Contents
Academic literature on the topic 'Séquence d’adressage à la mitochondrie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Séquence d’adressage à la mitochondrie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Séquence d’adressage à la mitochondrie"
Nashed, Salomé. "Étude fonctionnelle et évolutive du résidu situé en position 2 des protéines." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS219.
Full textThe residue located at position 2 of proteins, following their initiator methionine, is a key signal for the co-translational recruitment of various modification enzymes that early impact their cellular fate (addressing, folding, half-life). Although the importance of this residue is established for a few proteins, its role at the global scale of the proteome and the nature of the selective pressures it may be subject to remain unexplored to this day. During my thesis, I used for the first time global analysis methodologies to conduct a functional and evolutionary study of the residue located at position 2 of proteins. I used two complementary in silico approaches developed in the model yeast Saccharomyces cerevisiae. The first approach I used is the study of modification enzymes whose recruitment depends on the residue at position 2 of their targets. I focused in particular on N-acetyltransferases. These enzymes have the same enzymatic activity of N-acetylation but target distinct subsets of proteins, and their deletions are associated with different phenotypes, raising the question of the specific role of each enzyme in cellular physiology. Through the analysis of experimental data related to these enzymes, I characterized their global selectivity in vivo and formally demonstrated that they indeed have differential physiological roles. The second approach I used is the study of the distribution of amino acids at position 2 in the proteome and in functional groups of proteins defined by the Gene Ontology. While current tools used to perform Gene Ontology analyses do not take into account the hierarchical structure of this resource, I developed an algorithm to synthesize and visualize the results obtained by such analyses to facilitate their interpretation. This approach allowed the identification of groups of proteins that present a distinct amino acid usage at position 2 compared to that observed in the proteome at this position. These two global analysis methods converged toward the same result, namely that mitochondrial precursors possessing an N-terminal addressing sequence (MTS for mitochondrial targeting sequence) exhibit at position 2 an overrepresentation of large hydrophobic residues, critical for their import into mitochondria and enabling their recognition by the NatC acetyltransferase. The amino acid bias at position 2 of MTS is highly conserved in the Saccharomycotina lineage and has partially evolved in humans and the plant Arabidopsis thaliana. I also highlighted the existence of several categories of MTS depending on the nature of the residue they carry at position 2, which may indicate co-evolution of position 2 of MTS and their overall composition and raises the question of optimal properties of these sequences. Finally, I showed that yeast signal peptides and the chloroplast N-terminal addressing sequence in Arabidopsis thaliana also exhibit amino acid biases at position 2, suggesting that the residue at this position could play a key role in the recognition of these sequences by associated addressing and import systems
El, Barbry Houssam. "Découverte du rôle crucial du résidu en position 2 des séquences MTS d’adressage mitochondrial." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS035.
Full textMitochondria are complex organelles involving a thousand proteins, most of which are encoded in the nuclear genome. Their biogenesis has required the evolutionary development of efficient protein addressing and import systems, and failures of these systems are associated with serious pathologies, neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancers.Many mitochondrial proteins have an N-terminal addressing sequence called MTS (Mitochondrial Targeting Sequence) which forms an amphiphilic alpha helix essential for their mitochondrial import. However, the sequence of the various MTSs is highly variable and their critical characteristics are not yet well understood. The starting point of my thesis was the discovery in yeast of an overrepresentation of 4 hydrophobic amino acids (F, L, I, W) at position 2 of the MTSs sequences. During my thesis, I was able to confirm the critical role of the nature of the residue in position 2 of the MTSs through directed mutagenesis experiments. Indeed, thanks to the development of an innovative system for screening import defects based on the functional rescue of the toxicity of a mitochondrial protein, I was able to observe that only residues overrepresented at position 2 of mitochondrial proteins allowed efficient import. My work has thus demonstrated the existence of strong evolutionary constraints at position 2 of MTSs, the understanding of which could ultimately be useful for optimising the mitochondrial addressing of therapeutic proteins in patients suffering from mitochondrial diseases
Le, Gall Sophie. "Recherche de protéines utilisant des systèmes d’import alternatifs pour leur adressage vers les chloroplastes." Rouen, 2009. http://www.theses.fr/2009ROUES019.
Full textOne important mechanism that participates in the regulation of accumulation of plastid proteins is the protein targeting that allows import of thousands of nuclear encoded proteins to the chloroplast. Recent studies have revealed intriguing arrays of alternative or noncanonical chloroplast import pathways. In this context, the aim of this study was to identify other plastid proteins trafficking through these alternative targeting pathways and to understand the mechanisms that control these pathways. Two complementary approaches have been initiated. The first one was based on specific glycoprotein isolation methods. The second strategy was based on a systematic proteomic analysis, targeted to Arabidopsis subplastidial fractions, and followed by in silico identification of proteins containing noncanonical targeting sequences. Subcellular localization analyses of selected proteins reveal that some of these proteins are targeted to chloroplasts while lacking any classical N-terminal signal
Garrido, Clotilde. "De l’origine des peptides d’adressage aux organites (mitochondries et chloroplastes)." Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS280.pdf.
Full textMitochondria and chloroplasts are eukaryotic organelles that originated from endosymbiotic events betweena bacteria and a host cell more than a billion years ago. Today, the vast majority of proteins present in theseorganelles are encoded in the nucleus. Targeting of cytosolic proteins to mitochondria and chloroplasts couldderive from a mechanism of bacterial resistance to the attacks of antimicrobial peptides, major actors of theinnate immunity system, present in all domains of life. This hypothesis is based on the striking similaritiesbetween these two mechanisms. During my PhD, I challenged this hypothesis. In a first part, I showed thata subset of antimicrobial peptides structuring in ↵-amphipathic helix and organelle targeting peptides havecommon physico-chemical properties, distinct from those shared by bacterial and eukaryotic secretory signalpeptides whose common evolutionary origin is well established. Furthermore, they can functionally complementeach other, supporting the hypothesis of their common origin (Garrido et al. 2020). The molecular transitionrequired for the emergence of a targeting peptide from an antimicrobial peptide involves 3 crucial steps : (i)the replacement of lysines with arginines, which decreases microbial activity and promotes addressing activity,(ii) the acquisition of a cleavage site and (iii) the acquisition of a loosely structured N-terminal domain forchloroplast specific targeting within photosynthetic eukaryotes (Caspari, Garrido et al. , submitted). In asecond part, I established the exhaustive catalog of peptidase homologous families involved in the degradationof taregting peptides across the tree of life. I showed that each of these peptidases was acquired via a horizontaltransfer event from a bacterium; and consistent with the hypothesis, many homologs from antimicrobialpeptide-resistant bacterial are closely related to the organelle peptidases (Garrido et al., submitted)
Pelissier, Patrick. "Etude de mutants nucléaires modifiés dans l'expression de la synthèse mitochondriale des sous-unités 8 et 6 du secteur Fo de l'ATP synthase chez Saccharomyces cerevisiae." Bordeaux 2, 1994. http://www.theses.fr/1994BOR28306.
Full textThese works concerned the study of respiratory-competent nuclear mutants of the yeast S. Cerevisiae, altered in the mitochondrial synthesis of subunits 8 and 6 of the ATPsynthase. These strains are altered in the regulation of the ATP synthesis by the external phosphate concentration. It was due to a modification of the relative stoichiometry of the mt DNA-encoded 8, 6 and 9 subunits which results in an enhanced proton-leakage through the inner membrane. The mitochondrial transcripts has permitted to correlate the decrease in the subunits 6 and 8 ratio with a specific modification of cotranscript ATP8-ATP6. Genetic analysis of these mutants showed the presence of two unlinked mutations always associated with a mitochondrial mutation, which confered a paromomycin sensitivity, an inhibitor of the mitochondrial protein synthesis. The nucleic sequence of 15S rRNA and VAR1 mRNA, two components of mitoribosomes encoded by mitochondrial DNA, were studied : no difference exist between mutant and wild-type strains. The simultaneous presence of the two mutant nuclear genes induced a cryosensitive phenotype on a nonfermentable carbon source. Then, the two wild-type genes were cloned by functional complementation. Two nuclear genes NCA2 and NCA3, involved in the specific expression of subunits 8 and 6 of the ATPsynthase, were isolated and sequenced. No significant homologies with known proteins were identified in data bases. NCA2 and NCA3 are two single-copy genes which encode for proteins of molecular mass of 70800 and 35400 Da respectively. NCA2 is located on chromosome 16 and NCA3 on chromosome 4. A null mutation of each gene did not let to a respiratory-incompetent phenotype
Chaïb, Foad. "Biodiversité génétique des souches d'Aspergillus fumigatus et caractérisation de deux haplotypes mitochondriaux générés par recombinaison de la séquence AFM-RS1 : intérêts pour le typage moléculaire des souches." Lyon 1, 1999. http://www.theses.fr/1999LYO1T199.
Full textShen, Yaoqing. "In silico analysis of mitochondrial proteins." Thèse, 2009. http://hdl.handle.net/1866/3766.
Full textThe important role of mitochondria in the eukaryotic cell has long been appreciated, but their exact composition and the biological processes taking place in mitochondria are not yet fully understood. The two main factors that slow down the progress in this field are inefficient recognition and imprecise annotation of mitochondrial proteins. Therefore, we developed a new computational tool, YimLoc, which effectively predicts mitochondrial proteins from genomic sequences. This tool integrates the strengths of existing predictors and yields higher performance than any individual predictor. We applied YimLoc to ~60 fungal genomes in order to address the controversy about the localization of beta oxidation in these organisms. Our results show that in contrast to previous studies, most fungal groups do possess mitochondrial beta oxidation. This work also revealed the diversity of beta oxidation in fungi, which correlates with their utilization of fatty acids as energy and carbon sources. Further, we conducted an investigation of the key component of the mitochondrial beta oxidation pathway, the acyl-CoA dehydrogenase (ACAD). We combined subcellular localization prediction with subfamily classification and phylogenetic inference of ACAD enzymes from 250 species covering all three domains of life. Our study suggests that ACAD genes are an ancient family with innovative evolutionary strategies to generate a large enzyme toolset for utilizing most diverse fatty acids and amino acids. Finally, to enable the prediction of mitochondrial proteins from data beyond genome sequences, we designed the tool TESTLoc that uses expressed sequence tags (ESTs) as input. TESTLoc performs significantly better than known tools. In addition to providing two new tools for subcellular localization designed for different data, our studies demonstrate the power of combining subcellular localization prediction with other in silico analyses to gain insights into the function of mitochondrial proteins. Most importantly, this work proposes clear hypotheses that are easily testable, with great potential for advancing our knowledge of mitochondrial metabolism.