechanism involved. The solubilization of primary sewage sludge under sulphate reducing conditions was conducted in controlled flask studies and previously reported findings of enhanced hydrolysis were confirmed. The maximum percentage solubilization obtained in this study was 31% and 63% for the methanogenic and sulphidogenic systems respectively, and this was achieved over a period of 10 days. A rate of reducing sugar production and complex molecule breakdown of 51 mg. L⁻¹.hr⁻¹ and 167 mg.L⁻¹.hr⁻¹ was observed for the methanogenic and sulphidogenic systems respectively. The flask studies revealed that during hydrolysis of primary sewage sludge under sulphidogenic conditions there was enhanced production of soluble products, specifically carbohydrates (reducing sugars) and volatile fatty acids, compared to methanogenic conditions. The rate at which these products were utilized was also found to be more rapid under sulphidogenic as compared to methanogenic conditions. A study of the distribution of volatile fatty acids indicated that acetate was utilized preferentially in the methanogenic system, and that propionate, butyrate and valerate accumulated with time. The converse was found to occur in the sulphidogenic system. The descriptive model developed from the results of this study was based on the fact that a consortium of bacteria, composed of hydrolytic, acidogenic and acetogenic species, carries out the solubilization of complex carbon sources. Furthermore, it is essential that equilibrium between product formation and utilization is maintained, and that accumulation of soluble end products impacts negatively on the rate of the hydrolysis step. It is therefore proposed that the relatively poor utilization of VFA and reducing sugars in the methanogenic system activates a negative feedback inhibition on the hydrolytic and/ or acidogenic step. This inhibition is reduced in the sulphidogenic system where the utilization of end products is higher.
APA, Harvard, Vancouver, ISO, and other styles
41

Jimoh, Taobat Adekilekun. "Water quality, biomass and extracellular polymeric substances in an integrated algae pond system." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/57307.

Full text
Abstract:
Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
APA, Harvard, Vancouver, ISO, and other styles
42

Westensee, Dirk Karl. "Post-treatment technologies for integrated algal pond systems." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1018180.

Full text
Abstract:
Integrated Algae Pond Systems (IAPS) are a derivation of the Oswald designed Algal Integrated Wastewater Pond Systems (AIWPS®) and combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. IAPS technology was introduced to South Africa in 1996 and a pilot plant designed and commissioned at the Belmont Valley WWTW in Grahamstown. The system has been in continual use since implementation and affords a secondarily treated water for reclamation according to its design specifications which most closely resemble those of the AIWPS® Advanced Secondary Process developed by Oswald. As a consequence, and as might be expected, while the technology performed well and delivered a final effluent superior to most pond systems deployed in South Africa it was unable to meet The Department of Water Affairs General Standard for nutrient removal and effluent discharge. The work described in this thesis involved the design, construction, and evaluation of several tertiary treatment units (TTU') for incorporation into the IAPS process design. Included were; Maturation Ponds (MP), Slow Sand Filter (SSF) and Rock Filters (RF). Three MP's were constructed in series with a 12 day retention time and operated in parallel with a two-layered SSF and a three-stage RF. Water quality of the effluent emerging from each of these TTU's was monitored over a 10 month period. Significant decreases in the chemical oxygen demand (COD), ammonium-N, phosphate-P, nitrate-N, faecal coliforms (FC) and total coliforms (TC) were achieved by these TTU's. On average, throughout the testing period, water quality was within the statutory limit for discharge to a water course that is not a listed water course, with the exception of the total suspended solids (TSS). The RF was determined as the most suitable TTU for commercial use due to production of a better quality water, smaller footprint, lower construction costs and less maintenance required. From the results of this investigation it is concluded that commercial deployment of IAPS for the treatment of municipal sewage requires the inclusion of a suitable TTU. Furthermore, and based on the findings presented, RF appears most appropriate to ensure that quality of the final effluent meets the standard for discharge.
APA, Harvard, Vancouver, ISO, and other styles
43

Wan, Ka-hung, and 溫家雄. "Computer simulation of a local municipal wastewater treatment plant." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B43893685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lu, Qi Hong. "Wastewater treatment and reuse using A²O procesA2O process coupled with microfiltration." Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2586267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Stephenson, Robert John. "A comparison of retained biomass anaerobic digester designs." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26740.

Full text
Abstract:
The principles behind anaerobic digestion are fairly well understood, but the limits of application of each digester design are not known. Because there are significant differences in the properties of the many wastewaters requiring treatment optimal anaerobic digester performance requires the matching of feed characteristics to a digester design and mode of operation. No consensus has yet emerged on digester design, operating conditions or feed/digester match-ups. In this study, three bench scale retained biomass anaerobic digester designs were examined for their response to a sequence of varied hydraulic retention times (HRTs) and influent wastewater concentrations. The digester designs studied were the upflow anaerobic filter, the upflow anaerobic expanded bed and the upflow anaerobic sludge bed. The wastewater was screened and diluted dairy cow manure obtained from the UBC dairy barn. The parameters monitored included the total and soluble chemical oxygen demand (TCOD and SCOD), volatile and suspended solids (VS and SS), total volatile fatty acids (VFAs), total Kjeldahl and ammonia nitrogen (TKN and NH₃-N), pH, biogas production, and the methane (CH₄) and carbon dioxide (C0₂) content of the biogas. Wastewater treatment efficiencies, measured in terms of TCOD, SCOD, VS, and TVFA removals, and methane productivity and methane yield for each of the digester designs were examined for the range of the operating conditions. The anaerobic filter digester effected a mean TCOD removal efficiency of 47% ± 14% at a mean 4.0 day HRT, 51% ± 9% at a mean 2.3 day HRT and 35% ± 11% at a mean 1.3 day HRT. The expanded bed digester effected a mean TCOD removal of 45% ± 15% at a mean 4.3 day HRT, 38% ± 12% at a mean 2.5 day HRT and 28% ± 9% at a mean 1.3 day HRT. The sludge bed digester effected a mean TCOD removal of 53% ± 9% at a mean 3.8 day HRT, 45% ± 12% at a mean 2.2 day HRT and 32% ± 10% at a mean 1.2 day HRT. For all three digesters, the difference in the treatment efficiency over the range of HRTs tested, from 5 to 1.25 days was not in proportion to the change in HRT. Methane productivity, measured against either the removal or addition of substrate in terms of TCOD, SCOD, VS and TVFA, demonstrated considerable variability. Methane production increased with both substrate addition and substrate removal. Methane yield increased with increasing HRT. The sludge bed digester generally exhibited the greatest but most variable methane yields. It produced 0.095 L CH₄/g VS added at a mean 3.8 day HRT and 0.037 L CH₄/g VS added at a mean 1.2 day HRT. The anaerobic filter delivered the greatest methane yield at the intermediate HRT, 0.044 L CH₄/g VS added at a mean 2.3 day HRT. The expanded bed demonstrated low methane yields over the range of feed strengths and HRTs tested. Biogas composition averaged 62.1% methane and 17.1% carbon dioxide for the anaerobic filter, 43.6% methane and 5.3% carbon dioxide for the expanded bed. and 61.1% methane and 18.9% carbon dioxide for the sludge bed.
Applied Science, Faculty of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
46

Boshoff, Aileen. "The biotransformation of phenolic pollutants using polyphenol oxidase." Thesis, Rhodes University, 2002. http://hdl.handle.net/10962/d1004035.

Full text
Abstract:
The potential of using mushroom polyphenol oxidase (EC 1.14.18.1) as a biocatalyst for the biotransformation of phenols to produce catechols in an aqueous medium was investigated. Polyphenol oxidase is characterised by two distinct reactions i.e., the ortho-hydroxylation of phenols to catechols (cresolase activity) and the subsequent oxidation of catechols to orthoquinones (catecholase activity). In order to facilitate the development of a process to produce catechols, the accumulation of catechol as a true intermediate product released in the reaction system needed to be investigated, as its release had been disputed due to the oxidation of catechols to o-quinones. Using LC-MS, catechol products were successfully identified as true intermediate products formed during biocatalytic reactions in water.
APA, Harvard, Vancouver, ISO, and other styles
47

陳安潛 and On-chim Chan. "Toxicity of phenol to anaerobic biogranules in shock and in continuousloading conditions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31212827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yang, Ying, and 楊穎. "Characterization of broad-spectrum antibiotic resistance genes in wastewater treatment reactors through metagenomic approaches." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wong, Chiew Hiet. "Intergrated design of biological nutrient removal systems / by Chiew Hiet Wong." Thesis, The University of Sydney, 2001. https://hdl.handle.net/2123/27929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fradler, Katrin. "Improving bio-electricity production and waste stabilization in Microbial Fuel Cells." Thesis, University of South Wales, 2015. https://pure.southwales.ac.uk/en/studentthesis/improving-bioelectricity-production-and-waste-stabilization-in-microbial-fuel-cells(91c2db18-126b-4610-9bdb-42d7e42ae5e9).html.

Full text
Abstract:
Biological wastewater treatment is typically aerobic and an energy intensive process, mainly due to the required aeration. Alternative sustainable processes are sought, such as Microbial fuel cells (MFC) where electrogenic bacteria can degrade organic matter present in the waste stream while simultaneously generating electricity. MFCs represent an emerging technology which may deliver the capability to reduce the pollution potential of low strength wastewaters (< 1500 mg COD l-1) while generating electricity which could be used to self-power the process. Waste streams high in volatile fatty acids (VFAs) with high conductivity are particularly preferred substrate streams. These may include the effluent from two stage bio-hydrogen and bio-methane systems, which in this study were treated in a four-module tubular MFC (V=1 l) to reduce the chemical oxygen demand (COD) and recover further energy from the substrate. It was shown that the power increased with increasing organic loading rate (0.036-0.572 g sCOD l-1 d-1), but COD removal efficiency decreased. The Coulombic Efficiency (CE) was found to decrease significantly at OLR ˃ 0.6 g sCOD l-1 d-1 and the energy recovery was 92.95 J l-1 (OLR=0.572 g sCOD l-1 d-1). Also, wash-down waters from a chilled food producing company were treated in the same tubular MFC, reducing the soluble COD content by 84.8%. The low power (≈ 30 W m-3) and cell potential (≈ 0.5 V) makes it necessary to investigate methods such as external capacitors, DC/DC converters or serial and parallel connection to improve the power quality. In this thesis, the use of the intrinsic capacitance was tested by switched mode, open and closed circuit (OC/CC) operation of a 2-module tubular MFC with high surface area carbon veil anode. The charge accumulated during OC and released when switched to CC was dependent on the external resistor (R = 100-3 kΩ) and duty cycle. Short period OC/CC switching further increased potential due to the pseudo-capacitance of the reactor, but only at the expense of energy efficiency, compared to continuous operation (CC) under constant load. Another approach to enhance the practical implementation of MFCs is integration with other processes such as reverse electrodialysis to increase MFC’s cell potential or e.g. desalination. In this study a MFC was integrated with supported liquid membrane technology (SLM) for the first time, for the removal of metal ions of wastewater. A three chamber reactor, with a common cathode/feed phase containing 400 mg Zn2+ l-1, enabled V the simultaneous treatment of organic- and heavy metal containing wastewaters. The MFC/SLM combination produces a synergistic effect which enhances the power performance of the MFC significantly; 0.233 mW compared to 0.094 mW in the control. It is shown that the 165±7 mV difference between the MFC/SLM system and the MFC control is partially attributable to the lower cathode pH in the integrated system experiment, the consequent lower activation overpotential and higher oxygen reduction potential. The system demonstrates that within 72 h, 93±4% of the zinc ions are removed from the feed phase. A further study, with continuously operated cathode/feed chamber (100 mg Zn2+ l-1), showed that an enhanced effect on increasing cell potential was possible and could also be maintained in continuous operation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography