Journal articles on the topic 'Sequential deposition'

To see the other types of publications on this topic, follow the link: Sequential deposition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sequential deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, X., J. Ma, A. Maximenko, E. A. Olevsky, M. B. Stern, and B. M. Guenin. "Sequential deposition of copper/alumina composites." Journal of Materials Science 40, no. 12 (June 2005): 3293–95. http://dx.doi.org/10.1007/s10853-005-2704-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, X., J. Ma, A. Maximenko, E. A. Olevsky, M. B. Stern, and B. M. Guenin. "Sequential deposition of copper/alumina composites." Journal of Materials Science 40, no. 18 (September 2005): 4963–65. http://dx.doi.org/10.1007/s10853-005-3869-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eisenberg, Eli, and Asher Baram. "Diffusional relaxation in random sequential deposition." Journal of Physics A: Mathematical and General 30, no. 9 (May 7, 1997): L271—L276. http://dx.doi.org/10.1088/0305-4470/30/9/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ermanova, Inga, Narges Yaghoobi Nia, Enrico Lamanna, Elisabetta Di Bartolomeo, Evgeny Kolesnikov, Lev Luchnikov, and Aldo Di Carlo. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions." Energies 14, no. 6 (March 22, 2021): 1751. http://dx.doi.org/10.3390/en14061751.

Full text
Abstract:
In this paper, we demonstrate the high potentialities of pristine single-cation and mixed cation/anion perovskite solar cells (PSC) fabricated by sequential method deposition in p-i-n planar architecture (ITO/NiOX/Perovskite/PCBM/BCP/Ag) in ambient conditions. We applied the crystal engineering approach for perovskite deposition to control the quality and crystallinity of the light-harvesting film. The formation of a full converted and uniform perovskite absorber layer from poriferous pre-film on a planar hole transporting layer (HTL) is one of the crucial factors for the fabrication of high-performance PSCs. We show that the in-air sequential deposited MAPbI3-based PSCs on planar nickel oxide (NiOX) permitted to obtain a Power Conversion Efficiency (PCE) exceeding 14% while the (FA,MA,Cs)Pb(I,Br)3-based PSC achieved 15.6%. In this paper we also compared the influence of transporting layers on the cell performance by testing material depositions quantity and thickness (for hole transporting layer), and conditions of deposition processes (for electron transporting layer). Moreover, we optimized second step of perovskite deposition by varying the dipping time of substrates into the MA(I,Br) solution. We have shown that the layer by layer deposition of the NiOx is the key point to improve the efficiency for inverted perovskite solar cell out of glove-box using sequential deposition method, increasing the relative efficiency of +26% with respect to reference cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Kant, Pallav, Andrew L. Hazel, Mark Dowling, Alice B. Thompson, and Anne Juel. "Sequential deposition of microdroplets on patterned surfaces." Soft Matter 14, no. 43 (2018): 8709–16. http://dx.doi.org/10.1039/c8sm01373j.

Full text
Abstract:
We use a combination of experiments and numerical modelling to investigate the influence of physico-chemical-patterned substrates on the spreading of fluid deposited as a partially overlapping sequence of droplets via inkjet printing. We find that both topography and wettability variations are required for robust pixel filling without overspill.
APA, Harvard, Vancouver, ISO, and other styles
6

NOVOTNY, M. A., and A. KOLAKOWSKA. "MIXING DIFFERENT RANDOM DEPOSITIONS IN NONEQUILIBRIUM SURFACE GROWTH MODELS." International Journal of Modern Physics C 20, no. 09 (September 2009): 1377–85. http://dx.doi.org/10.1142/s0129183109014448.

Full text
Abstract:
An exact solution is presented for mixing two or more different types of Random Deposition (RD) nonequilibrium surface growth processes. The depositions may be made in a sequential mode, or in a random mode by first randomly choosing the lattice site for deposition. The results hold in all dimensions d. Simulations are presented in d = 1 for comparison. Furthermore, a mean-field type of approach to mixing RD with other surface growth processes is tested against the exact solution.
APA, Harvard, Vancouver, ISO, and other styles
7

Groenendijk, D. J., and S. Gariglio. "Sequential pulsed laser deposition of homoepitaxial SrTiO3thin films." Journal of Applied Physics 120, no. 22 (December 14, 2016): 225307. http://dx.doi.org/10.1063/1.4971865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Lijian, Chunyan Wu, Weifeng Liu, Shangfeng Yang, Mingtai Wang, Tao Chen, and Changfei Zhu. "Sequential deposition route to efficient Sb2S3 solar cells." Journal of Materials Chemistry A 6, no. 43 (2018): 21320–26. http://dx.doi.org/10.1039/c8ta08296k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Penrose, Mathew D., and J. E. Yukich. "Limit Theory for Random Sequential Packing and Deposition." Annals of Applied Probability 12, no. 1 (February 2002): 272–301. http://dx.doi.org/10.1214/aoap/1015961164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Danwanichakul, Panu, and Eduardo D. Glandt. "Sub-monolayer growth by sequential deposition of particles." Journal of Colloid and Interface Science 294, no. 1 (February 2006): 38–46. http://dx.doi.org/10.1016/j.jcis.2005.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lau, Y. L., I. G. Droppo, and B. G. Krishnappan. "Sequential erosion/deposition experiments—demonstrating the effects of depositional history on sediment erosion." Water Research 35, no. 11 (August 2001): 2767–73. http://dx.doi.org/10.1016/s0043-1354(00)00559-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Morino, Yusuke, Yuta Kanai, Akihito Imanishi, Yasuyuki Yokota, and Ken-ichi Fukui. "Fabrication of ionic liquid ultrathin film by sequential deposition." Japanese Journal of Applied Physics 53, no. 5S1 (January 1, 2014): 05FY01. http://dx.doi.org/10.7567/jjap.53.05fy01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hass, N., U. Dai, and G. Deutscher. "Sequential deposition of YBaCuO thin film on sapphire substrates." Superconductor Science and Technology 4, no. 1S (January 1, 1991): S262—S264. http://dx.doi.org/10.1088/0953-2048/4/1s/073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Philosophical Magazine B 79, no. 4 (April 1999): 625–42. http://dx.doi.org/10.1080/13642819908205739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aubin, Eric, and Laurent J. Lewis. "Growth of metallic superlattices by sequential deposition of atoms." Physical Review B 47, no. 11 (March 15, 1993): 6780–83. http://dx.doi.org/10.1103/physrevb.47.6780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Karandikar, Prathamesh, and Malancha Gupta. "Fabrication of ionic liquid gel beads via sequential deposition." Thin Solid Films 635 (August 2017): 17–22. http://dx.doi.org/10.1016/j.tsf.2017.01.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Penrose, Mathew D. "Limit theorems for monotonic particle systems and sequential deposition." Stochastic Processes and their Applications 98, no. 2 (April 2002): 175–97. http://dx.doi.org/10.1016/s0304-4149(01)00152-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pitt, William G., Kinam Park, and Stuart L. Cooper. "Sequential protein adsorption and thrombus deposition on polymeric biomaterials." Journal of Colloid and Interface Science 111, no. 2 (June 1986): 343–62. http://dx.doi.org/10.1016/0021-9797(86)90039-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Applied Physics A Materials Science & Processing 63, no. 3 (September 1996): 217–21. http://dx.doi.org/10.1007/bf01567872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mazzone, A. M. "Molecular dynamics simulations of sequential deposition of metallic superlattices." Applied Physics A: Materials Science & Processing 63, no. 3 (August 27, 1996): 217–21. http://dx.doi.org/10.1007/s003390050375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhao, Yixin, and Kai Zhu. "Three-step sequential solution deposition of PbI2-free CH3NH3PbI3perovskite." Journal of Materials Chemistry A 3, no. 17 (2015): 9086–91. http://dx.doi.org/10.1039/c4ta05384b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vandewalle, N., S. Galam, and M. Kramer. "A new universality for random sequential deposition of needles." European Physical Journal B 14, no. 3 (March 2000): 407–10. http://dx.doi.org/10.1007/s100510051047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schaaf, Pierre, Jean-Claude Voegel, and Bernard Senger. "From Random Sequential Adsorption to Ballistic Deposition: A General View of Irreversible Deposition Processes." Journal of Physical Chemistry B 104, no. 10 (March 2000): 2204–14. http://dx.doi.org/10.1021/jp9933065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Stephanie, Chaltiel, Bravo Maite, and Ibrahim Abdullah. "Adaptive Strategies for Mud Shell Robotic Fabrication." International Journal of Environmental Science & Sustainable Development 3, no. 2 (December 31, 2018): 64. http://dx.doi.org/10.21625/essd.v3iss2.382.

Full text
Abstract:
The digital fabrication of monolithic shell structures is presenting some challenges related to the interface between computational design, materialist, and fabrication techniques. This research proposes a singular method for the sequential robotic spray deposition in layers of diverse clay mixes over a temporary fabric form-work pulled in between peripheral and cross section arches. This process relies mainly on the continuity of the construction phases for stability and durability but has encountered some challenges in physical tests related to sagging, displacement, and deformations during the robotic deposition of the material. Adaptive strategies during the digital fabrication stages are proposed for a sequential exploration of the geometry, structural analysis, and construction techniques. Alternative adjustments of protocols for the robotic material deposition include both predictable and unsuspected behaviors preventing the structure to reach non-viable geometric thresholds. Two case studies of physical tests describe, analyze, and simulate some of these strategies and identify specific parameters inquiring the sequential adjustments of the robotic material deposition. These strategies will drive future full-scale tests within a sustainable use of materials and adaptive construction methods, seeking an optimized structural performance that could open a new chapter for the digital fabrication of earthen shells.
APA, Harvard, Vancouver, ISO, and other styles
25

Borbora, Angana, and Uttam Manna. "Synthesis of orthogonally reactive multilayered microcapsules." Chemical Communications 56, no. 57 (2020): 7853–56. http://dx.doi.org/10.1039/d0cc00618a.

Full text
Abstract:
An orthogonally chemically reactive microcapsule is derived from a single polymer following a layer-by-layer-deposition process, where a 1,4 conjugate addition reaction provided a basis for sequential deposition of a chemically reactive nanocomplex.
APA, Harvard, Vancouver, ISO, and other styles
26

Gao, Yuan, Omid Zandi, and Thomas W. Hamann. "Atomic layer stack deposition-annealing synthesis of CuWO4." Journal of Materials Chemistry A 4, no. 8 (2016): 2826–30. http://dx.doi.org/10.1039/c5ta06899a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Thompson, Alice B., Carl R. Tipton, Anne Juel, Andrew L. Hazel, and Mark Dowling. "Sequential deposition of overlapping droplets to form a liquid line." Journal of Fluid Mechanics 761 (November 21, 2014): 261–81. http://dx.doi.org/10.1017/jfm.2014.621.

Full text
Abstract:
AbstractMicrodroplet deposition is a technology that spans applications from tissue engineering to microelectronics. Our new high-speed imaging measurements reveal how sequential linear deposition of overlapping droplets on flat uniform substrates leads to striking non-uniform morphologies for moderate contact angles. We develop a simple physical model, which for the first time captures the post-impact dynamics drop-by-drop: surface-tension drives liquid redistribution, contact-angle hysteresis underlies initial non-uniformity, while viscous effects cause subsequent periodic variations.
APA, Harvard, Vancouver, ISO, and other styles
28

Pantaler, Martina, Christian Fettkenhauer, Hoang L. Nguyen, Irina Anusca, and Doru C. Lupascu. "Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications." MRS Advances 3, no. 32 (2018): 1819–23. http://dx.doi.org/10.1557/adv.2018.151.

Full text
Abstract:
ABSTRACTThe lead free double perovskite Cs2AgBiBr6 is an upcoming alternative to lead based perovskites as absorber material in perovskite solar cells. So far, the majority of investigations on this interesting material have focused on polycrystalline powders and single crystals. We present vapor and solution based approaches for the preparation of Cs2AgBiBr6 thin films. Sequential vapor deposition processes starting from different precursors are shown and their weaknesses are discussed. Single source evaporation of Cs2AgBiBr6 and sequential deposition of Cs3Bi2Br9 and AgBr result in the formation of the double perovskite phase. Additionally, we show the possibility of the preparation of planar Cs2AgBiBr6 thin films by spin coating.
APA, Harvard, Vancouver, ISO, and other styles
29

Case, Francine C. "Deposition and patterning of Y‐Ba‐Cu‐O superconducting thin films by sequential multilayer deposition." Journal of Applied Physics 67, no. 9 (May 1990): 4365–67. http://dx.doi.org/10.1063/1.344929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Aloui, Lyacine, Thomas Duguet, Fanta Haidara, Marie-Christine Record, Diane Samélor, François Senocq, Dominique Mangelinck, and Constantin Vahlas. "Al–Cu intermetallic coatings processed by sequential metalorganic chemical vapour deposition and post-deposition annealing." Applied Surface Science 258, no. 17 (June 2012): 6425–30. http://dx.doi.org/10.1016/j.apsusc.2012.03.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Johansson, A., J. Lu, J. O. Carlsson, and M. Boman. "Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition." Journal of Applied Physics 96, no. 9 (November 2004): 5189–94. http://dx.doi.org/10.1063/1.1788843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Choo, Youngwoo, Hanqiong Hu, Kristof Toth, and Chinedum O. Osuji. "Sequential deposition of block copolymer thin films and formation of lamellar heterolattices by electrospray deposition." Journal of Polymer Science Part B: Polymer Physics 54, no. 2 (September 27, 2015): 247–53. http://dx.doi.org/10.1002/polb.23913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Olson, Darin S., Michael A. Kelly, Sanjiv Kapoor, and Stig B. Hagstrom. "Sequential deposition of diamond from sputtered carbon and atomic hydrogen." Journal of Applied Physics 74, no. 8 (October 15, 1993): 5167–71. http://dx.doi.org/10.1063/1.354281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zirkle, Thomas E., Syd R. Wilson, Sam L. Sundaram, Timothy S. Cale, and Gregory B. Raupp. "Sequential deposition of SiO2 and poly‐Si in isolation trenches." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 4 (July 1993): 905–10. http://dx.doi.org/10.1116/1.578325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dianat, Golnaz, and Malancha Gupta. "Sequential deposition of patterned porous polymers using poly(dimethylsiloxane) masks." Polymer 126 (September 2017): 463–69. http://dx.doi.org/10.1016/j.polymer.2017.05.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ma, Jie, Henitsoa M. Andriambololona, Damien Quemener, and Mona Semsarilar. "Membrane preparation by sequential spray deposition of polymer PISA nanoparticles." Journal of Membrane Science 548 (February 2018): 42–49. http://dx.doi.org/10.1016/j.memsci.2017.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lin, Wen-Hsiung, and Hsin-Fu Chang. "Characterizations of Pd–Ag membrane prepared by sequential electroless deposition." Surface and Coatings Technology 194, no. 1 (April 2005): 157–66. http://dx.doi.org/10.1016/j.surfcoat.2004.07.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dinescu, M., A. Perrone, A. P. Caricato, L. Mirenghi, C. Gerardi, C. Ghica, and L. Frunza. "Boron carbon nitride films deposited by sequential pulses laser deposition." Applied Surface Science 127-129 (May 1998): 692–96. http://dx.doi.org/10.1016/s0169-4332(97)00727-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pérez, Edgar Serrano, Javier Serrano Pérez, Fernando Martínez Piñón, José Manuel Juárez García, Omar Serrano Pérez, and Fernando Juárez López. "Sequential microcontroller-based control for a chemical vapor deposition process." Journal of Applied Research and Technology 15, no. 6 (December 2017): 593–98. http://dx.doi.org/10.1016/j.jart.2017.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Stanley, Kevin G., Eva K. Czyzewska, Tom P. K. Vanderhoek, Lilian L. Y. Fan, Keith A. Abel, Q. M. Jonathan Wu, and M. (Ash) Parameswaran. "A hybrid sequential deposition fabrication technique for micro fuel cells." Journal of Micromechanics and Microengineering 15, no. 10 (September 6, 2005): 1979–87. http://dx.doi.org/10.1088/0960-1317/15/10/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Webb, D. J., R. G. Walmsley, K. Parvin, P. H. Dickinson, T. H. Geballe, and R. M. White. "Sequential deposition and metastable states in rare-earth/Co films." Physical Review B 32, no. 7 (October 1, 1985): 4667–75. http://dx.doi.org/10.1103/physrevb.32.4667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ding, Xihong, Yingke Ren, Yahan Wu, Yafeng Xu, Jun Zhu, Tasawar Hayat, Ahmed Alsaedi, Zhaoqian Li, Yang Huang, and Songyuan Dai. "Sequential deposition method fabricating carbonbased fully-inorganic perovskite solar cells." Science China Materials 61, no. 1 (October 27, 2017): 73–79. http://dx.doi.org/10.1007/s40843-017-9117-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bayrakçeken, Ayşe, Betül Cangül, L. C. Zhang, Mark Aindow, and Can Erkey. "PtPd/BP2000 electrocatalysts prepared by sequential supercritical carbon dioxide deposition." International Journal of Hydrogen Energy 35, no. 21 (November 2010): 11669–80. http://dx.doi.org/10.1016/j.ijhydene.2010.08.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Strange, Lyndi E., Sourav Garg, Patrick Kung, Md Ashaduzzaman, Gregory Szulczewski, and Shanlin Pan. "Electrodeposited Transition Metal Dichalcogenides for Use in Hydrogen Evolution Electrocatalysts." Journal of The Electrochemical Society 169, no. 2 (February 1, 2022): 026510. http://dx.doi.org/10.1149/1945-7111/ac4f25.

Full text
Abstract:
Hydrogen is a promising alternative to gasoline due to its higher energy density and ability to burn cleanly only producing H2O as a by-product. Electrolytic water splitting is an effective technique for generating molecular hydrogen. However, for hydrogen to be a viable alternative energy source to be produced from water electrolysis, affordable and durable electrocatalysts need to be developed to replace platinum. Transition metal dichalcogenides (TMDs) are a promising alternative since they are abundant, inexpensive, and have a tunable structure. There are various ways to produce TMD films including chemical and mechanical exfoliation, chemical vapor deposition (CVD), and electrodeposition. Exfoliation and CVD techniques often require a transfer of TMDs from the growth substrate to an electrode, which introduces impurities and possible defects to the film. Electrodeposition, however, provides a way to produce TMDs directly onto the electrode with excellent surface coverage. This work uses electrodeposition to produce TMD and TMD bilayer electrodes using sequential electrodeposition for electrocatalytic hydrogen evolution reaction (HER). The results presented include cost-effective deposition techniques along with enhanced proton reduction activity for the sequentially deposited bilayer TMD structure consisting of MoS2 and MoSe2, which suggests the electron transfer kinetics from the conductive glass substrate to the top-layer is enhanced with a MoS2 layer. Furthermore, the bilayer structures synthesized by sequential deposition are characterized via XPS, XPS depth-profiling, and SEM-EDS for enhanced understanding of the fabricated structure.
APA, Harvard, Vancouver, ISO, and other styles
45

Ratnayake, Samantha Prabath, Jiawen Ren, Joel van Embden, Chris F. McConville, and Enrico Della Gaspera. "SILAR deposition of bismuth vanadate photoanodes for photoelectrochemical water splitting." Journal of Materials Chemistry A 9, no. 45 (2021): 25641–50. http://dx.doi.org/10.1039/d1ta07710d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Marinotto, D., S. G. Danelli, A. Giaretta, E. Lucenti, P. Stadler, E. Tordin, G. Mattei, G. Scavia, R. Ugo, and E. Cariati. "Thermal layer-by-layer preparation of oriented films of a Cu(i) ionic inorganic–organic hybrid material showing semiconducting and SHG properties." Journal of Materials Chemistry C 4, no. 29 (2016): 7077–82. http://dx.doi.org/10.1039/c6tc02388f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ramachandran, Ranjith K., Jolien Dendooven, Jonas Botterman, Sreeprasanth Pulinthanathu Sree, Dirk Poelman, Johan A. Martens, Hilde Poelman, and Christophe Detavernier. "Plasma enhanced atomic layer deposition of Ga2O3thin films." J. Mater. Chem. A 2, no. 45 (2014): 19232–38. http://dx.doi.org/10.1039/c4ta05007j.

Full text
Abstract:
We demonstrate an ALD process for Ga2O3that relies upon sequential pulsing of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)gallium(iii), [Ga(TMHD)3] and O2plasma and enables the deposition from temperatures as low as 100 °C.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Ge, Taiyang Zhang, and Yixin Zhao. "Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance." Journal of Materials Chemistry A 3, no. 39 (2015): 19674–78. http://dx.doi.org/10.1039/c5ta06172e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Volk, Kirsten, Florian Deißenbeck, Suvendu Mandal, Hartmut Löwen, and Matthias Karg. "Moiré and honeycomb lattices through self-assembly of hard-core/soft-shell microgels: experiment and simulation." Physical Chemistry Chemical Physics 21, no. 35 (2019): 19153–62. http://dx.doi.org/10.1039/c9cp03116b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

NIELABA, P., and V. PRIVMAN. "RANDOM SEQUENTIAL ADSORPTION ON A LINEAR LATTICE: EFFECT OF DIFFUSIONAL RELAXATION." Modern Physics Letters B 06, no. 09 (April 20, 1992): 533–39. http://dx.doi.org/10.1142/s0217984992000612.

Full text
Abstract:
We offer phenomenological arguments, supported by numerical Monte Carlo data, suggesting that the asymptotic large-time behavior of the coverage in the 1D lattice deposition of k-mers with k > 3, accompanied by k-mer diffusion, is governed by the same mean-field dynamics as the lattice chemical reaction [Formula: see text]. The latter reaction is considered to occur with partial probability. The coverage in the deposition process approaches full saturation for any nonzero diffusion rate, and the void fraction decreases according to the power-law t−1/(k−1).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography