Academic literature on the topic 'Sequenziamento genom'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sequenziamento genom.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Sequenziamento genom"

1

CICCOLELLA, SIMONE. "Practical algorithms for Computational Phylogenetics." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364980.

Full text
Abstract:
In questo manoscritto vengono discussi le principali sfide computazionali nel campo della inferenza di filogenesi tumorale a vengono proposte diverse soluzione per i tre principali problemi di (i) ricostruzione dell'evoluzioni di un campione tumorale, (ii) clustering di dati SCS per una piu' pulita e veloce inferenza e (iii) il confronto di diverse filogenesi. Inoltre viene discusso come combinare le diverse soluzioni in una singola pipeline per una piu' rapida analisi.
In this manuscript we described the main computational challenges of the cancer phylogenetic field and we proposed different solutions for the three main problems of (i) the progression reconstruction of a tumor sample, (ii) the clustering of SCS data to allow for a cleaner and faster inference and (iii) the evaluation of different phylogenies. Furthermore we combined them into a usable pipeline to allow for a faster analysis.
APA, Harvard, Vancouver, ISO, and other styles
2

Giannini, Simone. "Strumenti statistici per elaborazione dati su sequenziamenti di genoma umano." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12059/.

Full text
Abstract:
L'analisi del DNA è una delle chiavi per la comprensione della vita e dei suoi funzionamenti. Le tecniche di sequenziamento di nuova generazione NGS permettono una analisi parallela di molte sequenze che hanno reso possibili i sequenziamenti di genomi interi e l'impiego di questi dati in una vasta gamma di studi. In questa tesi verranno descritte le principali tecniche di sequenziamento NGS. Per quanto riguarda il genoma umano si tratteranno alcune tematiche di studio di varianti affrontate dal gruppo 1000Genomes. Nella fase conclusiva si introdurranno definizioni di statistica utili nell'affrontare l'elaborazione dei dati. Inoltre vengono descritti alcuni strumenti che permettono di svolgere questo tipo di analisi.
APA, Harvard, Vancouver, ISO, and other styles
3

BUSONERO, FABIO. "Studi di associazione e sequenziamento estesi a tutto il genoma: il Progetto ProgeNIA." Doctoral thesis, Università degli Studi di Cagliari, 2011. http://hdl.handle.net/11584/266266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carraro, Marco. "Development of bioinformatics tools to predict disease predisposition from Next Generation Sequencing (NGS) data." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426807.

Full text
Abstract:
The sequencing of the human genome has opened up completely new avenues in research and the notion of personalized medicine has become common. DNA Sequencing technology has evolved by several orders of magnitude, coming into the range of $1,000 for a complete human genome. The promise of identifying genetic variants that influence our lifestyles and make us susceptible to diseases is now becoming reality. However, genome interpretation remains one the most challenging problems of modern biology. The focus of my PhD project is the development of bioinformatics tools to predict diseases predisposition from sequencing data. Several of these methods have been tested in the context of the Critical Assessment of Genome Interpretation (CAGI), always achieving good prediction performances. During my PhD project I faced the complete spectrum of challenges to be address in order to translate the sequencing revolution into clinical practice. One of the biggest problem when dealing with sequencing data is the interpretation of variants pathogenic effect. Dozens of bioinformatics tools have been created to separate mutations that could be involved in a pathogenic phenotype from neutral variants. In this context the problem of benchmarking is critical, as prediction performance are usually tested on different sets of variants, making the comparison among these tools impossible. To address this problem I performed a blinded comparison of pathogenicity predictors in the context of CAGI, realizing the most complete performance assessment among all the iterations of this collaborative experiment. Another challenge that needs to be address to realize the personalized medicine revolution is the phenotype prediction. During my PhD I had the opportunity to develop several methods for the complex phenotype prediction from targeted enrichment and exome sequencing data. In this context challenges like misinterpretation or overinterpretation of variants pathogenicity have emerged, like in the case of phenotype prediction from the Hopkins Clinical Panel. In addition, other complementary issues of phenotype predictions, like the possible presence of incidental findings have to be considered. Ad hoc prediction strategies have been defined while facing with different kinds of sequencing data. A clear example is the case of Crohn’s disease risk prediction. Always in the context of the CAGI experiment, three iterations of this prediction challenge have been run so far. Analysis of datasets revealed how population structure and bias in data preparation and sequencing could affect prediction performance, leading to inflated results. For this reason a completely new prediction strategy has been defined for the last edition of the Crohn’s disease challenge, exploiting data from Genome Wide Association Studies and Protein Protein Interaction network, to address the problem of missing heritability. Good prediction performance have been achieved, especially for individuals with an extreme predicted risk score. Last, my work has been focused on the prediction of a health related trait: the blood group phenotype. The accuracy of serological tests is very poor for minor blood groups or weak phenotypes. Blood groups incompatibilities can be harmful for critical individuals like oncohematological patients. BOOGIE exploits haplotype tables, and the nearest neighbor algorithm to identify the correct phenotype of a patient. The accuracy of our method has been tested in ABO and RhD systems achieving good results. In addition, our analyses paved the way for a further increase in performance, moving towards a prediction system that in the future could become a real alternative to wet lab experiments.
Il completamento del progetto genoma umano ha aperto numerosi nuovi orizzonti di ricerca. Tra questi, la possibilità di conoscere le basi genetiche che rendono ogni individuo suscettibile alle diverse malattie ha aperto la strada ad una nuova rivoluzione: l’avvento della medicina personalizzata. Le tecnologie di sequenziamento del DNA hanno subito una notevole evoluzione, ed oggi il prezzo per sequenziare un genoma è ormai prossimo alla soglia psicologica dei $ 1 000. La promessa di identificare varianti genetiche che influenzano il nostro stile di vita e che ci rendono suscettibili alle malattie sta quindi diventando realtà. Tuttavia, molto lavoro è ancora necessario perché questo nuovo tipo di medicina possa trasformarsi in realtà. In particolare la sfida oggi non è più data dalla generazione dei dati di sequenziamento, ma è rappresentata invece dalla loro interpretazione. L'obiettivo del mio progetto di dottorato è lo sviluppo di metodi bioinformatici per predire la predisposizione a patologie, a partire da dati di sequenziamento. Molti di questi metodi sono stati testati nel contesto del Critical Assessment of Genome Interpretation (CAGI), una competizione internazionale focalizzata nel definire lo stato dell’arte per l’interpretazione del genoma, ottenendo sempre buoni risultati. Durante il mio progetto di dottorato ho avuto l'opportunità di affrontare l’intero spettro delle sfide che devono essere gestite per tradurre le nuove capacità di sequenziamento del genoma in pratica clinica. Uno dei problemi principali che si devono gestire quando si ha a che fare con dati di sequenziamento è l'interpretazione della patogenicità delle mutazioni. Decine di predittori sono stati creati per separare varianti neutrali dalle mutazioni che possono essere causa di un fenotipo patologico. In questo contesto il problema del benchmarking è fondamentale, in quanto le prestazioni di questi tool sono di solito testate su diversi dataset di varianti, rendendo impossibile un confronto di performance. Per affrontare questo problema, una comparazione dell’accuratezza di questi predittori è stata effettuata su un set di mutazioni con fenotipo ignoto nel contesto del CAGI, realizzando la valutazione per predittori di patogenicità più completa tra tutte le edizioni di questo esperimento collaborativo. La previsione di fenotipi a partire da dati di sequenziamento è un'altra sfida che deve essere affrontata per realizzare le promesse della medicina personalizzata. Durante il mio dottorato ho avuto l'opportunità di sviluppare diversi predittori per fenotipi complessi utilizzando dati provenienti da pannelli genici ed esomi. In questo contesto sono stati affrontati problemi come errori di interpretazione o la sovra interpretazione della patogenicità della varianti, come nel caso della sfida focalizzata sulla predizione di fenotipi a partire dall’Hopkins Clinical Panel. Sono inoltre emersi altri problemi complementari alla previsione di fenotipo, come per esempio la possibile presenza di risultati accidentali. Specifiche strategie di predizione sono state definite lavorando con diversi tipi di dati di sequenziamento. Un esempio è dato dal morbo di Crohn. Tre edizioni del CAGI hanno proposto la sfida di identificare individui sani o affetti da questa patologia infiammatoria utilizzando unicamente dati di sequenziamento dell’esoma. L'analisi dei dataset ha rivelato come la presenza di struttura di popolazione e problemi nella preparazione e sequenziamento degli esomi abbiano compromesso le predizioni per questo fenotipo, generando una sovrastima delle performance di predizione. Tenendo in considerazione questo dato è stata definita una strategia di predizione completamente nuova per questo fenotipo, testata in occasione dell'ultima edizione del CAGI. Dati provenienti da studi di associazione GWAS e l’analisi delle reti di interazione proteica sono stati utilizzati per definire liste di geni coinvolti nell’insorgenza della malattia. Buone performance di predizione sono state ottenute in particolare per gli individui a cui era stata assegnata una elevata probabilità di essere affetti. In ultima istanza, il mio lavoro è stato focalizzato sulla predizione di gruppi sanguigni, sempre a partire da dati di sequenziamento. L'accuratezza dei test sierologici, infatti, è ridotta in caso di gruppi di sangue minori o fenotipi deboli. Incompatibilità per tali gruppi sanguigni possono essere critiche per alcune classi di individui, come nel caso dei pazienti oncoematologici. La nostra strategia di predizione ha sfruttato i dati genotipici per geni che codificano per gruppi sanguigni, presenti in database dedicati, e il principio di nearest neighbour per effettuare le predizioni. L’accuratezza del nostro metodo è stata testata sui sistemi ABO e RhD ottenendo buone performance di predizione. Inoltre le nostre analisi hanno aperto la strada ad un ulteriore aumento delle prestazioni per questo tool.
APA, Harvard, Vancouver, ISO, and other styles
5

Zeppilli, Giulia. "Metodi matematici per lo sviluppo di una nuova distanza genetica per inferire eventi demografici da dati di sequenziamento di popolazioni umane." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7952/.

Full text
Abstract:
La tesi individua un metodo matematico per inferire alcuni eventi demografici relativi a popolazioni umane, attraverso l’analisi di dati, reali e simulati, e con strumenti di statistica e analisi numerica (Cluster Analysis, Analisi Discriminate, Analisi della varianza, Interpolazione).
APA, Harvard, Vancouver, ISO, and other styles
6

Rizzo, Stefano Giovanni. "Una base dati per il knowledge discovery in genetica medica." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6207/.

Full text
Abstract:
L'innovazione delle tecnologie di sequenziamento negli ultimi anni ha reso possibile la catalogazione delle varianti genetiche nei campioni umani, portando nuove scoperte e comprensioni nella ricerca medica, farmaceutica, dell'evoluzione e negli studi sulla popolazione. La quantità di sequenze prodotta è molto cospicua, e per giungere all'identificazione delle varianti sono necessari diversi stadi di elaborazione delle informazioni genetiche in cui, ad ogni passo, vengono generate ulteriori informazioni. Insieme a questa immensa accumulazione di dati, è nata la necessità da parte della comunità scientifica di organizzare i dati in repository, dapprima solo per condividere i risultati delle ricerche, poi per permettere studi statistici direttamente sui dati genetici. Gli studi su larga scala coinvolgono quantità di dati nell'ordine dei petabyte, il cui mantenimento continua a rappresentare una sfida per le infrastrutture. Per la varietà e la quantità di dati prodotti, i database giocano un ruolo di primaria importanza in questa sfida. Modelli e organizzazione dei dati in questo campo possono fare la differenza non soltanto per la scalabilità, ma anche e soprattutto per la predisposizione al data mining. Infatti, la memorizzazione di questi dati in file con formati quasi-standard, la dimensione di questi file, e i requisiti computazionali richiesti, rendono difficile la scrittura di software di analisi efficienti e scoraggiano studi su larga scala e su dati eterogenei. Prima di progettare il database si è perciò studiata l’evoluzione, negli ultimi vent’anni, dei formati quasi-standard per i flat file biologici, contenenti metadati eterogenei e sequenze nucleotidiche vere e proprie, con record privi di relazioni strutturali. Recentemente questa evoluzione è culminata nell’utilizzo dello standard XML, ma i flat file delimitati continuano a essere gli standard più supportati da tools e piattaforme online. È seguita poi un’analisi dell’organizzazione interna dei dati per i database biologici pubblici. Queste basi di dati contengono geni, varianti genetiche, strutture proteiche, ontologie fenotipiche, relazioni tra malattie e geni, relazioni tra farmaci e geni. Tra i database pubblici studiati rientrano OMIM, Entrez, KEGG, UniProt, GO. L'obiettivo principale nello studio e nella modellazione del database genetico è stato quello di strutturare i dati in modo da integrare insieme i dati eterogenei prodotti e rendere computazionalmente possibili i processi di data mining. La scelta di tecnologia Hadoop/MapReduce risulta in questo caso particolarmente incisiva, per la scalabilità garantita e per l’efficienza nelle analisi statistiche più complesse e parallele, come quelle riguardanti le varianti alleliche multi-locus.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography