Academic literature on the topic 'Serpentine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Serpentine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Serpentine"
Mayhew, Lisa E., and Eric T. Ellison. "A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2165 (January 6, 2020): 20180420. http://dx.doi.org/10.1098/rsta.2018.0420.
Full textShiba, Masayuki, Tomoki Tate, and Tatsuya Fukuda. "Adaptative Leaf Morphology of Eurya japonica Thunb. (Ternstroemiaceae) in Serpentine Areas." Journal of Plant Studies 11, no. 1 (January 25, 2022): 10. http://dx.doi.org/10.5539/jps.v11n1p10.
Full textPavlova, Dolja. "Effect of nickel on pollen germination and pollen tube length in Arabis alpina (Brassicaceae)." Australian Journal of Botany 64, no. 4 (2016): 302. http://dx.doi.org/10.1071/bt15291.
Full textMohsin Mohammed Ghazal, Abdulsalam Mahdi Salih, and Abdulhadi Hamad Mohammed. "Serpentinite Rocks of Mawat Ophiolite Complex, Northeastern Iraq, Beetwat Village: 1-Petrography and Diffractometry." Tikrit Journal of Pure Science 23, no. 7 (January 26, 2023): 71–77. http://dx.doi.org/10.25130/tjps.v23i7.699.
Full textWang, Yongbin, Jun Peng, Shuang Liu, Guoping Luo, Fang Zhang, and Shengli An. "Effects of Magnesium Mineral on the Reduction and Expansion Performances of Baiyun Ebo Iron Pellets." Metals 14, no. 1 (January 18, 2024): 116. http://dx.doi.org/10.3390/met14010116.
Full textPicazo, Suzanne, Benjamin Malvoisin, Lukas Baumgartner, and Anne-Sophie Bouvier. "Low Temperature Serpentinite Replacement by Carbonates during Seawater Influx in the Newfoundland Margin." Minerals 10, no. 2 (February 18, 2020): 184. http://dx.doi.org/10.3390/min10020184.
Full textMellini, Marcello. "Chrysotile and polygonal serpentine from the Balangero serpentinite." Mineralogical Magazine 50, no. 356 (June 1986): 301–5. http://dx.doi.org/10.1180/minmag.1986.050.356.17.
Full textHegde, Dileep, Sunith Mahantheshappa, Jayarama Reddy, and Praveen Kumar Nagadesi. "Soil Microflora in Rhizosphere of Barringtonia racemosa (L.) Spreng and Rauwolfia serpentina (L.) Benth. ex Kurz from Western Ghats region of Uttara Kannada. Karnataka, India." Saudi Journal of Pathology and Microbiology 7, no. 7 (July 5, 2022): 254. http://dx.doi.org/10.36348/sjpm.2022.v07i07.001.
Full textBoschi, Chiara, Federica Bedini, Ilaria Baneschi, Andrea Rielli, Lukas Baumgartner, Natale Perchiazzi, Alexey Ulyanov, Giovanni Zanchetta, and Andrea Dini. "Spontaneous Serpentine Carbonation Controlled by Underground Dynamic Microclimate at the Montecastelli Copper Mine, Italy." Minerals 10, no. 1 (December 18, 2019): 1. http://dx.doi.org/10.3390/min10010001.
Full textWicks, Fred J. "Status of the reference X-ray powder-diffraction patterns for the serpentine minerals in the PDF database—1997." Powder Diffraction 15, no. 1 (March 2000): 42–50. http://dx.doi.org/10.1017/s0885715600010824.
Full textDissertations / Theses on the topic "Serpentine"
Mann, Jason Peter. "Serpentine Activation for CO2 Sequestration." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12054.
Full textMerkulova, Margarita. "Comportement du fer et d'autres ions échangeurs d'électrons en contexte de subduction." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAU030/document.
Full textSubduction zones are the largest recycling systems of our planet. Subduction zones involve recycling of water from hydrated oceanic crust and lithosphere to the upper mantle. Water plays a key role in subduction zone processes, including plate tectonics, magma generation, elemental transport and earthquake generation. The chemical composition, H2O content of oceanic lithosphere sinking to the mantle, age and geometry of subducting oceanic slab are the main factors controlling subduction zone processes including dehydration.The principle aim of this dissertation is to investigate the regime of water release from subducting oceanic plate and the associated behavior of Fe and S in serpentinites, which are the main carriers of water into the slab. The experimental approach of my work allows one to compare chemical and mineral changes occurred during dehydration of serpentinites with different composition. A number of analytical techniques were applied to study the influence of bulk rock composition on the mineral chemistry of produced assemblages. The experimentally investigated pressure-temperature ranges, i.e. 2 GPa and 450-900C, are representative for hot subduction zones. The extrapolation to other common geothermal gradients was done through thermodynamic modeling. The investigated serpentinite compositions correspond to natural serpentinized peridotites described for oceanic lithosphere.Bulk Fe content was demonstrated to decrease thermal stability of antigorite by 25C on average. Dehydration of Fe-bearing serpentinites, consequently, occurs at lower temperatures compared to Fe-free assemblages. Dehydration reactions observed in Fe-free systems are univariant reactions, while in Fe-bearing systems, serpentinites dehydration appears over a range of temperature through divariant reactions. Moreover, the presence of Al in serpentinite stabilized clinochlore, which retains 15% water initial contain in serpentinite down to ~120km (820°C/2 GPa) within hot subduction. Such a dependence of serpentinite dehydration on bulk Fe and Al brings importance of considering not only geometry and the age of the slab, but also a composition of slab lithologies while modeling and interpreting processes in subduction zone. A comparison of the depths of serpentinite dehydration and seismicity revealed a strong correlation and therefore a potential contribution of water release to seismicity in the case of hot subduction zones (i.e., Chili type subduction).X-ray absorption spectroscopy measurements revealed a progressive reduction of Fe and S in investigated serpentinites. The bulk Fe3+/Fetotal ratio initially high in serpentinite is shown to decrease in anhydrous and higher temperature assemblages due to magnetite and Fe3+-bearing antigorite breakdown at <550°C and 700°C, respectively. The presence of pyrite in serpentinite, which transforms to pyrrhotite below 450°C, imposes a release of ¼ of initial sulfur, in H2S form. The presence of magnetite and pyrite in serpentinite, is crucial and responsible for the production of highly oxidized fluids and volatile sulfur species, which can be transported from the subducting slab into the mantle wedge. Application of results, obtained in the present study, to nature demonstrates that fluids rising from subducting slab are responsible for oxidation of overlying mantle, and in addition, magnetite and antigorite breakdown which occurs with at least 100°C difference may cause a release of chemically different fluids at shallow (low-T) and deep (high-T) parts of subduction
McIntyre, Todd Ian. "Analysis of selected ions in Allium cratericola growing on serpentine and non-serpentine soil." Scholarly Commons, 1991. https://scholarlycommons.pacific.edu/uop_etds/2212.
Full textCan, Semra. "Characterization Of Serpentine Filled Polypropylene." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609434/index.pdf.
Full texter March 2008, 158 pages In this study, the aim is to prepare polypropylene (PP)/serpentine composites and study their mechanical, thermal and morphological properties. Another objective is to explore whether it is possible to have PP/serpentine nanocomposites with melt intercalation method by using the advantage of the layer silicate structure of serpentine. The most widely used fillers in PP are talc and mica which belong to the phyllosilicates group of silicate minerals. So far, there has been almost no study employing serpentine as filler in either any polymers or PP, although it also belongs to the same group of minerals as talc and mica. Accordingly, it was planned to divide the work into the study of two groups. In group 1, for the compositions with 2, 5, 10 and 20 wt% serpentine, the particulate filler effects of serpentine both alone and in the presence of surface treatments with hydrochloric acid (HCl) and silane coupling agent (SCA) were investigated. The most impressive results in terms of static and dynamic mechanical properties were achieved with SCA rather than HCl. When the effect of serpentine without any treatment is considered, reinforcing effect of it can easily be observed without deteriorating the composite properties even at high filler loadings. In group 2, the nanofiller effects of serpentine in 2 and 5 wt% filled compositions by modification of both the filler and the matrix were aimed to be examined with melt intercalation method. In addition to HCl and SCA treatments, maleic anhydride grafted polypropylene (PP-g-MA) and quaternary ammonium salt (QAS) of cetyl-trimethyl-ammonium bromide were used as compatibilizer and intercalating agent, respectively. While the amount of QAS was kept constant, different percentages of compatibilizer were employed. The presence of QAS and PP-g-MA further improved the properties with respect to group 1 members. Interestingly, the percentage strain at break values did not decrease as much as group 1 compositions with the same filler content. It can be concluded that partial intercalation of group 2 compositions was achieved, according to the X-ray and TEM results. Keywords: Serpentine, PP/serpentine composites, SCA, PP-g-MA, serpentine nanocomposites
Town, Christopher Albert. "Instream aeration of the Serpentine River." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26335.
Full textApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Potts, Ian. "Particle Redistribution in Serpentine Engine Inlets." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595542100917769.
Full textHughes, Ruth. "Serpentine tolerance in the Mimulus guttatus complex." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286489.
Full textZhang, Lixin. "Dynamic analysis of viscoelastic serpentine belt drive systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0021/NQ45747.pdf.
Full textLaker, Travis S. "Secondary flows in a rotating serpentine circular duct." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15898.
Full textAlvarez, Silva Mayeli. "Surface chemistry study on the pentlandite- serpentine system." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97112.
Full textL'interaction de la pentlandite avec des minéraux d'oxide de magnésium (MgO-) est soupçonnée d'être à l'origine de la sélectivité réduite de la pentlandite dans les procédés de flottation de minerais ultrabasiques. Une meilleure compréhension de la chimie de surface des minéraux impliqués devrait mener à l'amélioration des conditions de flottation qui en maximisent la sélectivité. La première partie de la thèse compare le point isoélectrique (p.i.e) et le point de charge nulle (p.c.n), déterminés à l'aide de la technique de titrage Mular-Roberts [M-R], de minéraux d'oxide de magnésium tels que la chlorite, la serpentine et le talc. Dans le cas du talc, la technique M-R a échoué, probablement dû aux ions Mg2+ qui jouent le rôle d'ions déterminateurs de potentiel. Dans le cas de la serpentine et de la chlorite, les p.c.n. ont été déterminés à pH 4,3 et 4,6 respectivement et les p.i.e à pH 3,2 et <3 respectivement. Des tests de décantations ont suggéré que l'agrégation/dispersion observée pour la chlorite était contrôlée à la fois par le p.c.n et le p.i.e ; la serpentine au contraire est restée dispersée, possiblement dû à des effets d'hydratation. La deuxième partie détermine les propriétés de surface de la pentlandite et de la serpentine isolées à partir d'un minerai ultrabasique. Des mesures du potentiel zêta ont été effectuées sur les minéraux seuls et mélangés en présence d'un électrolyte, indifférent dans un cas et surnageant dans l'autre cas, préparé à partir d'une suspension de minerai utilisée comme milieu d'étude. Les résultats relatifs aux minéraux individuels et en particulier les forces d'attraction électrostatique observables ont permis d'anticiper leur interaction. Cette hypothèse a été confirmée dans le cas des minéraux mélangés, étant après avoir pris en compte l'interaction de précipités de Mg(OH)2 comme facteur additionnel. Des observations au microscope électronique à balayage ont permis de valider les résultats. L'agrégation/dispersion a été déterminée par décantation en utilisant des techniques de lumière diffuse et de microscopie optique. L'effet de certains facteurs sur l'agrégation/dispersion de la pentlandite et de la serpentine a été étudié sur la base d'un plan d'expériences (PE). Entre autres, la concentration en carboxymethyl cellulose (CMC) et l'interaction entre le CMC et le pH ont été considérés comme des facteurs importants. Des mesures d'angle de contact ont permis d'explorer l'hydrophobicité de la pentlandite et, à l'aide d'un PE, une étude de flottation à petite échelle a été réalisée pour investiguer la flottabilité de la pentlandite. Les résultats ont montrés que le pH était le facteur le plus important, un pH acide ayant pour effet d'augmenter à la fois l'hydrophobicité et la flottabilité. L'ajout de cuivre a également permis de renforcer ces deux propriétés par un effet d'activation; la présence de magnésium au contraire a affecté l'hydrophobicité de la pentlandite à pH alcalin mais n'a pas eu d'effet significatif sur ses propriétés de flottabilité; la présence de serpentine s'est trouvée être préjudiciable au procédé mais l'utilisation de CMC a pu être utilisée afin de restaurer partiellement l'hydrophobicité et la flottabilité de la pentlandite diminuées par la présence de la serpentine.
Books on the topic "Serpentine"
1923-, Coleman Robert Griffin, and Ernst W. G. 1931-, eds. Serpentine and serpentinites: Mineralogy, petrology, geochemistry, ecology, geophysics, and tectonics ; a tribute to Robert G. Coleman. Columbia, MD: Bellwether Pub. for the Geological Society of America, 2004.
Find full textMiddleton, Christopher. Serpentine. London: Oasis Books, 1985.
Find full textB, Smith Stuart, ed. Serpentine. Truro (Croft Prince, Mount Hawke, Truro): Truran, 2005.
Find full textCiuban, Gavril. Serpentine. Cluj-Napoca: Grinta, 2007.
Find full textPacker, Lewis. Serpentine futures. St Lucia: University of Queensland Press, 1986.
Find full textRoyal Art Lodge (Artists' group). Serpentine musings. Dublin: Douglas Hyde Gallery, 2005.
Find full textKurzmeyer, Roman. Schlangenlinien/Serpentine Lines. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0704-1.
Full textWalsh, Jill Paton. The serpentine cave. New York: St. Martin's Press, 1997.
Find full textHarrison, Susan, and Nishanta Rajakaruna, eds. Serpentine. University of California Press, 2011. http://dx.doi.org/10.1525/9780520948457.
Full textPon, Cindy. Serpentine. 2015.
Find full textBook chapters on the topic "Serpentine"
Guillot, Stephane. "Serpentine." In Encyclopedia of Astrobiology, 1503–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1429.
Full textGooch, Jan W. "Serpentine." In Encyclopedic Dictionary of Polymers, 655. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10476.
Full textGuillot, Stephane. "Serpentine." In Encyclopedia of Astrobiology, 2250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1429.
Full textGuillot, Stephane. "Serpentine." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1429-3.
Full textGuillot, Stephane. "Serpentine." In Encyclopedia of Astrobiology, 2738. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1429.
Full textKurzmeyer, Roman. "Serpentine Lines." In Schlangenlinien/Serpentine Lines, 65–86. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0704-1_2.
Full textKurzmeyer, Roman. "Schlangenlinien." In Schlangenlinien/Serpentine Lines, 9–64. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0704-1_1.
Full textWalker, Stuart. "The Serpentine Walk." In Design and Spirituality, 29–30. Abingdon, Oxon ; New York : Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.4324/9781003107422-9.
Full textWhite, G. Norman, and Joe B. Dixon. "Kaolin-Serpentine Minerals." In Soil Mineralogy with Environmental Applications, 389–414. Madison, WI, USA: Soil Science Society of America, 2018. http://dx.doi.org/10.2136/sssabookser7.c12.
Full textTaheri, Alireza. "Serpentine Conceptual Autophagia." In Psychoanalytic Perspectives on the Films of Ingmar Bergman, 111–31. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003200246-9.
Full textConference papers on the topic "Serpentine"
Shahmiri, Fereshteh, Chaoyu Chen, Anandghan Waghmare, Dingtian Zhang, Shivan Mittal, Steven L. Zhang, Yi-Cheng Wang, Zhong Lin Wang, Thad E. Starner, and Gregory D. Abowd. "Serpentine." In CHI '19: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3290605.3300775.
Full textMatos, M., A. Correia, J. Pereira, and R. Oliveira. "Serpentine." In the 2008 ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1363686.1364214.
Full textDohler, G., D. Gagne, D. Gallagher, and R. Moats. "Serpentine waveguide TWT." In 1987 International Electron Devices Meeting. IRE, 1987. http://dx.doi.org/10.1109/iedm.1987.191465.
Full textBrand, M., B. Zhang, M. Popović, N. Dostart, and K. H. Wagner. "Serpentine Integrated Grating Spectrometer." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cosi.2021.cf2b.2.
Full textMathur, Gursaran D. "Performance of Serpentine Heat Exchangers." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/980057.
Full textShi, Lei, and RongWei Guo. "Serpentine Inlet Design and Analysis." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-839.
Full textChen, T. H., M. Menu, P. M. Champion, and L. D. Ziegler. "Heating Effect On Serpentine Jades." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482535.
Full textHenning, Wade, Frank Hickman, and Howie Choset. "Motion Planning for Serpentine Robots." In Third ASCE Specialty Conference on Robotics for Challenging Environments. Reston, VA: American Society of Civil Engineers, 1998. http://dx.doi.org/10.1061/40337(205)1.
Full textMaity, Atanu, and S. Majumder. "Serpentine robot moves and postures." In 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2011. http://dx.doi.org/10.1109/ramech.2011.6070482.
Full textTogashi, Kenji, and Hiroshi Ito. "Information concealment in serpentine patterns." In 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE). IEEE, 2013. http://dx.doi.org/10.1109/gcce.2013.6664830.
Full textReports on the topic "Serpentine"
Doiron, A. Surficial geology, Serpentine Lake, New Brunswick. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/211317.
Full textJuday, G. P. Alaska research natural areas: 3. Serpentine slide. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1992. http://dx.doi.org/10.2737/pnw-gtr-271.
Full textLeslie, P., R. Wood, F. Sigler, A. Shapiro, and A. Rendon. Heat transfer coefficient in serpentine coolant passage for CCDTL. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/345040.
Full textBerger, J., and E. Ramsay. Géologie De La Region Du Mont De La Serpentine, Gaspesie, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/130876.
Full textPalmer, A. J. M., and J. J. Clague. Diatom Assemblage Analysis and Sea Level Change, Serpentine River, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132634.
Full textPetersson, N., and B. Sjogreen. Serpentine: Finite Difference Methods for Wave Propagation in Second Order Formulation. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1046802.
Full textDoiron, A. La géochimie des tills de la région de Serpentine Lake, Nouveau-Brunswick. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/184192.
Full textZdraveva, Petranka, Dolja Pavlova, Ilina Krasteva, and Ivanka Pencheva. Phytochemical Analysis on Populations of Teucrium Chamaedrys from Serpentine Sites in Bulgaria. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/crabs.2018.02.05.
Full textZdraveva, Petranka, Dolja Pavlova, Ilina Krasteva, and Ivanka Pencheva. Phytochemical Analysis on Populations of Teucrium Chamaedrys from Serpentine Sites in Bulgaria. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2018. http://dx.doi.org/10.7546/grabs2018.2.05.
Full textOkura, Kiyoshi, and Yoshihiko Tatsumi. Analysis of Squeal Noise Radiated From Serpentine Belt for Accessories Drive Systems. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0644.
Full text