Academic literature on the topic 'Sensory organs precursors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensory organs precursors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sensory organs precursors"

1

Giangrande, A. "Proneural genes influence gliogenesis in Drosophila." Development 121, no. 2 (February 1, 1995): 429–38. http://dx.doi.org/10.1242/dev.121.2.429.

Full text
Abstract:
Fly glial cells in the wing peripheral nervous system of Drosophila melanogaster originate from underlying epithelial cells. Two findings indicate that gliogenesis is closely associated with neurogenesis. First, it only occurs in regions that also give rise to sensory organs. Second, in mutants that induce the development of ectopic sensory organs glial cells develop at new positions. These findings prompted a genetic analysis to establish whether glial and sensory organ differentiation depend on the same genes. Loss of function mutations of the achaete-scute complex lead to a significant reduction of sensory bristles and glial cells. Genes within the complex affect gliogenesis with different strength and display some functional redundancy. Thus, neurogenesis and gliogenesis share the same genetic pathway. Despite these similarities, however, the mechanism of action of the achaete-scute complex seems to be different in the two processes. Neural precursors express products of the complex, therefore the role of these genes on neurogenesis is direct. However, markers specific to glial cells do not colocalize with products of the achaete-scute complex, showing that the complex affects gliogenesis indirectly. These observations lead to the hypothesis that gliogenesis is induced by the presence of sensory organ cells, either the precursor or its progeny.
APA, Harvard, Vancouver, ISO, and other styles
2

Van De Bor, V., R. Walther, and A. Giangrande. "Some fly sensory organs are gliogenic and require glide/gcm in a precursor that divides symmetrically and produces glial cells." Development 127, no. 17 (September 1, 2000): 3735–43. http://dx.doi.org/10.1242/dev.127.17.3735.

Full text
Abstract:
In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.
APA, Harvard, Vancouver, ISO, and other styles
3

Hartenstein, V., and J. W. Posakony. "Development of adult sensilla on the wing and notum of Drosophila melanogaster." Development 107, no. 2 (October 1, 1989): 389–405. http://dx.doi.org/10.1242/dev.107.2.389.

Full text
Abstract:
We have investigated the temporal pattern of appearance, cell lineage, and cytodifferentiation of selected sensory organs (sensilla) of adult Drosophila. This analysis was facilitated by the discovery that the monoclonal antibody 22C10 labels not only the neuron of the developing sensillum organ, but the accessory cells as well. The precursors of the macrochaetes and the recurved (chemosensory) bristles of the wing margin divide around and shortly after puparium formation, while those of the microchaetes and the stout and slender (mechanosensory) bristles of the wing margin divide between 9 h and 18 h after puparium formation (apf). The onset of sensillum differentiation follows the terminal precursor division within a few hours. Four of the cells in an individual microchaete organ are clonally related: A single first-order precursor cell divides to produce two second-order precursors; one of these divides into the neuron and thecogen cell, the other into the trichogen cell and tormogen cell. Along the anterior wing margin, two rounds of division generate the cells of the mechanosensory sensilla; here, no strict clonal relationship seems to exist between the cells of an individual sensillum. At the time of sensillum precursor division, many other, non-sensillum-producing cells within the notum and wing proliferate as well. This mitotic activity follows a spatially non-random pattern.
APA, Harvard, Vancouver, ISO, and other styles
4

Reddy, G. V., and V. Rodrigues. "Sibling cell fate in the Drosophila adult external sense organ lineage is specified by prospero function, which is regulated by Numb and Notch." Development 126, no. 10 (May 15, 1999): 2083–92. http://dx.doi.org/10.1242/dev.126.10.2083.

Full text
Abstract:
Specification of cell fate in the adult sensory organs is known to be dependent on intrinsic and extrinsic signals. We show that the homeodomain transcription factor Prospero (Pros) acts as an intrinsic signal for the specification of cell fates within the mechanosensory lineage. The sensory organ precursors divide to give rise to two secondary progenitors - PIIa and PIIb. Pros is expressed in PIIb, which gives rise to the neuron and thecogen cells. Loss of Pros function affects the identity of PIIb and neurons fail to differentiate. Pros misexpression is sufficient for the transformation of PIIa to PIIb fate. The expression of Pros in the normal PIIb cell appears to be regulated by Notch signaling.
APA, Harvard, Vancouver, ISO, and other styles
5

Vervoort, M., D. J. Merritt, A. Ghysen, and C. Dambly-Chaudiere. "Genetic basis of the formation and identity of type I and type II neurons in Drosophila embryos." Development 124, no. 14 (July 15, 1997): 2819–28. http://dx.doi.org/10.1242/dev.124.14.2819.

Full text
Abstract:
The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons. Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC). We show that, in Notch- embryos, the type I neurons are missing while type II neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication. In contrast, both type I and type II neurons are absent in numb- embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates. The analysis of string- embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate. We also report a new mutant phenotype where the ASC-dependent neurons are converted into type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate. Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.
APA, Harvard, Vancouver, ISO, and other styles
6

Okabe, M., and H. Okano. "Two-step induction of chordotonal organ precursors in Drosophila embryogenesis." Development 124, no. 5 (March 1, 1997): 1045–53. http://dx.doi.org/10.1242/dev.124.5.1045.

Full text
Abstract:
The chordotonal (Ch) organ, an internal stretch receptor located in the subepidermal layer, is one of the major sensory organs in the peripheral nervous system of Drosophila melanogaster. Although the cell lineage of the Ch organ has been well characterized in many studies, the determination machinery of Ch organ precursor cells (COPs) remains largely unresolved. Here we report that the rhomboid (rho) gene and the activity of the Drosophila EGF receptor (DER) signaling pathway are necessary to induce specifically three of the eight COPs in an embryonic abdominal hemisegment. The cell-lineage analysis of COPs using the yeast flpase (flp/FRT) method indicated that each of the eight COPs originated from an individual undifferentiated ectodermal cell. The eight COPs in each abdominal hemisegment seemed to be determined by a two-phase induction: first, five COPs are determined by the action of the proneural gene atonal and neurogenic genes. Subsequently, these five COPs start to express the rho gene, and rho activates the DER-signaling pathway in neighboring cells and induces argos expression. Three of these argos-expressing cells differentiate into the three remaining COPs and they prevent neighboring cells from becoming extra COPs.
APA, Harvard, Vancouver, ISO, and other styles
7

Blochlinger, K., L. Y. Jan, and Y. N. Jan. "Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila." Development 117, no. 2 (February 1, 1993): 441–50. http://dx.doi.org/10.1242/dev.117.2.441.

Full text
Abstract:
The cut locus is both necessary and sufficient to specify the identity of a class of sensory organs in Drosophila embryos. It is also expressed in and required for the development of a number of other embryonic tissues, such as the central nervous system, the Malpighian tubules and the tracheal system. We here describe the expression of cut in the precursors of adult sensory organs. We also show that cut is expressed in cells of the prospective wing margin and correlate the wing margin phenotype caused by two cut mutations with altered cut expression patterns. Finally, we observe cut-expressing cells in other adult tissues, including Malpighian tubules, muscles, the central nervous system and ovarian follicle cells.
APA, Harvard, Vancouver, ISO, and other styles
8

zur Lage, P., and A. P. Jarman. "Antagonism of EGFR and notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors." Development 126, no. 14 (July 15, 1999): 3149–57. http://dx.doi.org/10.1242/dev.126.14.3149.

Full text
Abstract:
The selection of Drosophila melanogaster sense organ precursors (SOPs) for sensory bristles is a progressive process: each neural equivalence group is transiently defined by the expression of proneural genes (proneural cluster), and neural fate is refined to single cells by Notch-Delta lateral inhibitory signalling between the cells. Unlike sensory bristles, SOPs of chordotonal (stretch receptor) sense organs are tightly clustered. Here we show that for one large adult chordotonal SOP array, clustering results from the progressive accumulation of a large number of SOPs from a persistent proneural cluster. This is achieved by a novel interplay of inductive epidermal growth factor-receptor (EGFR) and competitive Notch signals. EGFR acts in opposition to Notch signalling in two ways: it promotes continuous SOP recruitment despite lateral inhibition, and it attenuates the effect of lateral inhibition on the proneural cluster equivalence group, thus maintaining the persistent proneural cluster. SOP recruitment is reiterative because the inductive signal comes from previously recruited SOPs.
APA, Harvard, Vancouver, ISO, and other styles
9

Brugmann, Samantha A., and Sally A. Moody. "Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs." Biology of the Cell 97, no. 5 (May 2005): 303–19. http://dx.doi.org/10.1042/bc20040515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beisel, Kirk W., Yesha Wang-Lundberg, Adel Maklad, and Bernd Fritzsch. "Development and evolution of the vestibular sensory apparatus of the mammalian ear." Journal of Vestibular Research 15, no. 5-6 (November 1, 2005): 225–41. http://dx.doi.org/10.3233/ves-2005-155-601.

Full text
Abstract:
Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sensory organs precursors"

1

Kim, Jang-Mi. "Quantitative live imaging analysis of proneural factor dynamics during lateral inhibition in Drosophila." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS585.pdf.

Full text
Abstract:
L’inhibition latérale par Notch est un mécanisme bien conservé au sein des espèces qui permet la formation de pattern de destins cellulaires1. Dans de nombreux tissus, la signalisation intercellulaire entre Delta et Notch coordonne dans le temps et l’espace des décisions de destin cellulaire binaires dont l’origine est proposée stochastique. Dans le contexte du développement des organes sensoriels chez la Drosophile, il a été proposé que la rupture de symétrie entre cellules équipotentes dépendait de fluctuations aléatoires dans le niveau d’expression de Delta/Notch2 (ou d’un de ses régulateurs en amont, par exemple YAP1 dans l’intestin de la souris3), avec des petites différences qui sont amplifiées et stabilisées pour générer des destins distincts. La décision cellulaire stochastique médiée par Notch peut aussi être biaisée par des facteurs intrinsèques (par exemple, l’histoire de la cellule4) ou des facteurs extrinsèques. Bien que l’inhibition latérale ait été largement étudiée dans de nombreux contextes développementaux, il manque toujours une analyse détaillée in vivo de la dynamique de l’acquisition du destin cellulaire et des signaux régulant cette décision. Ici, nous avons utilisé une approche quantitative d’imagerie en temps réel pour étudier la dynamique de spécification des organes sensoriels dans l’abdomen de la drosophile. Pour suivre la compétence des cellules à s’engager dans le destin neural et devenir une cellule précurseur des organes sensoriels (SOP), nous avons utilisé l’accumulation du facteur de transcription Scute, un régulateur majeur de la formation des organes sensoriels dans l’abdomen. Pour visionner Scute directement dans les pupes en développement, nous avons utilisé des pupes exprimant la protéine Scute taguée par une GFP. Nous avons généré des films haute résolution dans le temps et l’espace puis nous avons segmenté et traqué tous les noyaux grâce un pipeline personnalisé. Nous avons ainsi pu étudier quantitativement la dynamique de l’expression de Scute dans toutes les cellules. Après avoir défini un index de différence de destin cellulaire (FDI), nous avons trouvé que la rupture de symétrie était détectée tôt, quand les cellules exprimaient encore un niveau faible et hétérogène de Scute. Quelques rares cas de résolution tardive ont été observés c’est-à-dire quand deux cellules voisines accumulent toutes les deux un fort niveau de Scute avant d’être séparées. Il est aussi intéressant de noter que le niveau de Scute n’a pas rapidement diminué dans les cellules non sélectionnées, immédiatement après la rupture de symétrie. D’autre part, nous avons trouvé une corrélation positive entre la pente du FDI après la rupture de symétrie et l’hétérogénéité intercellulaire mesurée dans le niveau de Scute mais il reste à démontrer si l’augmentation de l’hétérogénéité est causalement liée à la rupture de symétrie. Nous avons ensuite voulu savoir si cette décision cellulaire stochastique était biaisée par l’ordre de naissance (comme proposé dans le contexte de décision AC/VU chez le C. elegans4) ou par la taille et la géométrie des contacts cellulaires (comme suggéré par une modélisation5). Nous avons trouvé qu’aucun des deux biais ne semblait influencer la décision cellulaire binaire médiée par Notch dans l’abdomen de la Drosophile. En conclusion, nos données d’imagerie fournissent une analyse quantitative détaillée de la dynamique des proneuraux pendant l’inhibition latérale chez la Drosophile
Lateral inhibition by Notch is a conserved mechanism that regulates the formation of regular patterns of cell fates1. In many tissues, intercellular Delta-Notch signaling coordinates in time and space binary fate decisions thought to be stochastic. In the context of sensory organ development in Drosophila, it has been proposed that fate symmetry breaking between equipotent cells relies on random fluctuations in the level of Delta/Notch2 (or one of their upstream regulators, e.g. YAP1 in the mouse gut3), with small differences being amplified and stabilized to generate distinct fates. Notch-mediated stochastic fate choices may also be biased by intrinsic, i.e. cell history4, or extrinsic factors. Although lateral inhibition has been extensively studied in many developmental contexts, a detailed in vivo analysis of fate and signaling dynamics is still lacking. Here, we used a quantitative live imaging approach to study the dynamics of sensory organ fate specification in the Drosophila abdomen. The accumulation of the transcription factor Scute (Sc), a key regulator of sensory organ formation in the abdomen, was used as a proxy to monitor proneural competence and SOP fate acquisition in developing pupae expressing GFP-tagged Sc. We generated high spatial and temporal resolution movies and segmented/tracked all nuclei using a custom-made pipeline. This allowed us to quantitatively study Sc dynamics in all cells. Having defined a fate difference index (FDI), we found that symmetry breaking can be detected early, when cells expressed very low and heterogeneous levels of Sc. We also observed rare cases of late fate resolution, e.g. when two cells close to each other accumulate high levels of GFP-Scute before being pulled away from each other. Interestingly, we did not observe a rapid decrease in GFP-Sc levels in non-selected cells right after symmetry breaking. Also, the rate of change of FDI values after symmetry breaking appeared to positively correlate with cell-to-cell heterogeneity in Sc levels. Whether increased heterogeneity is causally linked to symmetry breaking remains to be tested. We next addressed if this stochastic fate decision is biased by birth order (as proposed in the context of the AC/VU decision in worms4) or by the size and geometry of cell-cell contacts (as modeling suggested5). We found that neither appeared to significantly influence Notch-mediated binary fate decisions in the Drosophila abdomen. In conclusion, our live imaging data provide a detailed analysis of proneural dynamics during lateral inhibition in Drosophila
APA, Harvard, Vancouver, ISO, and other styles
2

Li-Kroeger, David. "Integration of regional and neural transcription factors controls EGF signaling from sensory organ precursor cells during Drosophila development." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337351052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trylinski, Mateusz. "Interplay between Notch signaling and cytokinesis in the Drosophila sensory organ lineage." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS470.

Full text
Abstract:
La voie Notch régule la spécification de destins cellulaires dans les lignages parmi les Métazoaires. Bien sa nécessité fonctionnelle ait été établie, il est encore mal compris comment l’activité de la voie se coordonne avec la progression du lignage pour assurer l’acquisition des destins entre chaque division. Au cours de ma thèse, j’ai utilisé la division de la cellule précurseur des soies sensorielles (SOP) chez la Drosophile comme modèle pour comprendre cette coordination. Les SOPs se divisent de manière asymétrique au cours du développement de la Drosophile et produisent une cellule pIIa, où Notch est activé, et une cellule pIIb, où Notch est inhibé. Dans ce contexte, la signalisation se fait entre les cellules-filles. Après la division de la SOP, pIIb se divise à son tour dans les deux heures qui suivent, ce qui contraint l’acquisition de l’identité pIIa à cette fenêtre temporelle. De plus, des travaux récents ont montré que les récepteurs Notch doivent être activés à la cytocinèse pour déterminer l’identité pIIa. Cependant, la nature de l’interaction Notch-cytocinèse n’était pas déterminée.Au cours de ma thèse, j’ai d’abord développé une technique de photo-pistage de récepteurs Notch marqués par des protéines fluorescentes pour déterminer le site de signalisation le long de l’interface pIIa-pIIb, un prérequis pour comprendre l’interaction Notch-cytocinèse. Par la suite, j’ai montré que le régulateur d’actine Arp2/3 est recruté pendant la division de la SOP à l’interface pIIa-pIIb pour étendre le contact et pour activer les récepteurs via l’endocytose de Delta. Ce faisant, Arp2/3 couple la cytocinèse à l’activation de la voie Notch pendant la division de la SOP
Notch signaling regulates fate specification in lineages among Metazoans. Although its functional requirement is established, it remains unclear how Notch activity is coordinated with lineage progression to ensure fate specification between each division round. To address this question, I used the division of the Drosophila sensory organ precursor cell (SOP) as an experimental model. During fly development, SOPs divide asymmetrically and generate a pIIa cell where Notch is activated and a pIIb cell where Notch is turned off. Notch signaling is mediated in an intralineage manner where pIIb serves as a signal source for pIIa. Following SOP division, pIIb divides within two hours, thereby constraining pIIa fate acquisition within this time window. In addition, activation of Notch receptors at cytokinesis was shown to be required to specify the pIIa fate prior pIIb division. However, the molecular basis for the Notch-cytokinesis interplay was not determined. During my thesis, I first developed a strategy based on photobleaching and photoconversion of fluorophore-tagged Notch receptors to determine Notch activation site along the pIIa-pIIb interface. By doing so, I demonstrated that, in contrast with former models, Notch receptors were activated at the lateral side of the pIIa-pIIb interface at cytokinesis. Using live-imaging, I then provided evidence that the actin regulator Arp2/3 was recruited to the lateral pIIa-pIIb contact during SOP division to expand the contact area and to activate Notch receptors via Delta endocytosis. Thereby, Arp2/3 couples cytokinesis to Notch activation following SOP division
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Kai Feng, and 鄭凱丰. "Transcriptome Analysis of Sensory Organ Precursors Genes and Genetic Interaction Analysis of Arp6-Interacting Proteins in Sensory Organ Development." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2ft96r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chu, Mu Tzu, and 朱慕慈. "Analysis of Effects of Notch and Prepattern Genes on Sensory Organ Precursor Patterning." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/69653361702571548062.

Full text
Abstract:
碩士
長庚大學
生物醫學研究所
98
There are two types of bristles on notum of Drosophila melanogaster, macrochaete and microchaete. As Pat Simpson’s report, three prepattern genes, extramacrochaete(emc), hairy(h), and stripe(sr), can restrict the position of SOP for macrochaete; and the SOPs of microchaetes are randomly singled out from PCs through lateral inhibition by Notch signaling pathway. The computer model showed that SOP is much easier singled out from periphery than center of PC, because N signaling is less activated in peripheral PC cells than in central ones. However, in anti-Achaete-labeled proneural cluster, SOPs inclined to distribute in lane1 and lane2. Losing the function of N made PCs wider and the density of SOPs higher than original, but PC cells in lane3 and lane4 still adopted epithelial fate. It’s been shown that prepattern genes can restrict positions of SOPs for macrochaetes and the microchaetes-disarranged phenotype in prepattern genes mutant can also be observed. Further, I examined the SOPs selection for microchaetes and I found that prepattern genes can regulate the rate of SOPs selection processing and repress the cells in midline region to express achaete and to adopt SOP cell fate. Nevertheless, prepattern genes didn’t seem to affect SOP selection in microchaete development.
APA, Harvard, Vancouver, ISO, and other styles
6

Papaluca, Arturo. "Asymmetric cell division intersects with cell geometry : a method to extrapolate and quantify geometrical parameters of sensory organ precursors." Thèse, 2014. http://hdl.handle.net/1866/12060.

Full text
Abstract:
La division cellulaire asymétrique (DCA) consiste en une division pendant laquelle des déterminants cellulaires sont distribués préférentiellement dans une des deux cellules filles. Par l’action de ces déterminants, la DCA générera donc deux cellules filles différentes. Ainsi, la DCA est importante pour générer la diversité cellulaire et pour maintenir l’homéostasie de certaines cellules souches. Pour induire une répartition asymétrique des déterminants cellulaires, le positionnement du fuseau mitotique doit être très bien contrôlé. Fréquemment ceci génère deux cellules filles de tailles différentes, car le fuseau mitotique n’est pas centré pendant la mitose, ce qui induit un positionnement asymétrique du sillon de clivage. Bien qu’un complexe impliquant des GTPases hétérotrimériques et des protéines liant les microtubules au cortex ait été impliqué directement dans le positionnement du fuseau mitotique, le mécanisme exact induisant le positionnement asymétrique du fuseau durant la DCA n'est pas encore compris. Des études récentes suggèrent qu’une régulation asymétrique du cytosquelette d’actine pourrait être responsable de ce positionnement asymétrique du faisceau mitotique. Donc, nous émettons l'hypothèse que des contractions asymétriques d’actine pendant la division cellulaire pourraient déplacer le fuseau mitotique et le sillon de clivage pour créer une asymétrie cellulaire. Nos résultats préliminaires ont démontré que le blebbing cortical, qui est une indication de tension corticale et de contraction, se produit préférentiellement dans la moitié antérieure de cellule précurseur d’organes sensoriels (SOP) pendant le stage de télophase. Nos données soutiennent l'idée que les petites GTPases de la famille Rho pourraient être impliqués dans la régulation du fuseau mitotique et ainsi contrôler la DCA des SOP. Les paramètres expérimentaux développés pour cette thèse, pour étudier la régulation de l’orientation et le positionnement du fuseau mitotique, ouvrirons de nouvelles avenues pour contrôler ce processus, ce qui pourrait être utile pour freiner la progression de cellules cancéreuses. Les résultats préliminaires de ce projet proposeront une manière dont les petites GTPases de la famille Rho peuvent être impliqués dans le contrôle de la division cellulaire asymétrique in vivo dans les SOP. Les modèles théoriques qui sont expliqués dans cette étude pourront servir à améliorer les méthodes quantitatives de biologie cellulaire de la DCA.
Asymmetric cell division (ACD) consists in a cellular division during which specific cell fate determinants are distributed preferentially in one daughter cell, which then differentiate from its sibling. Hence, ACD is important to generate cell diversity and is used to regulate stem cells homeostasis. For proper asymmetric distribution of cell fate determinants, the positioning of the mitotic spindle has to be tightly controlled. Frequently, this induces a cell size asymmetry, since the spindle is then not centered during mitosis, leading to an asymmetric positioning of the cleavage furrow. Although small small GTPases have been shown to act directly on the spindle, the exact mechanism controlling spindle positioning during ACD is not understood. Recent studies suggest that an independent, yet uncharacterized pathway is involved in spindle positioning, which is likely to involve an asymmetric regulation of the actin cytoskeleton. Indeed, actin enables spindle anchoring to the cortex. Hence we hypothesize that asymmetric actin contractions during cytokinesis might displace the mitotic spindle and the cleavage furrow, leading to cell size asymmetry. Interestingly, from our preliminary results we observed that cortical blebbing, which is a read-out of cortical tension/contraction, preferentially occurs on the anterior side of the dividing sensory organ precursor (SOP) cells at telophase. Our preliminary data support the idea that Rho small GTPases might be implicated in regulation of the mitotic spindle hence controlling asymmetric cell division of SOP cells. The experimental settings developed for this thesis, for studying regulation of the mitotic spindle orientation and positioning will serve as proof of concept of how geneticist and biochemist experts could design ways to control such process by different means in cancerous cells. The preliminary results from this project open novel insights on how the Rho small GTPases might be implicated in controlling asymmetric cell division hence their dynamics in vivo of such process during SOP development. Furthermore, the assays and the theoretical model developed in this study can be used as background that could serve to design improved quantitative experimental methods for cell biology synchronizing sub-networks of ACD mechanism.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sensory organs precursors"

1

Jauffred, Bertrand, and Yohanns Bellaiche. "Analyzing Frizzled Signaling Using Fixed and Live Imaging of the Asymmetric Cell Division of the Drosophila Sensory Organ Precursor Cell." In Methods in Molecular Biology, 19–25. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-510-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sensory organs precursors"

1

Wahiduzzaman, Mujibur Khan, Saheem Absar, Spencer Harp, Kyle Edwards, and Nathan Takas. "Fabrication of Polyacrylonitrile Nanofiber Membranes Functionalized With Metal Organic Framework for CO2 Capturing." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50806.

Full text
Abstract:
Crystalline particles known as Metal Organic Frameworks (MOF’s) are known for their large surface area and high adsorption and storage capacity for CO2 gas. Electrospun nanofibers are considered as ideal substrates for synthesizing the MOF particles on the fiber surface. In this project, Polyacrylonitrile (PAN) and a Cu-based MOF known as HKUST-1 were selected as substrate fibers and adsorbent particles respectively. A precursor solution of PAN polymer hybridized with HKUST-1 particles dissolved in Dimehtylformamide (DMF) is used as the primary component solution for electrospinning. SEM images of the electrospun fibers showed small MOF particles formation into the fiber structure. A secondary solvothermal process of MOF particles growing on the fibers was then executed to increase the amount of MOF particles for effectual gas adsorption. The secondary process consists of multiple growth cycles and SEM images showed uniform distribution of porous MOF particles of 2–3μm in size on the fiber surface. EDS report of the fiber confirmed the presence of MOF particles through identification of characteristic Copper elemental peaks of HKUST-1. Thermogravitmetric analysis (TGA) of HKUST-1 doped PAN fiber displayed 32% of total weight loss between 180°C and 350°C thus proving the as-synthesized MOF particles are thermally stable within the mentioned temperature range. A comparative IR spectroscopic result between the gas-treated and gas-untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400cm−1 which corroborates the assertion of adsorption of CO2 on the system. Further step involved is to investigate the gas adsorption capacity of the filter system in an experimental test bench. Non-dispersive Infrared (NDIR) CO2 sensors will be used at the gas inlet and outlet parts to measure the concentration of CO2 and determine the amount of gas uptake by the filter system.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography