Academic literature on the topic 'Separation Processes, Reactive electrochemical membranes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Separation Processes, Reactive electrochemical membranes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Separation Processes, Reactive electrochemical membranes"

1

Song, Hyeon-Bee, Do-Hyeong Kim, and Moon-Sung Kang. "Thin-Reinforced Anion-Exchange Membranes with High Ionic Contents for Electrochemical Energy Conversion Processes." Membranes 12, no. 2 (February 8, 2022): 196. http://dx.doi.org/10.3390/membranes12020196.

Full text
Abstract:
Ion-exchange membranes (IEMs) are a core component that greatly affects the performance of electrochemical energy conversion processes such as reverse electrodialysis (RED) and all-vanadium redox flow battery (VRFB). The IEMs used in electrochemical energy conversion processes require low mass transfer resistance, high permselectivity, excellent durability, and also need to be inexpensive to manufacture. Therefore, in this study, thin-reinforced anion-exchange membranes with excellent physical and chemical stabilities were developed by filling a polyethylene porous substrate with functional monomers, and through in situ polymerization and post-treatments. In particular, the thin-reinforced membranes were made to have a high ion-exchange capacity and a limited degree of swelling at the same time through a double cross-linking reaction. The prepared membranes were shown to possess both strong tensile strength (>120 MPa) and low electrical resistance (<1 Ohm cm2). As a result of applying them to RED and VRFB, the performances were shown to be superior to those of the commercial membrane (AMX, Astom Corp., Japan) in the optimal composition. In addition, the prepared membranes were found to have high oxidation stability, enough for practical applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Skolotneva, Ekaterina, Marc Cretin, and Semyon Mareev. "A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane." Membranes 11, no. 6 (June 7, 2021): 431. http://dx.doi.org/10.3390/membranes11060431.

Full text
Abstract:
In recent years, electrochemical methods utilizing reactive electrochemical membranes (REM) have been recognized as the most promising technologies for the removal of organic pollutants from water. In this paper, we propose a 1D convection-diffusion-reaction model concerning the transport and oxidation of oxalic acid (OA) and oxygen evolution in the flow-through electrochemical oxidation system with REM. It allows the determination of unknown parameters of the system by treatment of experimental data and predicts the behavior of the electrolysis setup. There is a good agreement in calculated and experimental data at different transmembrane pressures and initial concentrations of OA. The model provides an understanding of the processes occurring in the system and gives the concentration, current density, potential, and overpotential distributions in REM. The dispersion coefficient was determined as a fitting parameter and it is in good agreement with literary data for similar REMs. It is shown that the oxygen evolution reaction plays an important role in the process even under the kinetic limit, and its contribution decreases with increasing total organic carbon flux through the REM.
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Liankai, Yonghao Zhang, Weiqing Han, and Kajia Wei. "Membrane Fouling and Electrochemical Regeneration at a PbO2-Reactive Electrochemical Membrane: Study on Experiment and Mechanism." Membranes 12, no. 8 (August 22, 2022): 814. http://dx.doi.org/10.3390/membranes12080814.

Full text
Abstract:
Membrane fouling and regeneration are the key issues for the application of membrane separation (MS) technology. Reactive electrochemical membranes (REMs) exhibited high, stable permeate flux and the function of chemical-free electrochemical regeneration. This study fabricated a micro-filtration REM characterized by a PbO2 layer (PbO2-REM) to investigate the electro-triggered anti-fouling and regeneration progress within REMs. The PbO2-REM exhibited a three-dimensional porous structure with a few branch-like micro-pores. The PbO2-REM could alleviate Humic acid (HA) and Bisphenol A (BPA) fouling through electrochemical degradation combined with bubble migration, which achieved the best anti-fouling performance at current density of 4 mA cm−2 with 99.2% BPA removal. Regeneration in the electro-backwash (e-BW) mode was found as eight times that in the forward wash and full flux recovery was achieved at a current density of 3 mA cm−2. EIS and simulation study also confirmed complete regeneration by e-BW, which was ascribed to the air–water wash formed by bubble migration and flow. Repeated regeneration tests showed that PbO2-REM was stable for more than five cycles, indicating its high durability for practical uses. Mechanism analysis assisted by finite element simulation illustrated that the high catalytic PbO2 layer plays an important role in antifouling and regeneration.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Nayeong, and Xiao Su. "Redox-Mediated Electrodialysis for Resource Recovery and Energy-Efficient Desalination." ECS Meeting Abstracts MA2022-02, no. 27 (October 9, 2022): 1057. http://dx.doi.org/10.1149/ma2022-02271057mtgabs.

Full text
Abstract:
In the chemical and biochemical manufacturing industry, separation processes are amongst the most energy-demanding processes. Electrochemical separations have been growing in interest as promising candidates for both downstream processing for resource recovery and producing clean water due to their energy-efficient, environmentally benign, and modular features.1 Leveraging a sustainable redox reaction, we developed a redox-mediated electrodialysis system for energy-efficient desalination coupled with resource recovery of valuable resources such as lithium, and even biomolecules.2, 3 Our proposed redox-mediated electrodialysis system utilizes a reversible redox reaction as a driving force of salt removal at a much lower voltage than a water-splitting reaction (>1.2 V). As the redox materials are reduced or oxidized, all charged species migrate across the membranes to balance the charge in the electrolyte compartment. As the redox materials circulate in the cathode and anode compartments, they sustainably regenerated without additional regeneration steps, one of the major bottlenecks for industrializing the electrosorption system. We demonstrated the redox-mediated electrochemical system for resource recoveries such as simultaneous lithium recovery from brine3 and valorization of whey proteins and lactose from whey waste.2 Especially for the valorization of whey waste, our system treated 99% of salt from the whey solution within a single step and recovered > 98% of various whey proteins (e.g., valuable protein contents such as beta-lactoglobulin, alpha-lactalbumin, and lactose). The preliminary techno-economic analysis confirmed the economic potential of redox-mediated ED with 51−73% lower energy consumption compared to conventional ED. Overall. we envision the system can become a breakthrough in tackling the environmental challenges coupled with the limited resources. Kim, N.; Jeon, J.; Chen, R.; Su, X., Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chemical Engineering Research and Design 2022, 178, 267-288. Kim, N.; Jeon, J.; Elbert, J.; Kim, C.; Su, X., Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal 2022, 428, 131082. Kim, N.; Su, X.; Kim, C., Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chemical Engineering Journal 2021, 420, 127715.
APA, Harvard, Vancouver, ISO, and other styles
5

Miller, Dean, Matthew Liu, and William Abraham Tarpeh. "Evaluating Molecular Catalyst-Mediated Nitrate Reduction for Reactive Separation and Recovery of Ammonia." ECS Meeting Abstracts MA2022-01, no. 40 (July 7, 2022): 1799. http://dx.doi.org/10.1149/ma2022-01401799mtgabs.

Full text
Abstract:
The current state of centralized nitrogen (N) management has destabilized global environmental cycles via Haber-Bosch (HB) ammonia-N manufacturing which contributes 1.2% of global anthropogenic CO2-eq emissions.1 The majority of this N that is discharged to wastewaters goes untreated, leading to harmful algal blooms that threaten coastal and river ecosystems, which already costs the U.S. an estimated $210 billion per year in health and environmental damages.2 Furthermore, the production of HB ammonia, and the subsequent discharge of wastewater nitrogen, is expected to substantially increase in the next three decades as the human population climbs to 9 billion people.3 Simultaneously removing nitrogen pollutants and recovering value-added products can preserve national water quality and supplement supply chains of nitrogen consumables with renewably sourced electricity. The electrochemical nitrate reduction reaction (NO3RR) can be leveraged in reactive separation processes to convert wastewater nitrates to commodity products, such as ammonia. Engineering catalytic NO3RR processes that operate at feasible rates and faradaic efficiencies is challenging because the majority of nitrate-rich wastewaters (e.g., fertilizer runoff) are dilute in nitrate concentration (< 5 mM).4 Molecular catalysts are uniquely suited to reduce nitrate at low concentrations in real wastewaters due to their strong substrate recognition (reactant selectivity) and product selectivity. In this study, we benchmarked the performance of the molecular catalyst Co-DIM (a Co-N4 macrocycle complex and the only known molecular NO3RR catalyst selective for ammonia5) in a reactive separations process for the treatment of real, nitrate-rich wastewaters. We first demonstrated by cyclic voltammetry (CV) and controlled-potential electrolysis (CPE) that selective Co-DIM-mediated NO3RR is feasible in nitrate-rich secondary effluent (municipal wastewater after biological nitrification). We then employed Co-DIM in electrochemical stripping (ECS): a membrane-separated cell that facilitates reactive separation of produced ammonia.6,7 From real secondary effluent (28 mg NO3-N/L), we achieved greater than 60% nitrate removal with a faradaic efficiency of 25% and ammonia selectivity of 98%. However, the energy consumed for ECS per unit mass of N is 16 times the combined energy requirement for conventional wastewater N removal and HB ammonia synthesis. By introducing a mixed feed of ammonia- and nitrate-rich wastewater and performing electrodialysis (ED) to concentrate the reactant nitrate before ECS, the energy requirement for N removal and ammonia recovery was decreased by three times while the ED process became the dominant energy consumer in the overall process. Additionally, the increase in nitrate removal could not be explained by an increase in nitrate concentration alone. The ED process changes the concentrations and relative ratios of competing anions and buffering species, which can inhibit or promote the molecular electrocatalytic activity. We therefore explored a matrix of anion identities and concentrations by rotating-disk voltammetry and CPE to elucidate plausible inhibition and promotion mechanisms associated with catalyst activation and NO3RR catalysis. This study therefore (1) benchmarks current and future efforts to reactively separate ammonia from real nitrate-rich wastewater with a molecular catalyst and (2) highlights molecular and process-level improvements to realize a circular nitrogen economy. References 1 C. Smith, A. K. Hill and L. Torrente-Murciano, Energy Environ. Sci., 2020, 13, 331–344. 2 D. J. Sobota, J. E. Compton, M. L. McCrackin and S. Singh, Environ. Res. Lett., 2015, 10, 025006. 3 J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont and W. Winiwarter, Nature Geoscience, 2008, 1, 636–639. 4 Unesco, Ed., Wastewater: the untapped resource, UNESCO, Paris, 2017. 5 S. Xu, D. C. Ashley, H.-Y. Kwon, G. R. Ware, C.-H. Chen, Y. Losovyj, X. Gao, E. Jakubikova and J. M. Smith, Chem. Sci., 2018, 9, 4950–4958. 6 W. A. Tarpeh, J. M. Barazesh, T. Y. Cath and K. L. Nelson, Environ. Sci. Technol., 2018, 52, 1453–1460. 7 M. J. Liu, B. S. Neo and W. A. Tarpeh, Water Research, 2020, 169, 115226.
APA, Harvard, Vancouver, ISO, and other styles
6

Belhadj Ammar, Rihab, Takoua Ounissi, Lassaad Baklouti, Christian Larchet, Lasâad Dammak, Arthur Mofakhami, and Emna Selmane Belhadj Hmida. "A New Method Based on a Zero Gap Electrolysis Cell for Producing Bleach: Concept Validation." Membranes 12, no. 6 (June 10, 2022): 602. http://dx.doi.org/10.3390/membranes12060602.

Full text
Abstract:
Commercial bleach (3.6 wt% active chlorine) is prepared by diluting highly concentrated industrial solutions of sodium hypochlorite (about 13 wt% active chlorine) obtained mainly by bubbling chlorine gas into dilute caustic soda. The chlorine and soda used are often obtained by electrolyzing a sodium chloride solution in two-compartment cells (chlorine-soda processes). On a smaller scale, small units used for swimming pool water treatment, for example, allow the production of low-concentration bleach (0.3 to 1 wt% active chlorine) by use of a direct electrolysis of sodium chloride brine. The oxidation and degradation reaction of hypochlorite ion (ClO−) at the anode is the major limiting element of this two-compartment process. In this study, we have developed a new process to obtain higher levels of active chlorine up to 3.6%, or 12° chlorometric degree. For this purpose, we tested a device consisting of a zero-gap electrolysis cell, with three compartments separated by a pair of membranes that can be porous or ion-exchange. The idea is to generate in the anode compartment hypochlorous acid (HClO) at high levels by continuously adjusting its pH to a value between 4.5 and 5.5. In the cathodic compartment, caustic soda is obtained, while the central compartment is supplied with brine. The hypochlorous acid solution is then neutralized with a concentrated solution of NaOH to obtain bleach. In this work, we studied several membrane couples that allowed us to optimize the operating conditions and to obtain bleach with contents close to 1.8 wt% of active chlorine. The results obtained according to the properties of the membranes, their durability, and the imposed electrochemical conditions were discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramirez-Nava, Jonathan, Mariana Martínez-Castrejón, Rocío Lley García-Mesino, Jazmin Alaide López-Díaz, Oscar Talavera-Mendoza, Alicia Sarmiento-Villagrana, Fernando Rojano, and Giovanni Hernández-Flores. "The Implications of Membranes Used as Separators in Microbial Fuel Cells." Membranes 11, no. 10 (September 28, 2021): 738. http://dx.doi.org/10.3390/membranes11100738.

Full text
Abstract:
Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance. MFC configuration and operation are similar to those of proton-exchange membrane fuel cells (PEMFCs)—both having at least one anode and one cathode split by a membrane or separator. The Nafion® 117 (NF-117) membrane, made from perfluorosulfonic acid, is a membrane used as a separator in PEMFCs. By analogy of the operation between electrochemical systems and MFCs, NF-117 membranes have been widely used as separators in MFCs. The main disadvantage of this type of membrane is its high cost; membranes in MFCs can represent up to 60% of the MFC’s total cost. This is one of the challenges in scaling up MFCs: finding alternative membranes or separators with low cost and good electrochemical characteristics. The aim of this work is to critically review state-of-the-art membranes and separators used in MFCs. The scope of this review includes: (i) membrane functions in MFCs, (ii) most-used membranes, (iii) membrane cost and efficiency, and (iv) membrane-less MFCs. Currently, there are at least 20 different membranes or separators proposed and evaluated for MFCs, from basic salt bridges to advanced synthetic polymer-based membranes, including ceramic and unconventional separator materials. Studies focusing on either low cost or the use of natural polymers for proton-exchange membranes (PEM) are still scarce. Alternatively, in some works, MFCs have been operated without membranes; however, significant decrements in Coulombic efficiency were found. As the type of membrane affects the performance and total cost of MFCs, it is recommended that research efforts are increased in order to develop new, more economic membranes that exhibit favorable properties and allow for satisfactory cell performance at the same time. The current state of the art of membranes for MFCs addressed in this review will undoubtedly serve as a key insight for future research related to this topic.
APA, Harvard, Vancouver, ISO, and other styles
8

Choi, DongWoong. "Electrochemical Analysis of Polymer Membrane with Inorganic Nanoparticles for High-Temperature PEM Fuel Cells." Membranes 12, no. 7 (June 30, 2022): 680. http://dx.doi.org/10.3390/membranes12070680.

Full text
Abstract:
In order to solve the challenge that battery performance rapidly deteriorates at a high temperature condition of 100 °C or higher, ZrO2-TiO2 (ZT) with various Zr:Ti ratios synthesized by a sol-gel method were impregnated in a Nafion membrane. Through material characterization, a unique ZT crystal phase peak with a Zr-O-Ti bond was identified, and the band range associated with this bond and intrinsic functional group region could be identified. These prepared powders were blended with 10% (w/w) Nafion-water dispersion to prepare composite Nafion membranes (NZTs). The water uptake increased and the ion exchange capacity decreased as the TiO2 content increased in the NZTs in which particles were uniformly distributed. These results were superior to those of the conventional Nafion 112. The electrochemical properties of all membranes was measured using a polarization curve in a single cell with a reaction area of 9 cm2, and the operating conditions in humidified H2/air was 120 °C under 50% relative humidity (RH) and 2 atm. The composite membrane cell with nanoparticles of a Zr:Ti ratio of 1:3 (NZT13) exhibited the best electrochemical characteristics. These results can be explained by the improved physicochemical properties of NZT13, such as optimized water content and ion exchange capacity, strong intermolecular forces acting between water and nanofillers (δ), and increased torsion by the fillers (τ). The results of this study show that the NZT membrane can replace a conventional membrane under high-temperature and low-humidity conditions. To examine the effect of the content of the inorganic nanomaterials in the composite membrane, a composite membrane (NZT-20, NZT-30) having an inorganic nano-filler content of 20 or 30% (w/w) was also prepared. The performance was high in the order of NZT13, NZT-20, and NZT-30. This shows that not only the operating conditions but also the particle content can significantly affect the performance.
APA, Harvard, Vancouver, ISO, and other styles
9

McHugh, Patrick J., Arindam K. Das, Alexander G. Wallace, Vaibhav Kulshrestha, Vinod K. Shahi, and Mark D. Symes. "An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser." Membranes 11, no. 6 (June 2, 2021): 425. http://dx.doi.org/10.3390/membranes11060425.

Full text
Abstract:
Electrolysis is seen as a promising route for the production of hydrogen from water, as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile, the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers. In this work, we synthesise and characterise a previously unreported anion-exchange membrane consisting of a fluorinated polymer backbone grafted with imidazole and trimethylammonium units as the ion-conducting moieties. We then investigate the use of this membrane in a lignin-oxidising electrolyser. The new membrane performs comparably to a commercially-available anion-exchange membrane (Fumapem) for this purpose over short timescales (delivering current densities of 4.4 mA cm−2 for lignin oxidation at a cell potential of 1.2 V at 70 °C during linear sweep voltammetry), but membrane durability was found to be a significant issue over extended testing durations. This work therefore suggests that membranes of the sort described herein might be usefully employed for lignin electrolysis applications if their robustness can be improved.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhan, Zhigang, Hao Song, Xiaoxiang Yang, Panxing Jiang, Rui Chen, Hesam Bazargan Harandi, Heng Zhang, and Mu Pan. "Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC." Membranes 12, no. 10 (October 14, 2022): 1001. http://dx.doi.org/10.3390/membranes12101001.

Full text
Abstract:
Due to the complexity of both material composition and the structure of the catalyst layer (CL) used in the proton-exchange membrane fuel cell (PEMFC), conjugated heat and mass transfer as well as electrochemical processes simultaneously occur through the CL. In this study, a microstructure model of CL was first reconstructed using images acquired by Nano-computed tomography (Nano-CT) of a real sample of CL. Then, the multiphysics dynamic distribution (MPDD) simulation, which is inherently a multiscale approach made of a combination of pore-scale and homogeneous models, was conducted on the reconstructed microstructure model to compute the corresponded heat and mass transport, electrochemical reactions, and water phase-change processes. Considering a computational domain with the size of 4 um and cube shape, this model consisting of mass and heat transport as well as electrochemical reactions reached a stable solution within 3 s as the convergence time. In the presence of sufficient oxygen, proton conduction was identified as the dominant factor determining the strength of the electrochemical reaction. Additionally, it was concluded that current density, temperature, and the distribution of water all exhibit similar distribution trends, which decrease from the interface between CL and the proton-exchange membrane to the interface between CL and the gas-diffusion layer. The present study not only provides an in-depth understanding of the mass and heat transport and electrochemical reaction in the CL microstructure, but it also guides the optimal design and fabrication of CL components and structures, such as improving the local structure to reduce the number of dead pores and large agglomerates, etc.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Separation Processes, Reactive electrochemical membranes"

1

Kashima, Keita, Tomoki Takahashi, Ryo-ichi Nakayama, and Masanao Imai. "Innovative Separation Technology Utilizing Marine Bioresources: Multifaceted Development of a Chitosan-Based System Leading to Environmentally-Friendly Processes." In Chitin and Chitosan - Physicochemical Properties and Industrial Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95839.

Full text
Abstract:
Chitosan, known as a most typical marine biological polymer, has a fruitful capability of biocompatible gel formation. Attempts of chitosan have been made to develop it from the multifaceted viewpoint of separation technology. The physicochemical properties of chitosan containing a lot of hydroxyl groups and reactive amino groups help to build the characteristic polymer networks. The deacetylation degree of chitosan is found as the most influential factor to regulate properties of chitosan hydrogels. The antibacterial activity of the chitosan membrane is one of its notable abilities because of its practical application. The chitosan, its derivatives, and the complex formation with other substances has been used for applications in filtration and membrane separation processes. Adsorption processes based on chitosan have been also developed widely. Moreover, complex of chitosan gel helps to immobilize adsorbent particles. The chitosan membrane immobilizing Prussian-Blue for cesium ion removal from the aqueous phase is one of the leading cases. To elaborate the adsorption behavior on the chitosan immobilizing adsorbent, the isothermal equilibrium and mass transfer characteristics can be discussed. The adsorption process using chitosan-based membranes in combination with filtration in a flow process is advantageous compared with the batch process. More advanced studies of chitosan aerogel and chitosan nanofibers have been proceeded recently, especially for adapting to water purification and air filtration.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography