Academic literature on the topic 'Sensory input'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensory input.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensory input"
Bui, Tuan V., and Robert M. Brownstone. "Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study." Journal of Neurophysiology 113, no. 7 (April 2015): 2824–39. http://dx.doi.org/10.1152/jn.00866.2014.
Full textSantos, Bruno A., Rogerio M. Gomes, Xabier E. Barandiaran, and Phil Husbands. "Active Role of Self-Sustained Neural Activity on Sensory Input Processing: A Minimal Theoretical Model." Neural Computation 34, no. 3 (February 17, 2022): 686–715. http://dx.doi.org/10.1162/neco_a_01471.
Full textFadli, Muhammad, Wahyuni Wahyuni, and Farid Rahman. "Penatalaksanaan Fisioterapi pada Pasien Diabetic Peripheral Neuropaty dengan Metode Sensorimotor Exercise." Ahmar Metastasis Health Journal 1, no. 3 (December 31, 2021): 92–100. http://dx.doi.org/10.53770/amhj.v1i3.53.
Full textUgawa, Yoshikazu. "Sensory input and basal ganglia." Rinsho Shinkeigaku 52, no. 11 (2012): 862–65. http://dx.doi.org/10.5692/clinicalneurol.52.862.
Full textMao, Yu-Ting, Tian-Miao Hua, and Sarah L. Pallas. "Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas." Journal of Neurophysiology 105, no. 4 (April 2011): 1558–73. http://dx.doi.org/10.1152/jn.00407.2010.
Full textHenn, V. "Sensory Input Modifying Central Motor Actions." Stereotactic and Functional Neurosurgery 49, no. 5 (1986): 251–55. http://dx.doi.org/10.1159/000100183.
Full textFranosch, Jan-Moritz P., Sebastian Urban, and J. Leo van Hemmen. "Supervised Spike-Timing-Dependent Plasticity: A Spatiotemporal Neuronal Learning Rule for Function Approximation and Decisions." Neural Computation 25, no. 12 (December 2013): 3113–30. http://dx.doi.org/10.1162/neco_a_00520.
Full textEtesami, Jalal, and Philipp Geiger. "Causal Transfer for Imitation Learning and Decision Making under Sensor-Shift." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 06 (April 3, 2020): 10118–25. http://dx.doi.org/10.1609/aaai.v34i06.6571.
Full textHavrylovych, Mariia, and Valeriy Danylov. "Research of autoencoder-based user biometric verification with motion patterns." System research and information technologies, no. 2 (August 30, 2022): 128–36. http://dx.doi.org/10.20535/srit.2308-8893.2022.2.10.
Full textStolz, Thomas, Max Diesner, Susanne Neupert, Martin E. Hess, Estefania Delgado-Betancourt, Hans-Joachim Pflüger, and Joachim Schmidt. "Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects." Journal of Neurophysiology 122, no. 6 (December 1, 2019): 2388–413. http://dx.doi.org/10.1152/jn.00196.2019.
Full textDissertations / Theses on the topic "Sensory input"
McNair, Nicolas A. "Input-specificity of sensory-induced neural plasticity in humans." Thesis, University of Auckland, 2008. http://hdl.handle.net/2292/3285.
Full textNargis, Sultana Mahbuba. "Sensory Input and Mental Imagery in Second Language Acquisition." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418370678.
Full textKim, Jung-Kyong. "Sensory substitution learning using auditory input: Behavioral and neural correlates." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96695.
Full textLa substitution sensorielle réfère à la capacité de remplacer une entrée sensorielle par une autre. Ce concept, initialement développé pour aider les personnes aveugles, offre une opportunité scientifique pour étudier l'apprentissage perceptuel à travers plusieurs modalités sensorielles et la plasticité neurale. La présente dissertation utilise une technique qui transforme la vision en son pour examiner l'apprentissage de la substitution sensorielle. Quatre études ont testé les hypothèses que les représentations mentales de l'information spatiale telles que des formes abstraites sont basées sur l'implication de régions cérébrales communes indépendamment de modalités sensorielles. L'étude 1 avait pour but de développer un paradigme d'apprentissage de la substitution audio-visuelle. Nous avons examiné le taux minimal d'apprentissage nécessaire pour identifier les images visuelles en utilisant le son, et les effets d'un entraînement plus intensif sur une large gamme de stimuli pour tester l'hypothèse que la substitution sensorielle serait basée sur une loi d'apprentissage généralisé à travers plusieurs modalités. L'étude 2 était une adaptation de l'étude 1 utilisant l'imagerie par résonance magnétique fonctionnelle (IRMf). Les sujets étaient scannés avant et après un entraînement à une tâche pendant laquelle une forme codée sonore devait être appariée à une forme abstraite présentée visuellement. Nous faisions l'hypothèse que suite à l'entraînement, l'exposition sonore conduirait à un recrutement visuel. L'étude 3 a examiné l'apprentissage pour transformer le toucher en son. Des sujets voyants avaient les yeux bandés et étaient entraînés pour reconnaitre des formes tactiles utilisant des formes codées sonores et testées sur une tâche d'appariement. Nous avons aussi testé le transfert à la vision après entraînement. Nous avons prédit que les formes pourraient être transportées à travers les modalités sensorielles. L'étude 4 était une adaptation en IRMf de l'étude 3. Les sujets étaient scannés avant et après un entraînement pendant une tâche dans laquelle une forme codée sonore était appariée à une forme présentée tactilement. Nous faisions l'hypothèse que des entrées non visuelles conduiraient à un recrutement visuel. Les résultats ont montré que les personnes voyantes ont appris à extraire des modes visuels ou tactiles à partir d'entrées auditives. Cet apprentissage était généralisable à travers les stimuli, dans et à travers les modalités, suggérant une représentation mentale abstraite des formes. L'apprentissage de formes auditives était associé à un changement dans le réseau fonctionnel entre le cortex auditif et le complexe latero-occipital (CLO), une région connue pour le traitement visuel des formes. L'accès auditif au CLO supporte la notion que la spécificité sensorielle du cerveau n'est pas déterminée par la nature des stimuli mais plutôt par le traitement requis pour exécuter la tache.
Lovell, Nathan, and N/A. "Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots." Griffith University. School of Information and Communication Technology, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20070911.152447.
Full textXin, Yifei. "Exploring the Chinese Room: Parallel Sensory Input in Second Language Learning." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333762798.
Full textLovell, Nathan. "Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots." Thesis, Griffith University, 2006. http://hdl.handle.net/10072/367107.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Full Text
Ortman, Robert L. "Sensory input encoding and readout methods for in vitro living neuronal networks." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44856.
Full textChakrabarty, Arnab. "Role of sensory input in structural plasticity of dendrites in adult neuronal networks." Diss., lmu, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-155241.
Full textZhao, Yifan. "Language Learning through Dialogs:Mental Imagery and Parallel Sensory Input in Second Language Learning." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396634043.
Full textMacBride, Claire Ann MacBride. "Mental Imagery as a Substitute for Parallel Sensory Input in the Field of SLA." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1525379740507044.
Full textBooks on the topic "Sensory input"
Proebster, Walter E. Peripherie von Informationssystemen: Technologie und Anwendung : Eingabe, Tastatur, Sensoren, Sprache etc. : Ausgabe, Drucker, Bildschirm, Anzeigen etc. : externe Speicher, Magnetik, Optik etc. Berlin: Springer-Verlag, 1987.
Find full textAIPR Workshop (26th 1997 Washington, D.C.). Exploiting new image sources and sensors: 26th AIPR Workshop, 15-17 October 1997, Washington, D.C. Edited by Selander J. Michael 1952-, Society of Photo-optical Instrumentation Engineers., and AIPR Executive Committee. Bellingham, Wash: SPIE, 1998.
Find full textTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Find full textTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Find full textTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Find full textTyagi, Amit, and Shamila Mohammed. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2020.
Find full textTyagi, Amit Kumar. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality. IGI Global, 2021.
Find full textStoneley, Sarah, and Simon Rinald. Sensory loss. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0047.
Full textStrayer. Lose Weight by Decreasing Sensory Input: A Revolutionary Mind-Body Approach. Dorrance Publishing Co., Inc., 2004.
Find full textHeller, Sharon. Yoga Bliss: How Sensory Input in Yoga Calms & Organizes the Nervous System. Symmetry, 2023.
Find full textBook chapters on the topic "Sensory input"
Stein, Wolfgang. "Sensory Input to Central Pattern Generators." In Encyclopedia of Computational Neuroscience, 2668–76. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_465.
Full textJohansson, Roland S. "Sensory Input and Control of Grip." In Novartis Foundation Symposia, 45–63. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470515563.ch4.
Full textStein, Wolfgang. "Sensory Input to Central Pattern Generators." In Encyclopedia of Computational Neuroscience, 1–11. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_465-3.
Full textStein, Wolfgang. "Sensory Input to Central Pattern Generators." In Encyclopedia of Computational Neuroscience, 1–10. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-7320-6_465-4.
Full textStrösslin, Thomas, Christophe Krebser, Angelo Arleo, and Wulfram Gerstner. "Combining Multimodal Sensory Input for Spatial Learning." In Artificial Neural Networks — ICANN 2002, 87–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_15.
Full textBullock, Theodore H. "The Comparative Neurology of Expectation: Stimulus Acquisition and Neurobiology of Anticipated and Unanticipated Input." In Sensory Biology of Aquatic Animals, 269–84. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3714-3_10.
Full textBereiter, D. A., E. J. DeMaria, W. C. Engeland, and D. S. Gann. "Endocrine Responses to Multiple Sensory Input Related to Injury." In Advances in Experimental Medicine and Biology, 251–63. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2064-5_20.
Full textClark, Lauren. "Sensory Awareness – Understanding Your Unique Brain Response to Sensory Input from the World Around You." In Das menschliche Büro - The human(e) office, 179–85. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33519-9_9.
Full textPolitis, Dionysios, Rafail Tzimas, Dimitrios Margounakis, Veljko Aleksić, and Nektarios-Kyriakos Paris. "User Experience and Music Perception in Broadcasts: Sensory Input Classification." In New Realities, Mobile Systems and Applications, 410–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96296-8_37.
Full textDi Ferdinando, Andrea, and Domenico Parisi. "Internal Representations of Sensory Input Reflect the Motor Output with Which Organisms Respond to the Input." In Seeing, Thinking and Knowing, 115–41. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2081-3_6.
Full textConference papers on the topic "Sensory input"
Evans, Richard, Matko Bošnjak, Lars Buesing, Kevin Ellis, David Pfau, Pushmeet Kohli, and Marek Sergot. "Making Sense of Raw Input (Extended Abstract)." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/799.
Full textHill, Chris, Casey Lee Hunt, Sammie Crowder, Brett Fiedler, Emily B. Moore, and Ann Eisenberg. "Investigating Sensory Extensions as Input for Interactive Simulations." In TEI '23: Seventeenth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3569009.3573108.
Full textJeon, Soo. "State Estimation for Kinematic Model Over Lossy Network." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4297.
Full textWurdemann, Helge A., Evangelos Georgiou, Lei Cui, and Jian S. Dai. "SLAM Using 3D Reconstruction via a Visual RGB and RGB-D Sensory Input." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47735.
Full textKruijff, Ernst, Gerold Wesche, Kai Riege, Gernot Goebbels, Martijn Kunstman, and Dieter Schmalstieg. "Tactylus, a pen-input device exploring audiotactile sensory binding." In the ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1180495.1180557.
Full textWakatabe, Ryo, Yasuo Kuniyoshi, and Gordon Cheng. "O (logn) algorithm for forward kinematics under asynchronous sensory input." In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989291.
Full textRichards, Deborah. "Intimately intelligent virtual agents: knowing the human beyond sensory input." In ICMI '17: INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3139491.3139505.
Full textConnor, Jack, Jordan Nowell, Benjamin Champion, and Matthew Joordens. "Analysis of Robotic Fish Using Swarming Rules with Limited Sensory Input." In 2019 14th Annual Conference System of Systems Engineering (SoSE). IEEE, 2019. http://dx.doi.org/10.1109/sysose.2019.8753879.
Full textScherlen, Anne-Catherine, and Vincent Gautier. "Eye movements : sensory input to command and control adaptive visual aids." In 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE, 2007. http://dx.doi.org/10.1109/cne.2007.369669.
Full textAtashzar, S. Farokh, Mahya Shahbazi, Fariborz Rahimi, Mehdi Delrobaei, Jack Lee, Rajni V. Patel, and Mandar Jog. "Effect of kinesthetic force feedback and visual sensory input on writer's cramp." In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER 2013). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6696076.
Full textReports on the topic "Sensory input"
Parker, Michael, Alex Stott, Brian Quinn, Bruce Elder, Tate Meehan, and Sally Shoop. Joint Chilean and US mobility testing in extreme environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42362.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full textJones, Scott B., Shmuel P. Friedman, and Gregory Communar. Novel streaming potential and thermal sensor techniques for monitoring water and nutrient fluxes in the vadose zone. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7597910.bard.
Full textKuznetsov, Victor, Vladislav Litvinenko, Egor Bykov, and Vadim Lukin. A program for determining the area of the object entering the IR sensor grid, as well as determining the dynamic characteristics. Science and Innovation Center Publishing House, April 2021. http://dx.doi.org/10.12731/bykov.0415.15042021.
Full textMcMurtrey, Michael, Kunal Mondal, Joseph Bass, Kiyo Fujimoto, and Austin Biaggne. Report on plasma jet printer for sensor fabrication with process parameters optimized by simulation input. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1668670.
Full textAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li, and A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Full textBaker, John L., James L. Olds, and Joel L. Davis. A Novel Approach to Large Scale Brain Network Models: An Algorithmic Model for Place Cell Emergence With Robotic Sensor Input. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada425321.
Full textBerney, Ernest, Andrew Ward, and Naveen Ganesh. First generation automated assessment of airfield damage using LiDAR point clouds. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40042.
Full textMeiri, Noam, Michael D. Denbow, and Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Full textGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs, and Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, October 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Full text