Academic literature on the topic 'Séquençage lectures courtes et longues'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Séquençage lectures courtes et longues.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Séquençage lectures courtes et longues"

1

Audebert, Christophe, David Hot, and Ségolène Caboche. "Séquençage par nanopores." médecine/sciences 34, no. 4 (April 2018): 319–25. http://dx.doi.org/10.1051/medsci/20183404012.

Full text
Abstract:
Le séquençage haut-débit a ouvert de nouvelles perspectives cliniques nous orientant aujourd’hui vers une médecine de précision. Cancérologie, infectiologie ou génomique humaine, de nombreuses applications ont vu le jour ces dernières années. L’arrivée sur le marché d’une troisième génération de technologie de séquençage fondée sur les nanopores, palliant certaines faiblesses de la génération précédente, annonce une nouvelle révolution. Portabilité, temps réel, lectures longues et coût d’investissement marginal, ces nouvelles technologies prometteuses laissent présager un nouveau changement de paradigme. Quelles sont les perspectives ouvertes par les nanopores pour les applications cliniques ?
APA, Harvard, Vancouver, ISO, and other styles
2

GUY, G., and L. FORTUN-LAMOTHE. "Avant-propos." INRAE Productions Animales 26, no. 5 (December 19, 2013): 387–90. http://dx.doi.org/10.20870/productions-animales.2013.26.5.3167.

Full text
Abstract:
Ce numéro de la revue INRA Productions Animales contient un dossier consacré aux dernières avancées de la recherche sur le foie gras. En effet, la démocratisation de la consommation de ce produit haut de gamme a été permise notamment par les efforts de recherche et développement sur l’élevage des palmipèdes à foie gras et la maîtrise de la qualité du produit. Ce dossier est l’occasion de faire en préalable quelques rappels sur cette belle histoire ! Un peu d’histoire La pratique du gavage est une tradition très ancienne, originaire d’Egypte, dont les traces remontent à 2 500 avant JC. Elle avait pour objectif d’exploiter la capacité de certains oiseaux à constituer des réserves énergétiques importantes en un temps court pour disposer d’un aliment très riche. Si les basreliefs datant de l’ancien empire égyptien attestent de la pratique du gavage, il n’existe pas de preuves que les égyptiens consommaient le foie gras ou s’ils recherchaient la viande et la graisse. Ces preuves sont apparues pour la première fois dans l’empire romain. Les romains gavaient les animaux avec des figues et pour eux le foie constituait le morceau de choix. Le nom de jecur ficatum, signifiant « foie d’un animal gavé aux figues », est ainsi à l’origine du mot foie en français. La production de foie gras s’est développée dans le Sud-ouest et l’Est de la France aux XVIIe et XVIIIe siècles avec le développement de la culture du maïs. Le foie gras est aujourd’hui un met inscrit au patrimoine culturel et gastronomique français (article L. 654-27-1 du code rural défini par la Loi d’Orientation Agricole de 2006). Le contexte de la production de foie gras Avec près de 72% de la production mondiale en 2012, la France détient le quasi monopole de la production de foie gras. Les autres pays ayant des productions significatives sont la Hongrie et la Bulgarie en Europe Centrale, avec environ 10% pour chacun de ces pays, mais aussi l’Espagne avec 3% de la production. L’Amérique du nord et la Chine représentent les deux autres pôles de production les plus significatifs, mais avec moins de 2% du marché. La production française a connu un essor considérable, sans doute le plus important de toutes les productions agricoles, passant de 5 880 tonnes en 1990 à plus de 19 000 tonnes en 2012. A l’origine, le foie gras était principalement obtenu par gavage des oies, longtemps considérées comme l’animal emblématique de cette production. Aujourd’hui, le canard mulard, hybride d’un mâle de Barbarie (Cairina Moschata) et d’une cane commune (Anas Platyrhynchos), est plus prisé (97% des palmipèdes gavés en France). En France, l’oie a vu de ce fait sa part relative pour la production de foie gras diminuer, et c’est la Hongrie qui contrôle 65% de la production mondiale de foie gras d’oie. Toutefois, cette espèce ne représente que 10% de la production mondiale. La France est également le principal pays consommateur de foie gras avec 71% du total, l’Espagne se classant au second rang avec environ 10%. Compte tenu de son image de produit de luxe et d’exception, le foie gras est consommé un peu partout dans le monde lors des repas de haute gastronomie. Les grandes avancées de connaissance et l’évolution des pratiques d’élevage L’amélioration des connaissances sur la biologie et l’élevage des palmipèdes à foie gras a permis de rationnaliser les pratiques d’élevage et d’améliorer la qualité du produit. Plusieurs laboratoires de recherche et structures expérimentales, ayant leurs installations propres et/ou intervenant sur le terrain, ont contribué à l’acquisition de ces connaissances : l’INRA avec l’Unité Expérimentale des Palmipèdes à Foie Gras, l’UMR Tandem, le Laboratoire de Génétique Cellulaire, la Station d’Amélioration Génétique des Animaux et l’UR Avicoles, l’Institut Technique de l’AVIculture, la Ferme de l’Oie, le Centre d’Etudes des Palmipèdes du Sud Ouest, le LEGTA de Périgueux, l’ENSA Toulouse, l’ENITA Bordeaux et l’AGPM/ADAESO qui a mis fin en 2004 à ses activités sur les palmipèdes à foie gras. Aujourd’hui ces structures fédèrent leurs activités dans un but de rationalité et d’efficacité. Les avancées des connaissances et leur transfert dans la pratique, associés à une forte demande du marché, sont à l’origine de l’explosion des volumes de foie gras produits. Ainsi, la maîtrise de la reproduction couplée au développement de l’insémination artificielle de la cane commune et à la sélection génétique (Rouvier 1992, Sellier et al 1995) ont permis la production à grande échelle du canard mulard adapté à la production de foie gras. En effet, ses géniteurs, le mâle de Barbarie et la femelle Pékin, ont fait l’objet de sélections spécifiques basées sur l’aptitude au gavage et la production de foie gras de leurs descendants. La connaissance des besoins nutritionnels des animaux et le développement de stratégies d’alimentation préparant les animaux à la phase de gavage ont également été des critères déterminants pour la rationalisation d’un système d’élevage (Robin et al 2004, Bernadet 2008, Arroyo et al 2012). La filière s’est par ailleurs structurée en une interprofession (le Comité Interprofessionnel du Foie Gras - CIFOG) qui soutient financièrement des travaux de recherches et conduit des actions (organisation de salons du foie gras par exemple) visant à rendre accessibles toutes les avancées de la filière. Ainsi, l’amélioration du matériel d’élevage (gaveuse hydraulique et logement de gavage) a engendré des gains de productivité considérables (Guy et al 1994). Par exemple, en 20 ans, la taille d’une bande de gavage est passée de deux cents à mille individus. Enfin, la construction de salles de gavage, dont l’ambiance est parfaitement contrôlée autorise désormais la pratique du gavage en toute saison. Des études ont aussi permis de déterminer l’influence des conditions d’abattage et de réfrigération sur la qualité des foies gras (Rousselot-Pailley et al 1994). L’ensemble de ces facteurs a contribué à ce que les possibilités de production soient en cohérence avec la demande liée à un engouement grandissant pour le foie gras. Les pratiques d’élevage actuelles Aujourd’hui, le cycle de production d’un palmipède destiné à la production de foie gras comporte deux phases successives : la phase d’élevage, la plus longue dans la vie de l’animal (11 à 12 semaines chez le canard ou 14 semaines chez l’oie) et la phase de gavage, d’une durée très courte (10 à 12 jours chez le canard ou 14 à 18 jours chez l’oie). La phase d’élevage se décompose elle même en trois étapes (Arroyo et al 2012). Pendant la phase de démarrage (de 1 à 4 semaines d’âge) les animaux sont généralement élevés en bâtiment clos chauffé et reçoivent à volonté une alimentation granulée. Pendant la phase de croissance (de 4 à 9 semaines d’âge), les animaux ont accès à un parcours extérieur. Ils sont nourris à volonté avec un aliment composé de céréales à 75% sous forme de granulés. La dernière phase d’élevage est consacrée à la préparation au gavage (d’une durée de 2 à 5 semaines) grâce à la mise en place d’une alimentation par repas (220 à 400 g/j). Son objectif est d’augmenter le volume du jabot et de démarrer le processus de stéatose hépatique. Pendant la phase de gavage les animaux reçoivent deux (pour le canard) à quatre (pour l’oie) repas par jour d’une pâtée composée à 98% de maïs et d’eau. Le maïs est présenté soit sous forme de farine (productions de type standard), soit sous forme d’un mélange de graines entières et de farine, soit encore sous forme de grains modérément cuits (productions traditionnelles ou labellisées). En France, on distingue deux types d’exploitations. Dans les exploitations dites en filière longue et de grande taille (au nombre de 3 000 en France), les éleveurs sont spécialisés dans une des phases de la production : éleveurs de palmipèdes dits « prêt-à-gaver », gaveurs ou éleveurs-gaveurs. Ce type de production standard est sous contrôle d’un groupe ou d’une coopérative qui se charge des opérations ultérieures (abattage, transformation, commercialisation ou diffusion dans des espaces de vente à grande échelle). Il existe également des exploitations en filière courte qui produisent les animaux, transforment les produits et les commercialisent directement à la ferme et qui sont généralement de plus petite taille. Ces exploitations « fermières » ne concernent qu’une petite part de la production (10 à 15%), mais jouent un rôle important pour l’image de production traditionnelle de luxe qu’elles véhiculent auprès des consommateurs. Pourquoi un dossier sur les palmipèdes à foie gras ? Au-delà des synthèses publiées précédemment dans INRA Productions Animales, il nous a semblé intéressant de rassembler et de présenter dans un même dossier les avancées récentes concernant la connaissance de l’animal (articles de Vignal et al sur le séquençage du génome du canard et de Baéza et al sur les mécanismes de la stéatose hépatique), du produit (articles de Théron et al sur le déterminisme de la fonte lipidique du foie gras à la cuisson et de Baéza et al sur la qualité de la viande et des carcasses), ainsi que les pistes de travail pour concevoir des systèmes d’élevage innovants plus durables (article de Arroyo et al). L’actualité et les enjeux pour demain La filière est soumise à de nombreux enjeux sociétaux qui demandent de poursuivre les efforts de recherche. En effet, pour conserver son leadership mondial elle doit rester compétitive et donc maîtriser ses coûts de production tout en répondant à des attentes sociétales et environnementales spécifiques telles que la préservation de la qualité des produits, le respect du bien-être animal ou la gestion économe des ressources. Ainsi, la production de foie gras est parfois décriée eu égard à une possible atteinte au bien-être des palmipèdes pendant l’acte de gavage. De nombreux travaux ont permis de relativiser l’impact du gavage sur des oiseaux qui présentent des prédispositions à ce type de production : la totale réversibilité de l’hypertrophie des cellules hépatiques (Babilé et al 1998) ; l’anatomie et la physiologie des animaux de même que l’absence de mise en évidence d’une élévation du taux de corticostérone (considéré comme marqueur d’un stress aigu) après l’acte de gavage (Guéméné et al 2007) et plus récemment la mise en évidence de l’aptitude à un engraissement spontané du foie (Guy et al 2013). Le conseil de l’Europe a toutefois émis des recommandations concernant le logement des animaux qui préconisent, la disparition des cages individuelles de contention des canards pendant le gavage au profit des cages collectives. Par ailleurs, il recommande la poursuite de nouvelles recherches pour développer des méthodes alternatives au gavage. Parallèlement, à l’instar des autres filières de productions animales, la filière foie gras doit aussi maîtriser ses impacts environnementaux (voir aussi l’article d’Arroyo et al). Les pistes de recherches concernent prioritairement la maîtrise de l’alimentation, la gestion des effluents et des parcours d’élevage. Il reste donc de grands défis à relever pour la filière foie gras afin de continuer à proposer un produitqui conjugue plaisir et durabilité.Bonne lecture à tous !
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Séquençage lectures courtes et longues"

1

Soundiramourtty, Abirami. "Exploring the transpositional landscape and recent transposable element activity in beech trees using long read mobilome and genome sequencing and with new computational tools." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0043.

Full text
Abstract:
L’adaptation des organismes aux changements environnementaux est devenue une question fondamentale de la recherche, en particulier face aux impacts du réchauffement climatique. Un axe clé de recherche consiste à comprendre comment les éléments génétiques sous jacent, tels que les éléments transposables (ET). Les ET sont des séquences d'ADN répétés présentes chez tous les Eucaryotes, possédant la capacité unique de se déplacer au sein du génome, un phénomène appelé transposition active. Ainsi, ils peuvent provoquer des mutations en générant des insertions polymorphiques d'ET (TIPs) entre individus, voire des insertions somatiques. En général, les ET restent inactifs grâce à des mécanismes épigénétiques qui limitent leur prolifération incontrôlée. Cependant, ils peuvent être réactivés par divers stimuli environnementaux, rendant la transposition active relativement rare. Cette mobilité des ET peut être révélée en utilisant l'ADN circulaire extrachromosomique (ADNecc) comme marqueur de transposition. Le paysage transpostionnel des TEs et leur activité récente ont été décrits chez des organismes modèles, mais restent inexploités chez les espèces pérennes comme les arbres. Cette étude vise à explorer l’activité transpositionelle récente et la mobilité en cours des ET chez des espèces pérennes non modèles en utilisant le hêtre européen (Fagus sylvatica) comme notre modèle d’étude. Nous avons cherché à étudier l'activité récente des ET et leur mobilité continue en identifiant les variants causés par les ET au sein d'une population et chez un individu (à l'échelle somatique) en utilisant le séquençage du génome complet (WGS) et le séquençage du mobilome (ou ADNecc). Nous avons réalisé le séquençage WGS et du mobilome d'arbres de la forêt de Verzy, connue pour abriter des hêtres nains et tortillards, également appelés « mutants ». Ces arbres présentent des traits morphologiques instables, avec chez certains arbres de nouvelles branches qui se développent avec une forme normale. Nous avons identifié deux ET appartenant au type des Miniature Inverted Repeats Transposable Elements (MITEs), nommés SQUIRREL1 et SQUIRREL2, qui se mobilisent activement dans ces arbres, produisant une grande quantité dADNecc et causant même des variations somatiques. SQUIRREL1 et SQUIRREL2 sont également actifs dans les hêtres de la forêt de la Massane. De plus, dans tous ces arbres, plusieurs d’autres ET, principalement des MITEs, produisent une grande quantité dADNecc, bien que leur niveau d’activité semble varier en fonction des tissus, suggérant que l'activité des ET varie selon le stade de développement et indiquant une transposition dominée par les MITEs chez le hêtre. Parallèlement, nous avons étudié les TIPs dans une population de hêtres de la forêt de la Massane, une forêt ancienne classée au patrimoine mondial de l'UNESCO. En séquençant 150 arbres, nous avons cherché à comprendre comment les ET contribuent à la diversité génétique de l'ensemble de la population en détectant les TIPs générés par les Long Terminal Repeats rétrotransposons (LTR RT) et les MITEs en utilisant le séquençage WGS. Nous avons détecté environ 30 000 TIPs de LTR-RT chez chaque individu, contre 70 000 TIPs de MITEs. La plupart de ces TIPs restent à faible fréquence mais de nombreux MITE-TIPs restent localisés près de gènes fonctionnels et conservés au sein de la population. À partir des TIPs, nous avons identifié plusieurs points chauds de variation et des régions conservées le long du génome du hêtre permettant d’abordant la structuration du génome chez cette espèce. Pour conclure, notre étude met en lumière l’importance des ET dans la structuration du paysage génomique des arbres, en particulier dans la manière dont ces éléments contribuent à l’évolution des espèces à longue durée de vie. Les recherches futures pourraient étendre ces travaux à d’autres espèces d'arbres et explorer si les schémas observés se retrouvent dans d’autres espèces d’arbres
The adaptation of organisms to environmental changes has become a fundamental research question,particularly in the context of climate change. A key area of this research is to identify underlying genetic elements, such as transposable elements (TEs), contributing to this process. TEs are repetitive DNA sequences found across all eukaryotes, possessing the unique ability to move within the genome, a phenomenon known as active transposition. They can cause mutations by generating transposable element insertion polymorphisms (TIPs) between individuals, and even somatic insertions. Generally, TEs remain inactive by epigenetic mechanisms that limit their uncontrolled proliferation. However, they can be reactivated upon various environmental stimuli, making active transposition relatively rare. TE mobility can be detected using extrachromosomal circular DNA (eccDNA) as a marker of transposition. The transpositional landscape of TEs and their recent activity have been documented in model organisms but remain underexplored in perennial species such as trees. This study aims to investigate recent transpositional activity and ongoing mobility of TEs in non-model perennial species, using European beech (Fagus sylvatica) as our model. We sought to study recent TE activity and their continuous mobility byidentifying TE-induced variants within a population and in an individual (at the somatic scale) using whole-genome sequencing (WGS) and mobilome sequencing (eccDNA). We conducted WGS and mobilome sequencing of trees from the Verzy forest, known for its dwarf and tortuous beeches, also referred as "mutants." These trees exhibit unstable phenotypical traits, with some trees developing new normal branches. We identified two TEs belonging to the Miniature Inverted Repeat Transposable Elements (MITEs) type, named SQUIRREL1 and SQUIRREL2, which are actively mobilizing in these trees, producing large amounts of eccDNA and even causing somatic variations.SQUIRREL1 and SQUIRREL2 are also active in beech trees from the Massane forest. Furthermore, in all these trees, several other TEs,mainly MITEs, produce significant amounts of eccDNA, although their activity levels appear to vary depending on the tissues, suggesting that TE activity could be tissue-specific indicating MITE-dominated transposition in beech. Simultaneously, we investigated TIPs in a population of beech trees from the Massane forest, an ancient forest classified as a UNESCO World Heritage site. By sequencing 150 trees, we aimed to understand how TEs contribute to the genetic diversity of the entire population by detecting TIPs generated by Long Terminal Repeat retrotransposons (LTR-RTs) and MITEs using WGS. We detected approximately 30,000 LTR-RT TIPs in each individual, compared to 70,000 MITE TIPs. While most of these TIPs remain at low frequency, many MITE-TIPs are located near functional genes and more conserved within the population. Using these TIPs, we identified several hotspots of variation and conserved regions along the beech genome, providing insights into genome structure in this species. In conclusion, our study highlights the importance of TEs in shaping the genomic landscape of trees, particularly in understanding how these elements contribute to the evolution of long-lived species. Future research could expand this work to other tree species and explore whether the patterns observed in beeches are common in other types of trees
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Panpan. "Étude du paysage des éléments transposables sous forme d'ADN circulaire extrachromosomique et dans l'assemblage des génomes de plantes à l'aide du séquençage en lectures longues." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONG016.

Full text
Abstract:
Les éléments transposables (TEs) sont des séquences d'ADN répétitives avec la capacité intrinsèque de se déplacer et de s’amplifier dans les génomes. La transposition active des TEs est liée à la formation d'ADN circulaire extrachromosomique (ADNecc). Cependant, le paysage complet de ce compartiment d’ADNecc ainsi que ces interactions avec le génome n’étaient pas bien définies. De plus, il n’existait au début de ma thèse aucun outil bioinformatique permettant d'identifier les ADNecc à partir de données de séquençage en lectures longues. Pour répondre à ces questions au cours de mon doctorat, nous avons tout d'abord développé un outil, appelé ecc_finder, pour automatiser la détection d'eccDNA à partir de séquences en lectures longues et optimisé la détection à partir de séquences de lecture courte pour caractériser la mobilité des TE. En appliquant ecc_finder aux données eccDNA-seq d'Arabidopsis, de l'homme et du blé (avec des tailles de génome allant de 120 Mb à 17 Gb), nous avons documenté l'applicabilité étendue d'ecc_finder ainsi que l’optimisation du temps de calcul, de la sensibilité et de la précision.Dans le deuxième projet, nous avons développé un outil de méta-assemblage appelé SASAR pour réconcilier les résultats de différents assemblages de génomes à partir de données de séquençage en lectures longues. Pour différentes espèces de plantes, SASAR a obtenu des assemblages de génome de haute qualité en un temps efficace et a résolu les variations structurales causées par les TE.Dans le dernier projet, nous avons utilisé le génome assemblé par SASAR et l'ADNecc détecté par ecc_finder pour caractériser les interactions entre les ADNecc et le génome. Dans les mutants épigénétiques hypométhylés d’Arabidopsis, nous avons mis en évidence le rôle de l'épigénome dans la protection de la stabilité du génome non seulement contre la mobilité des TE mais aussi envers les réarrangements génomiques et le chimérisme des gènes. Globalement, nos découvertes sur l'ADNecc, l'assemblage du génome et leurs interactions, ainsi que le développement d'outils, offrent de nouvelles perspectives pour comprendre le rôle des TE dans l'évolution adaptative des plantes à un changement rapide de l’environnement
Transposable elements (TEs) are repetitive DNA sequences with the intrinsic ability to move and amplify in genomes. Active transposition of TEs is linked to the formation of extrachromosomal circular DNA (eccDNA). However, the complete landscape of this eccDNA compartment and its interactions with the genome were not well defined. In addition, at the beginning of my thesis, there were no bioinformatics tools available to identify eccDNAs from long-read sequencing data.To address these questions during my PhD, we first developed a tool, called ecc_finder, to automate eccDNA detection from long-read sequencing and optimized detection from short-read sequences to characterize TE mobility. By applying ecc_finder to Arabidopsis, human and wheat eccDNA-seq data (with genome sizes ranging from 120 Mb to 17 Gb), we documented the broad applicability of ecc_finder as well as optimization of computational time, sensitivity and accuracy.In the second project, we developed a meta-assembly tool called SASAR to reconcile the results of different genome assemblies from long-read sequencing data. For different plant species, SASAR obtained high quality genome assemblies in an efficient time and resolved structural variations caused by TEs.In the last project, we used SASAR-assembled genome and ecc_finder-detected eccDNA to characterize eccDNA-genome interactions. In Arabidopsis hypomethylated epigenetic mutants, we highlighted the role of the epigenome in protecting genome stability not only from TE mobility but also from genomic rearrangements and gene chimerism. Overall, our findings on eccDNA, genome assembly and their interactions, as well as the development of tools, offer new insights into the role of TEs in the adaptive evolution of plants to rapid environmental change
APA, Harvard, Vancouver, ISO, and other styles
3

Ishi, Soares de Lima Leandro. "De novo algorithms to identify patterns associated with biological events in de Bruijn graphs built from NGS data." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1055/document.

Full text
Abstract:
L'objectif principal de cette thèse est le développement, l'amélioration et l'évaluation de méthodes de traitement de données massives de séquençage, principalement des lectures de séquençage d'ARN courtes et longues, pour éventuellement aider la communauté à répondre à certaines questions biologiques, en particulier dans les contextes de transcriptomique et d'épissage alternatif. Notre objectif initial était de développer des méthodes pour traiter les données d'ARN-seq de deuxième génération à l'aide de graphes de De Bruijn afin de contribuer à la littérature sur l'épissage alternatif, qui a été exploré dans les trois premiers travaux. Le premier article (Chapitre 3, article [77]) a exploré le problème que les répétitions apportent aux assembleurs de transcriptome si elles ne sont pas correctement traitées. Nous avons montré que la sensibilité et la précision de notre assembleur local d'épissage alternatif augmentaient considérablement lorsque les répétitions étaient formellement modélisées. Le second (Chapitre 4, article [11]) montre que l'annotation d'événements d'épissage alternatifs avec une seule approche conduit à rater un grand nombre de candidats, dont beaucoup sont importants. Ainsi, afin d'explorer de manière exhaustive les événements d'épissage alternatifs dans un échantillon, nous préconisons l'utilisation combinée des approches mapping-first et assembly-first. Étant donné que nous avons une énorme quantité de bulles dans les graphes de De Bruijn construits à partir de données réelles d'ARN-seq, qui est impossible à analyser dans la pratique, dans le troisième travail (Chapitre 5, articles [1, 2]), nous avons exploré théoriquement la manière de représenter efficacement et de manière compacte l'espace des bulles via un générateur des bulles. L'exploration et l'analyse des bulles dans le générateur sont réalisables dans la pratique et peuvent être complémentaires aux algorithmes de l'état de l'art qui analysent un sous-ensemble de l'espace des bulles. Les collaborations et les avancées sur la technologie de séquençage nous ont incités à travailler dans d'autres sous-domaines de la bioinformatique, tels que: études d'association à l'échelle des génomes, correction d'erreur et assemblage hybride. Notre quatrième travail (Chapitre 6, article [48]) décrit une méthode efficace pour trouver et interpréter des unitigs fortement associées à un phénotype, en particulier la résistance aux antibiotiques, ce qui rend les études d'association à l'échelle des génomes plus accessibles aux panels bactériens, surtout ceux qui contiennent des bactéries plastiques. Dans notre cinquième travail (Chapitre 7, article [76]), nous évaluons dans quelle mesure les méthodes existantes de correction d'erreur ADN à lecture longue sont capables de corriger les lectures longues d'ARN-seq à taux d'erreur élevé. Nous concluons qu'aucun outil ne surpasse tous les autres pour tous les indicateurs et est le mieux adapté à toutes les situations, et que le choix devrait être guidé par l'analyse en aval. Les lectures longues d'ARN-seq fournissent une nouvelle perspective sur la manière d'analyser les données transcriptomiques, puisqu'elles sont capables de décrire les séquences complètes des ARN messagers, ce qui n'était pas possible avec des lectures courtes dans plusieurs cas, même en utilisant des assembleurs de transcriptome de l'état de l'art. En tant que tel, dans notre dernier travail (Chapitre 8, article [75]), nous explorons une méthode hybride d'assemblage d'épissages alternatifs qui utilise des lectures à la fois courtes et longues afin de répertorier les événements d'épissage alternatifs de manière complète, grâce aux lectures courtes, guidé par le contexte intégral fourni par les lectures longues
The main goal of this thesis is the development, improvement and evaluation of methods to process massively sequenced data, mainly short and long RNA-sequencing reads, to eventually help the community to answer some biological questions, especially in the transcriptomic and alternative splicing contexts. Our initial objective was to develop methods to process second-generation RNA-seq data through de Bruijn graphs to contribute to the literature of alternative splicing, which was explored in the first three works. The first paper (Chapter 3, paper [77]) explored the issue that repeats bring to transcriptome assemblers if not addressed properly. We showed that the sensitivity and the precision of our local alternative splicing assembler increased significantly when repeats were formally modeled. The second (Chapter 4, paper [11]), shows that annotating alternative splicing events with a single approach leads to missing out a large number of candidates, many of which are significant. Thus, to comprehensively explore the alternative splicing events in a sample, we advocate for the combined use of both mapping-first and assembly-first approaches. Given that we have a huge amount of bubbles in de Bruijn graphs built from real RNA-seq data, which are unfeasible to be analysed in practice, in the third work (Chapter 5, papers [1, 2]), we explored theoretically how to efficiently and compactly represent the bubble space through a bubble generator. Exploring and analysing the bubbles in the generator is feasible in practice and can be complementary to state-of-the-art algorithms that analyse a subset of the bubble space. Collaborations and advances on the sequencing technology encouraged us to work in other subareas of bioinformatics, such as: genome-wide association studies, error correction, and hybrid assembly. Our fourth work (Chapter 6, paper [48]) describes an efficient method to find and interpret unitigs highly associated to a phenotype, especially antibiotic resistance, making genome-wide association studies more amenable to bacterial panels, especially plastic ones. In our fifth work (Chapter 7, paper [76]), we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting high-error-rate RNA-seq long reads. We conclude that no tool outperforms all the others across all metrics and is the most suited in all situations, and that the choice should be guided by the downstream analysis. RNA-seq long reads provide a new perspective on how to analyse transcriptomic data, since they are able to describe the full-length sequences of mRNAs, which was not possible with short reads in several cases, even by using state-of-the-art transcriptome assemblers. As such, in our last work (Chapter 8, paper [75]) we explore a hybrid alternative splicing assembly method, which makes use of both short and long reads, in order to list alternative splicing events in a comprehensive manner, thanks to short reads, guided by the full-length context provided by the long reads
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography