Academic literature on the topic 'Sequential Monte Carlo (SMC) method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sequential Monte Carlo (SMC) method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sequential Monte Carlo (SMC) method"
Wang, Liangliang, Shijia Wang, and Alexandre Bouchard-Côté. "An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics." Systematic Biology 69, no. 1 (June 6, 2019): 155–83. http://dx.doi.org/10.1093/sysbio/syz028.
Full textFinke, Axel, Arnaud Doucet, and Adam M. Johansen. "Limit theorems for sequential MCMC methods." Advances in Applied Probability 52, no. 2 (June 2020): 377–403. http://dx.doi.org/10.1017/apr.2020.9.
Full textCong-An, Xu, Xu Congqi, Dong Yunlong, Xiong Wei, Chai Yong, and Li Tianmei. "A Novel Sequential Monte Carlo-Probability Hypothesis Density Filter for Particle Impoverishment Problem." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 6872–77. http://dx.doi.org/10.1166/jctn.2016.5640.
Full textAbu Znaid, Ammar M. A., Mohd Yamani Idna Idris, Ainuddin Wahid Abdul Wahab, Liana Khamis Qabajeh, and Omar Adil Mahdi. "Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review." Journal of Sensors 2017 (2017): 1–19. http://dx.doi.org/10.1155/2017/1430145.
Full textDeng, Yue, Yongzhen Pei, Changguo Li, and Bin Zhu. "Model Selection and Parameter Estimation for an Improved Approximate Bayesian Computation Sequential Monte Carlo Algorithm." Discrete Dynamics in Nature and Society 2022 (June 30, 2022): 1–14. http://dx.doi.org/10.1155/2022/8969903.
Full textHsu, Kuo-Lin. "Hydrologic forecasting using artificial neural networks: a Bayesian sequential Monte Carlo approach." Journal of Hydroinformatics 13, no. 1 (April 2, 2010): 25–35. http://dx.doi.org/10.2166/hydro.2010.044.
Full textWeng, Zhipeng, Jinghua Zhou, and Zhengdong Zhan. "Reliability Evaluation of Standalone Microgrid Based on Sequential Monte Carlo Simulation Method." Energies 15, no. 18 (September 14, 2022): 6706. http://dx.doi.org/10.3390/en15186706.
Full textRöder, Lenard L., Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer. "Data quality enhancement for field experiments in atmospheric chemistry via sequential Monte Carlo filters." Atmospheric Measurement Techniques 16, no. 5 (March 7, 2023): 1167–78. http://dx.doi.org/10.5194/amt-16-1167-2023.
Full textNakano, S., K. Suzuki, K. Kawamura, F. Parrenin, and T. Higuchi. "A sequential Bayesian approach for the estimation of the age–depth relationship of Dome Fuji ice core." Nonlinear Processes in Geophysics Discussions 2, no. 3 (June 26, 2015): 939–68. http://dx.doi.org/10.5194/npgd-2-939-2015.
Full textRusyda Roslan, Nur Nabihah, NoorFatin Farhanie Mohd Fauzi, and Mohd Ikhwan Muhammad Ridzuan. "Variance reduction technique in reliability evaluation for distribution system by using sequential Monte Carlo simulation." Bulletin of Electrical Engineering and Informatics 11, no. 6 (December 1, 2022): 3061–68. http://dx.doi.org/10.11591/eei.v11i6.3950.
Full textDissertations / Theses on the topic "Sequential Monte Carlo (SMC) method"
GONZATO, LUCA. "Application of Sequential Monte Carlo Methods to Dynamic Asset Pricing Models." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/295144.
Full textIn this thesis we consider the application of Sequential Monte Carlo (SMC) methods to continuous-time asset pricing models. The first chapter of the thesis gives a self-contained overview on SMC methods. In particular, starting from basic Monte Carlo techniques we move to recent state of the art SMC algorithms. In the second chapter we review existing methods for the exact simulation of Hawkes processes. From our analysis we infer that the simulation scheme of Dassios and Zaho (2013) outperforms the other algorithms, including the most popular thinning method proposed by Ogata (1980). This chapter serves also as introduction to self-exciting jump processes, which are the subject of Chapter 3. Hence, in the third chapter we propose a new self-exciting jump diffusion model in order to describe oil price dynamics. We estimate the model by applying a state of the art SMC sampler on both spot and futures data. From the estimation results we find evidence of self-excitation in the oil market, which leads to an improved fit and a better out of sample futures forecasting performance with respect to jump-diffusion models with constant intensity. Furthermore, we compute and discuss two optimal hedging strategies based on futures trading. The optimality of the first hedging strategy proposed is based on the variance minimization, while the second strategy takes into account also the third-order moment contribution in considering the investors attitudes. A comparison between the two strategies in terms of hedging effectiveness is provided. Finally, in the fourth chapter we consider the estimation of continuous-time Wishart stochastic volatility models by observing portfolios of weighted options as in Orlowski (2019). In this framework we don't know the likelihood in closed-form; then we aim to estimate it using SMC techniques. To this end, we marginalize latent states and perform marginal likelihood estimation by adapting the recently proposed controlled SMC algorithm (Heng et. Al. 2019). From the numerical experiments we show that the proposed methodology gives much better results with respect to standard filtering techniques. Therefore, the great stability of our SMC method opens the door for effective joint estimation of latent states and unknown parameters in a Bayesian fashion. This last step amounts to design an SMC sampler based on a pseudo-marginal argument and is currently under preparation.
Ozgur, Soner. "Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10518.
Full textCreal, Drew D. "Essays in sequential Monte Carlo methods for economics and finance /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/7444.
Full textLang, Lixin. "Advancing Sequential Monte Carlo For Model Checking, Prior Smoothing And Applications In Engineering And Science." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1204582289.
Full textKuhlenschmidt, Bernd. "On the stability of sequential Monte Carlo methods for parameter estimation." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709098.
Full textSkrivanek, Zachary. "Sequential Imputation and Linkage Analysis." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039121487.
Full textChen, Wen-shiang. "Bayesian estimation by sequential Monte Carlo sampling for nonlinear dynamic systems." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1086146309.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Advisors: Bhavik R. Bakshi and Prem K. Goel, Department of Chemical Engineering. Includes bibliographical references (p. 114-117).
Valdes, LeRoy I. "Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3304/.
Full textFuglesang, Rutger. "Particle-Based Online Bayesian Learning of Static Parameters with Application to Mixture Models." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279847.
Full textDetta examensarbete undersöker möjligheten att använda Sekventiella Monte Carlo metoder (SMC) för att utveckla en algoritm med syfte att utvinna parametrar i realtid givet en okänd modell. Då statistisk slutledning från dataströmmar medför svårigheter, särskilt i parameter-modeller, kommer arbetets fokus ligga i utvecklandet av en Monte Carlo algoritm vars uppgift är att sekvensiellt nyttja modellens posteriori fördelningar. Resultatet är att okända, statistiska parametrar kommer att förflyttas mot det krympande stödet av posterioren med hjälp utav en artificiell Markov dynamik, vilket tillåter en korrekt pseudo-marginalisering utav mål-distributionen. Algoritmen kommer sedan att testas på en enkel Gaussisk-modell, en Gaussisk mixturmodell (GMM) och till sist en GMM vars dimension är okänd. Kodningen i detta projekt har utförts i Matlab.
Carr, Michael John. "Estimating parameters of a stochastic cell invasion model with Fluorescent cell cycle labelling using approximate Bayesian computation." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/226946/1/Michael_Carr_Thesis.pdf.
Full textBooks on the topic "Sequential Monte Carlo (SMC) method"
Arnaud, Doucet, De Freitas Nando, and Gordon Neil 1967-, eds. Sequential Monte Carlo methods in practice. New York: Springer, 2001.
Find full textDoucet, Arnaud, Nando de Freitas, Neil Gordon, and A. Smith. Sequential Monte Carlo Methods in Practice. Springer New York, 2010.
Find full text(Foreword), A. Smith, Arnaud Doucet (Editor), Nando de Freitas (Editor), and Neil Gordon (Editor), eds. Sequential Monte Carlo Methods in Practice (Statistics for Engineering and Information Science). Springer, 2001.
Find full textRubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley & Sons, Incorporated, John, 2013.
Find full textRubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley & Sons, Incorporated, John, 2013.
Find full textRubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley & Sons, Incorporated, John, 2013.
Find full textRubinstein, Reuven Y., Ad Ridder, and Radislav Vaisman. Fast Sequential Monte Carlo Methods for Counting and Optimization. Wiley & Sons, Limited, John, 2013.
Find full textFast Sequential Monte Carlo Methods for Counting and Optimization Wiley Series in Probability and Statistics. John Wiley & Sons Inc, 2014.
Find full textBruno, Marcelo G. S. Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering. Morgan & Claypool Publishers, 2013.
Find full textBruno, Marcelo G. S. Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering. Morgan & Claypool Publishers, 2013.
Find full textBook chapters on the topic "Sequential Monte Carlo (SMC) method"
Lundén, Daniel, Johannes Borgström, and David Broman. "Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages." In Programming Languages and Systems, 404–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72019-3_15.
Full textLundén, Daniel, Joey Öhman, Jan Kudlicka, Viktor Senderov, Fredrik Ronquist, and David Broman. "Compiling Universal Probabilistic Programming Languages with Efficient Parallel Sequential Monte Carlo Inference." In Programming Languages and Systems, 29–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_2.
Full textMatsui, Atsushi, Simon Clippingdale, and Takashi Matsumoto. "A Sequential Monte Carlo Method for Bayesian Face Recognition." In Lecture Notes in Computer Science, 578–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11815921_63.
Full textLundén, Daniel, Gizem Çaylak, Fredrik Ronquist, and David Broman. "Automatic Alignment in Higher-Order Probabilistic Programming Languages." In Programming Languages and Systems, 535–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30044-8_20.
Full textPanayirci, E., H. A. Çirpan, M. Moeneclaey, and N. Noels. "Blind Phase Noise Estimation in OFDM Systems by Sequential Monte Carlo Method." In Multi-Carrier Spread-Spectrum, 483–90. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4437-2_52.
Full textSchikora, Marek, Wolfgang Koch, Roy Streit, and Daniel Cremers. "A Sequential Monte Carlo Method for Multi-target Tracking with the Intensity Filter." In Advances in Intelligent Signal Processing and Data Mining, 55–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28696-4_3.
Full textVerly, G. "Sequential Gaussian Simulation: A Monte Carlo Method for Generating Models of Porosity and Permeability." In Generation, Accumulation and Production of Europe’s Hydrocarbons III, 345–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77859-9_28.
Full textJiang, Mingyan, and Dongfeng Yuan. "Blind Estimation of Fast Time-Varying Multi-antenna Channels Based on Sequential Monte Carlo Method." In Lecture Notes in Computer Science, 482–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538356_50.
Full textReich, Sebastian. "A Guided Sequential Monte Carlo Method for the Assimilation of Data into Stochastic Dynamical Systems." In Recent Trends in Dynamical Systems, 205–20. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0451-6_10.
Full textWu, Yaohao, Wenying Liu, and Chen Liang. "A Reliability Evaluation Method of Generation and Transmission Systems Based on Sequential Monte-Carlo Simulation." In Lecture Notes in Electrical Engineering, 467–74. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4981-2_51.
Full textConference papers on the topic "Sequential Monte Carlo (SMC) method"
Colac¸o, Marcelo J., Helcio R. B. Orlande, Wellington B. da Silva, and George S. Dulikravich. "Application of a Bayesian Filter to Estimate Unknown Heat Fluxes in a Natural Convection Problem." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47652.
Full textYousefian, Sajjad, Gilles Bourque, Sandeep Jella, Philippe Versailles, and Rory F. D. Monaghan. "A Stochastic and Bayesian Inference Toolchain for Uncertainty and Risk Quantification of Rare Autoignition Events in DLE Premixers." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-83667.
Full textLee, Jae-young, Shahram Payandeh, and Ljiljana Trajkovic´. "The Internet-Based Teleoperation: Motion and Force Predictions Using the Particle Filter Method." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40495.
Full textGao, Hongzhi, and Richard Green. "A sequential Monte Carlo method for particle filters." In 2008 23rd International Conference Image and Vision Computing New Zealand (IVCNZ). IEEE, 2008. http://dx.doi.org/10.1109/ivcnz.2008.4762108.
Full textWen, Quan, and Jean Gao. "Tracking Interacting Subcellular Structures By Sequential Monte Carlo Method." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353259.
Full textMancasi, Monica, and Ramona Vatu. "Smart grids reliability indices assessment using sequential Monte Carlo method." In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165495.
Full textWen, Quan, Jean Gao, and Kate Luby-Phelps. "Multiple Interacting Subcellular Structure Tracking by Sequential Monte Carlo Method." In 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007). IEEE, 2007. http://dx.doi.org/10.1109/bibm.2007.28.
Full textTan, Hui, Xinmeng Chen, and Min Jiang. "Object Tracking based on Snake and Sequential Monte Carlo Method." In Sixth International Conference on Intelligent Systems Design and Applications. IEEE, 2006. http://dx.doi.org/10.1109/isda.2006.253863.
Full textHuda, A. S. N., and Rastko Zivanovic. "Distribution system reliability assessment using sequential multilevel Monte Carlo method." In 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia). IEEE, 2016. http://dx.doi.org/10.1109/isgt-asia.2016.7796499.
Full textErmolaev, Petr A., Maxim A. Volynsky, and Pavel A. Skakov. "Evaluation of interference fringe parameters using sequential Monte Carlo method." In SPIE Optical Metrology, edited by Peter Lehmann, Wolfgang Osten, and Armando Albertazzi Gonçalves. SPIE, 2015. http://dx.doi.org/10.1117/12.2184578.
Full textReports on the topic "Sequential Monte Carlo (SMC) method"
Acton, Scott T., and Bing Li. A Sequential Monte Carlo Method for Real-time Tracking of Multiple Targets. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada532576.
Full text