Academic literature on the topic 'Service life (Engineering)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Service life (Engineering).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Service life (Engineering)"
DODERO, JUAN MANUEL, ERNIE GHIGLIONE, and JORGE TORRES. "ENGINEERING THE LIFE-CYCLE OF SEMANTIC SERVICES-ENHANCED LEARNING SYSTEMS." International Journal of Software Engineering and Knowledge Engineering 20, no. 04 (June 2010): 499–519. http://dx.doi.org/10.1142/s0218194010004852.
Full textCamera, Fernanda, John Ahmet Erkoyuncu, and Steve Wilding. "Service Data Quality Management Framework to Enable Through-life Engineering Services." Procedia Manufacturing 49 (2020): 206–10. http://dx.doi.org/10.1016/j.promfg.2020.07.020.
Full text(Gray)Byrd, L. G. "Service Life and Life of Service: The Maintenance Commitments." Transportation Research Record: Journal of the Transportation Research Board 1650, no. 1 (January 1998): 5–9. http://dx.doi.org/10.3141/1650-01.
Full textHarrison, H. W. "Estimating Service Life." Batiment International, Building Research and Practice 13, no. 1 (January 1985): 37–41. http://dx.doi.org/10.1080/09613218508551240.
Full textMasters, Larry W. "Service life prediction." Batiment International, Building Research and Practice 15, no. 1-6 (January 1987): 292–96. http://dx.doi.org/10.1080/09613218708726837.
Full textLinins, Oskars, Ernests Jansons, Armands Leitans, Irina Boiko, and Janis Lungevics. "Estimation of Service Life of Mechanical Engineering Components." Key Engineering Materials 799 (April 2019): 71–76. http://dx.doi.org/10.4028/www.scientific.net/kem.799.71.
Full textMasood, Tariq, Johannes Egger, and Maximilian Kern. "Future-proofing the Through-life Engineering Service Systems." Procedia Manufacturing 16 (2018): 179–86. http://dx.doi.org/10.1016/j.promfg.2018.10.162.
Full textHe, Y., C. Li, T. Zhang, J. Liu, C. Gao, B. Hou, and L. Wu. "Service fatigue life and service calendar life limits of aircraft structure: aircraft structural life envelope." Aeronautical Journal 120, no. 1233 (September 19, 2016): 1746–62. http://dx.doi.org/10.1017/aer.2016.93.
Full textZhang, Yufeng, and Lihong Zhang. "Organizing complex engineering operations throughout the lifecycle." Journal of Service Management 25, no. 5 (October 14, 2014): 580–602. http://dx.doi.org/10.1108/josm-07-2013-0182.
Full textAljawarneh, Shadi. "Cloud Security Engineering." International Journal of Cloud Applications and Computing 1, no. 2 (April 2011): 64–70. http://dx.doi.org/10.4018/ijcac.2011040105.
Full textDissertations / Theses on the topic "Service life (Engineering)"
Balla, Chaitanya Kumar. "Prediction of Remaining Service Life of Pavements." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1279316853.
Full textGarcia-Ruiz, Johnnatan A. "Service Life Assessment of Culverts in Ohio." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1470833987.
Full textMahmoodian, Mojtaba. "Reliability analysis and service life prediction of pipelines." Thesis, University of Greenwich, 2013. http://gala.gre.ac.uk/11374/.
Full textCuster, Nicholas C. "Ash impacts on gasoline particulate filter performance and service life." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100142.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-74).
New regulations in the United States and Europe, designed to address climate change concerns by reducing greenhouse gas emissions, are causing increased use of gasoline direct-injection (GDI) engines in light-duty vehicles (LDV). Separate new regulations that aim to reduce particulate emissions to address air pollution concerns are taking effect concurrent with greenhouse gas limitations in both jurisdictions. GDI engines are proven to create more particulate emissions than previously utilized port-injection technology. Increasing particulate emissions rates combined with falling regulatory particulate emissions limits requires new strategies to reduce these emissions from gasoline powered LDVs. Particulate filters have been successfully implemented to reduce particulate emissions from diesel engine exhaust for over a decade. Diesel particulate filters have a demonstrated filtration efficiency of 95% or greater and have reduced diesel particulate mass (PM) emissions by one to two orders of magnitude. GDI engines require no more than one order of magnitude reduction in particulate emissions to meet new regulations. Existing particulate filter technology in use in diesel vehicles is capable of reducing GDI engine emissions to new regulatory levels; however, it is proposed that these reduction may be achievable through means other than gasoline particulate filters (GPF). A GPF will create an additional back-pressure in the engine exhaust system that will reduce engine power and efficiency. This backpressure will increase as PM is trapped in the filter and decrease as combustible PM removed. A buildup of incombustible ash present in engine-out PM will increase the baseline backpressure of the filter during the course of its service life. It is important to understand the impact of ash on the filter pressure drop performance before implementing GPF to meet new emissions regulations. This study builds on existing diesel particulate filter technology and demonstrates through experimental results the mechanisms by which ash increases GPF pressure drop. Ash deposits are also shown to increase the light-off temperature of three-way catalyst coatings in GPF.
by Nicholas C. Custer.
S.M. in Mechanical Engineering, and S.M in Naval Architecture and Marine Engineering
Sohawon, Haris. "Service life extension of reinforced concrete structures using hydrophobic impregnation." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29806.
Full textMaleki, Elaheh. "A Systems Engineering-based semantic model to support “Product-Service System” life cycle." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0064/document.
Full textProduct-service systems (PSS) result from the integration of heterogeneous components covering both tangible and intangible aspects(mechanical, electrical, software, process, organization, etc.). The process of developing PSS is highly collaborative involving a wide variety of stakeholders. This interdisciplinary nature requires standardized semantic repositories to handle the multitude of business views and facilitate the integration of all heterogeneous components into a single system. This is even more complex in the case of customizable PSS in the industrial sector. Despite the many methodologies in literature, the management of the development processes of the PSS is still limited to face this complexity. In this context, Systems Engineering (SE) could bean advantageous solution in terms of its proven qualities for the modeling and management of complex systems. This thesis aims at exploring the potentials of Systems Engineering (SE) as a conceptual foundation to represent various different business perspectives associated with the life cycle of the PSS. In this context, a meta-model for PSS is proposed and verified in industrial cases. An ontological model is also presented as an application of a part of the model to structure the common repository of the ICP4Life platform
Rahman, A. B. M. Mostafizur. "Assessment of Bridge Service Life Using Wireless Sensor Network." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1340424183.
Full textYu, Jianxiong. "Pavement Service Life Estimation And Condition Prediction." See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2005. http://www.ohiolink.edu/etd/view.cgi?toledo1132896646.
Full textTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 69-74.
Ali, Muhammad Shafqat. "Enhancement of service life of prestressed concrete bridge girders using FRP composites." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123187.
Full textCette recherche vise à améliorer la durée de vie des poutres de pont en béton précontraint à l'aide de coquilles de composite de polymères renforcés de fibres (FRP) appliquées à la semelle inférieure pour empêcher l'infiltration d'éléments nocifs dans le béton. La coque en FRP permettrait de retarder les réactions de détérioration et de réaliser des ponts plus durables ayant une durée de vie considérablement accrue. Le comportement de ces poutres de a été étudié expérimentalement. Les caractéristiques en flexion de la coquille en FRP et de son interface de béton ainsi que de l'effet du pourcentage d'armature d'acier ont été étudiés expérimentalement. La coquille en FRP a été collée autour de la partie inférieure de poutres béton construites avec quatre pourcentages d'armature. Les spécimens de poutres avec la coquille de FRP ont montré une amélioration significative dans leurs résistances, rigidités et capacités d'absorption d'énergie par rapport aux poutres sans coquilles. Le comportement en flexion de poutres de béton précontraint coulées en place avec la coquille de FRP a été étudié afin d'examiner la contribution de la coquille à la résistance, rigidité, ductilité et capacité d'absorption d'énergie pour cinq pourcentages de précontraintes. La limite de fissuration, la limite d'élasticité et la limite ultime des spécimens avec FRP étaient sensiblement supérieures à ceux des spécimens sans coquille. La coquille en FRP et la force de précontrainte a amélioré la résistance et la rigidité des poutres. La contribution à la durabilité à long terme de la coquille de FRP contre les infiltrations d'éléments agressifs dans la coquille et le béton, tels que l'humidité et les chlorures, a été étudiée expérimentalement de façon préliminaire. Des tests accélérés sur des échantillons de béton renforcés extérieurement avec des coquilles de FRP ont été effectuées en les soumettant à l'humidité et une solution saline à température contrôlées. La microscopie électronique (SEM) a aussi été utilisée pour déterminer les effets du vieillissement par rapport au temps d'exposition, à la pression d'injection, à la température et aux chlorures. La coquille de FRP, agissant comme une barrière, a augmenté significativement la résistance contre la pénétration des chlorures en réduisant significativement le taux de pénétration des chlorures et de la quantité totale d'ions chlorure. Pour une poutre en béton précontraint avec une coque en FRP, le temps total pour que les ions chlorure atteignent les câbles d'acier de précontrainte est estimé à 135 ans. Ces résultats suggèrent que la coquille de FRP est très efficace pour améliorer la longévité des poutres en béton précontraints et peut allonger considérablement leur durée de vie.
Thorsell, Thomas I. "Vacuum insulation in buildings : means to prolog service life." Licentiate thesis, KTH, Civil and Architectural Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4149.
Full textVacuum insulation panels, VIPs, constitute a new insulation material, 6 to 8 times better than traditional insulation materials, which utilizes the positive influence vacuum has on the thermal properties of certain materials. A VIP is a composite with a flat core enclosed by an envelope preventing the core to fill with gas. The vacuum in the core is vital to reach thermal conductivities down to 0,0035 W/(m K), if the vacuum is lost the panel has reached the end of its service life time. Metal sheets would the preferred material to create an impermeable envelope but would creates a large thermal bridge at the edges of a panel when it folds over the edges of the panel.
A serpentine edge has been proposed in order to deal with this large thermal bridge. This serpentine edge has been evaluated first as a numeric model in software and then by measuring on a prototype edge element in a hot and cold plate instrument. Measured temperatures were used to validate the numerical model. Results show that a serpentine edge can greatly reduce the thermal bridge if designed correctly.
Another direction taken in the development of the VIP barrier is to use very thin metal layers, metallization layer or coating, incorporated into multi layered polymer composite film. This creates barrier films with very good barrier properties and only small thermal bridges. The modeling of gas flux through films with more than one coating has only just started. Existing models for flux through multi coated films all assume that flux is only taking place through defects in the coating layers, that all defects are of the same size and that all defects are positioned in square lattices. The model discussed herein use the same assumption of flux through pinholes only but it does take defect sizes and positions into account. Barrier film, from a regular vacuum insulation panel, with double coatings has been evaluated in light microscopy to characterize the defects in each of the coatings. The data found have been fed into the model and the results comply well with reported permeabilities of similar barrier films.
Books on the topic "Service life (Engineering)"
Martin, Jonathan W. Service Life Prediction of Polymeric Materials: Global Perspectives. Boston, MA: Springer US, 2009.
Find full textFishman, Kenneth L. LRFD metal loss and service-life strength reduction factors for metal-reinforced systems. Washington, D.C: Transportation Research Board, 2011.
Find full textN, Parkins Redvers, and National Association of Corrosion Engineers., eds. Life prediction of corrodible structures. Houston, TX: NACE International, 1994.
Find full textJ, Solin, and Valtion teknillinen tutkimuskeskus, eds. Plant life management: Progress for structural integrity. Espoo, Finland: VTT, 2003.
Find full textMartin, Jonathan W. Methodologies for predicting the service lives of coating systems. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1994.
Find full textJ, Solin, and Valtion teknillinen tutkimuskeskus, eds. Plant life management: Midterm status of a R & D project. Espoo, Finland: VTT, 2001.
Find full textSpath, Pamela L. Life cycle assessment of coal-fired power production. Golden, Colo. (1617 Cole Blvd., Golden 880401-3393): National Renewable Energy Laboratory, 1999.
Find full textBement, Laurence J. Approach for service life extension of explosive devices for aircraft escape systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Find full textPodio, Fernando L. Development of a testing methodology to predict optical disk life expectancy values. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1991.
Find full textPodio, Fernando L. Development of a testing methodology to predict optical disk life expectancy values. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1991.
Find full textBook chapters on the topic "Service life (Engineering)"
Charrett, Donald. "Design life or service life." In Contracts for Construction and Engineering Projects, 77–94. 2nd ed. London: Informa Law from Routledge, 2021. http://dx.doi.org/10.4324/9781003206897-8.
Full textWang, W., and M. J. Carr. "Component Level Replacements: Estimating Remaining Useful Life." In Complex Engineering Service Systems, 297–314. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-189-9_16.
Full textFu, Ming Wang. "Die Design and Service Life Analysis." In Engineering Materials and Processes, 95–130. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46464-0_4.
Full textWittern, Erik, and Robin Fischer. "A Life-Cycle Model for Software Service Engineering." In Service-Oriented and Cloud Computing, 164–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40651-5_13.
Full textTasker, Paul, Andy Shaw, Ben Sheridan, and Sarah Kelly. "TES Service Innovation and the Role of Standards." In Through-life Engineering Services, 359–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12111-6_21.
Full textGromadova, Monika. "Service Life of the Cam Mechanisms." In Lecture Notes in Civil Engineering, 243–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9121-1_19.
Full textRozenfeld, Henrique, Maiara Rosa, Sânia da Costa Fernandes, Marina de Pádua Pieroni, Carolina Queiroz Souza, Érica Gonçalves Rezende, and Cristina Targas Gurian. "Product-Service Systems (PSS)." In Life Cycle Engineering and Management of Products, 205–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78044-9_9.
Full textHingorani, Ramon, and Peter Tanner. "Application of risk analysis in structural engineering – gas explosions." In Advances in Modeling Concrete Service Life, 65–78. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2703-8_7.
Full textLingegård, Sofia, and Mattias Lindahl. "Identification of Risks Related to Integrated Product Service Offerings of Rail Infrastructure: A Swedish Case." In Through-life Engineering Services, 323–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12111-6_19.
Full textHe, Yu Ting, Hong Peng Li, Feng Li, and Chao Hua Fan. "Study on the Service Life of Electronic Equipment." In Key Engineering Materials, 2896–99. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.2896.
Full textConference papers on the topic "Service life (Engineering)"
Suhardi, Novianto Budi Kurniawan, and Jaka Sembiring. "Service computing system engineering life cycle." In 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, 2017. http://dx.doi.org/10.1109/eecsi.2017.8239136.
Full textJensen, Jakob Laigaar, Lars Jensen, Matias Valenzuela, and Raul Vasquez. "Service Life Performance Design of Chacao Bridge." In IABSE Symposium, Vancouver 2017: Engineering the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2017. http://dx.doi.org/10.2749/vancouver.2017.2816.
Full textFranke, Dominik, Corinna Elsemann, and Stefan Kowalewski. "Reverse Engineering and Testing Service Life Cycles of Mobile Platforms." In 2012 23rd International Workshop on Database and Expert Systems Applications (DEXA). IEEE, 2012. http://dx.doi.org/10.1109/dexa.2012.40.
Full textGao Na, Zhao Songzheng, and Liu Jing. "Research service design based on product life cycle for service-oriented manufacturing." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691675.
Full textDe Luca, Antonio, Zhi Zhang, and Liling Cao. "Service Life Prediction of Concrete Parking Structures: Case Studies." In Ninth Congress on Forensic Engineering. Reston, VA: American Society of Civil Engineers, 2022. http://dx.doi.org/10.1061/9780784484548.020.
Full textTatum, Nathan, Sven Rodenbeck, and Robert C. Williams. "Engineering for Life: A History of the Public Health Service Engineers." In Third National Congress on Civil Engineering History and Heritage. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40594(265)45.
Full textSavage, M. "Parabolic Log-Log Fatigue Life Model." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/rsafp-14470.
Full textTrunov, N. B., V. S. Popadchuk, S. E. Davidenko, and R. Ju Zhukov. "Actual Problems of VVER SG Tubing Service Life Management." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75096.
Full textXu, Xun, and Shi-zhong Qiang. "Damage Safety Assessment and Service Life Prediction of Bridges." In First International Conference on Transportation Engineering. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40932(246)365.
Full textTanimoto, Shigeaki, Ken Takahashi, Taro Yabuki, Kazuhiko Kato, Motoi Iwashita, Hiroyuki Sato, and Atsushi Kanai. "Risk assessment quantification in life log service." In 2014 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, 2014. http://dx.doi.org/10.1109/snpd.2014.6888723.
Full textReports on the topic "Service life (Engineering)"
Cooke. L51783 100000 Hour Design Life of Turbo Compressor Packages. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1998. http://dx.doi.org/10.55274/r0010340.
Full textSmalley, A. J., and P. J. Pantermuehl. TR-97-2 Foundation Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1997. http://dx.doi.org/10.55274/r0011730.
Full textJaske and Hart. L52047 PRCI Pipeline Repair Manual 6th Edition. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2006. http://dx.doi.org/10.55274/r0010249.
Full textTiku, Sanjay, Binoy John, and Arnav Rana. PR-214-183816-R01 Full-scale Fatigue Testing of Field Dents. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2022. http://dx.doi.org/10.55274/r0012202.
Full textLazor, Robert B. DTRS56-03-T-0011 Validation of Sleeve Weld Integrity and Workmanship Level Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2006. http://dx.doi.org/10.55274/r0012038.
Full textTiku, Sanjay, Arnav Rana, Binoy John, and Aaron Dinovitzer. PR-214-203805-R01 Performance Evaluation of ILI Systems for Dents and Coincident Features. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2024. http://dx.doi.org/10.55274/r0000056.
Full textTiku, Sanjay. PR-214-203820-R01 Performance Evaluation of ILI for Dents with Cracks and Gouges. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2023. http://dx.doi.org/10.55274/r0000031.
Full textChauhan, Priyanshi, and Ria Sinha. Bridging Perspectives: Innovative Finance Insights from India. Indian School Of Development Management, September 2023. http://dx.doi.org/10.58178/2309.1026.
Full textRao, Menaka, Shantanu Menon, and Kushagra Merchant. Dhwani Rural Information Systems: Bridgnig the Technological divide. Indian School Of Development Management, June 2023. http://dx.doi.org/10.58178/2306.1025.
Full textPeña, Ignacio, and Micaela Jenik. Deep Tech: The New Wave. Inter-American Development Bank, June 2023. http://dx.doi.org/10.18235/0004947.
Full text