Academic literature on the topic 'Sensors selection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensors selection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensors selection"
Wijaya, Tomi, Wahyu Caesarendra, Tegoeh Tjahjowidodo, Bobby K. Pappachan, Arthur Wee, and Muhammad Izzat Roslan. "A Review on Sensors for Real-time Monitoring and Control Systems on Machining and Surface Finishing Processes." MATEC Web of Conferences 159 (2018): 02034. http://dx.doi.org/10.1051/matecconf/201815902034.
Full textJuboor, Saed Sa’deh, Sook-Ling Chua, and Lee Kien Foo. "Informative sensor selection on clustered sensors." Journal of Physics: Conference Series 1192 (March 2019): 012057. http://dx.doi.org/10.1088/1742-6596/1192/1/012057.
Full textWentao, Shi, Chen Dong, Zhou Lin, Bai Ke, and Jin Yong. "Sensor Selection Scheme considering Uncertainty Disturbance." Journal of Sensors 2022 (February 16, 2022): 1–11. http://dx.doi.org/10.1155/2022/2488907.
Full textReeves, J., R. Remenyte-Prescott, and J. Andrews. "Sensor selection for fault diagnostics using performance metric." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 233, no. 4 (October 10, 2018): 537–52. http://dx.doi.org/10.1177/1748006x18804690.
Full textMehmood, Zahid, Ibraheem Haneef, and Florin Udrea. "Material selection for optimum design of MEMS pressure sensors." Microsystem Technologies 26, no. 9 (October 30, 2019): 2751–66. http://dx.doi.org/10.1007/s00542-019-04601-1.
Full textKulkarni, Amol, Janis Terpenny, and Vittaldas Prabhu. "Sensor Selection Framework for Designing Fault Diagnostics System." Sensors 21, no. 19 (September 28, 2021): 6470. http://dx.doi.org/10.3390/s21196470.
Full textAbbas, Jabbar, Amin Al-Habaibeh, and Dai Zhong Su. "Sensor Fusion for Condition Monitoring System of End Milling Operations." Key Engineering Materials 450 (November 2010): 267–70. http://dx.doi.org/10.4028/www.scientific.net/kem.450.267.
Full textChodorek, Agnieszka, Robert Ryszard Chodorek, and Paweł Sitek. "Response Time and Intrinsic Information Quality as Criteria for the Selection of Low-Cost Sensors for Use in Mobile Weather Stations." Electronics 11, no. 15 (August 7, 2022): 2448. http://dx.doi.org/10.3390/electronics11152448.
Full textSu, Shen, Yanbin Sun, Xiangsong Gao, Jing Qiu, and Zhihong Tian. "A Correlation-Change Based Feature Selection Method for IoT Equipment Anomaly Detection." Applied Sciences 9, no. 3 (January 28, 2019): 437. http://dx.doi.org/10.3390/app9030437.
Full textGuan, Fei, Wei-Wei Cui, Lian-Feng Li, and Jie Wu. "A Comprehensive Evaluation Method of Sensor Selection for PHM Based on Grey Clustering." Sensors 20, no. 6 (March 19, 2020): 1710. http://dx.doi.org/10.3390/s20061710.
Full textDissertations / Theses on the topic "Sensors selection"
Jean, Paul Bambanza. "iSEE:A Semantic Sensors Selection System for Healthcare." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59635.
Full textDe, Mel Geeth R. "Intelligent resource selection for sensor-task assignment : a knowledge-based approach." Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=215104.
Full textRiedmann, Michael. "Band selection using hyperspectral data from airborne and satellite sensors." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398728.
Full textFerré, Baldrich Joan. "Experimental design applied to the selection of samples and sensors in multivariate calibration." Doctoral thesis, Universitat Rovira i Virgili, 1998. http://hdl.handle.net/10803/9020.
Full textLa predicció emprant models de calibratge multivariants està esdevenint un pas comú en els procediments analítics. Per tant, l'habilitat del model de donar prediccions precises i no esbiaixades té una influència decisiva en la qualitat del resultat analític. És important que les mostres de calibratge i els sensors es triïn adequadament de manera que els models pugin representar adequadament el fenomen en estudi i assegurar la qualitat de les prediccions.
En aquesta tesi s'ha estudiat la selecció de mostres de calibratge d'un a llista de mostres candidates en regressió sobre components principals (PCR) i la selecció de longituds d'ona en el model de mínims quadrats clàssics (CLS). El fonament l'ha donat la teoria del disseny estadístic d'experiments.
En PCR, el nombre mínim de mostres de calibratge es tria emprant les respostes instrumentals de les mostres candidates. La concentració d'analit només cal determinar-la en les mostres seleccionades. S'han proposat diferents usos del criteri d'optimalitat D.
En CLS, s'han interpretat diferents criteris per la selecció de longituds d'ona des del punt de vista de l'el·lipsoide de confiança de les concentracions predites. Els criteris també s'han revisat de manera crítica d'acord amb el seu efecte en la precisió, exactitud i veracitat (que s'han revisat d'acord amb les definicions ISO). Basat en la teoria del disseny d'experiments, s'han donat les regles per a la selecció de sensors. A demés, s'ha proposat un nou mètode per a detectar i reduir el biaix en les prediccions de noves mostres predites mitjançant CLS.
Conclusions
1. Criteris d'optimalitat del disseny d'experiment en MLR s'han aplicat per triar longituds d'ona de calibratge en CLS i el nombre mínim de mostres de calibratge en MLR i PCR a partir de les respostes instrumentals o scores de components principals d'una llista de candidats. Aquests criteris són un alternativa a (i/o complementen) el criteri subjectiu de l'experimentador. Els models construïts amb els punts triats per aquests criteris tenen una menor variància dels coeficients o concentracions i una millor habilitat de predicció que els models construïts amb mostres triades aleatòriament.
2. El criteri D s'ha emprat amb èxit per triar mostres de calibratge en PCR i MLR, per triar un grup reduït de mostres per a comprovar la validesa de models de PCR abans d'estandarditzar-los i per triar longituds d'ona en CLS a partir de la matriu de sensibilitats. Les mostres de calibratge que són D òptimes generalment donen models de PCR i MLR amb una millor habilitat de predicció que quan les mostres de calibratge es trien aleatòriament o emprant l'algorisme de Kennard-Stone
3. Cal emprar algorismes d'optimització per trobar, els subconjunts de I punts òptims entre una llista de N candidats. En aquest treball es van emprar els algorismes de Fedorov, de Kennard-Stone i algorismes genètics.
4. L'el·lipsoide de confiança de les concentracions estimades i la teoria del disseny d'experiments proporcionen el marc per interpretar l'efecte dels sensors triats amb aquests criteris en els resultats de predicció del model i per definir noves regles per triar longituds d'ona.
5. L'eficàcia dels criteris de selecció en CLS basats en la matriu de calibratge necessiten que no hi hagi biaix en la resposta dels sensors triats. La qualitat de les dades s'ha de comprovar abans de que s'empri el mètode de selecció de longituds d'ona.
6. La senyal analítica neta (NAS) és important pera comprendre el procés de quantificació en CLS i la propagació dels errors a les concentracions predites. S'han emprat diagnòstics tals com la sensibilitat, selectivitat i el gràfic de regressió del senyal analític net (NASRP), que es basen en el NAS d'un analit particular. S'ha vist que la norma del NAS està relacionada amb l'error de predicció.
7. El NASRP és una eina per a detectar gràficament si la resposta mesurada de la mostra desconeguda segueix el model calculat. La concentració estimada és el pendent de la recta ajustada als punts de gràfic. plot. Els sensors amb biaix es poden detectar i els sensors que segueixen el model es poden triar emprant la funció indicador d'Error i un mètode de finestres mòbils.
Multivariate calibration models relate instrumental responses (e.g. spectra) of a set of calibration samples to the quantities of chemical or physical variables such as analyte concentrations, or indexes (e.g. octane number in fuels). This relationship is used to predict these quantities from the instrumental response data of new unknown samples measured in the same manner.
Prediction using multivariate calibration models is becoming one common step in the analytical procedure. Therefore, the ability of the model to give precise and unbiased predictions has a decisive influence on the quality of the analytical result. It is important that the calibration samples and sensors be carefully selected so that the models can properly represent the phenomenon under study and assure the quality of the predictions.
We have studied the selection of calibration samples from the list of all the available samples in principal component regression (PCR) and the selection of wavelengths in classical least squares (CLS). The underlying basis has been given by experimental design theory.
In PCR, the minimum number of calibration samples are selected using the instrumental responses of the candidate samples. The analyte concentration is only determined in the selected samples. Different uses of the D-criterion have also been proposed.
In CLS, different criteria for wavelength selection have been interpreted from the point of view of the experimental design using the confidence hyperellipsoid of the predicted concentrations. The criteria have also been critically reviewed according to their effect on precision, accuracy and trueness (which are revised following ISO definitions). Based on the experimental design theory, new guidelines for sensor selection have been given. Moreover, a new method for detecting and reducing bias in unknown samples to be analyzed using CLS.
Conclusions
1. Optimality criteria derived from experimental design in MLR have been applied to select calibration wavelengths in CLS and the minimum number of calibration samples in MLR and PCR from the instrumental responses or principal component scores of a list of candidates. These criteria are an alternative (and/or a complement) to the experimenter's subjective criterion. The models built with the points selected with the proposed criteria had a smaller variance of the coefficients or concentrations and better predictive ability than the models built with the samples selected randomly
2. The D-criterion has been successfully used for selecting calibration samples in PCR and MLR, for selecting a reduced set of samples to assess the validity of PCR models before standardization and for selecting wavelengths in CLS from the matrix of sensitivities. D optimal calibration samples generally give PCR and MLR models with a better predictive ability than calibration samples selected randomly or using the Kennard-Stone algorithm.
3. Optimization algorithms are needed to find the optimal subsets of I points from a list of N candidates. Fedorov's algorithm, Kennard-Stone algorithm and Genetic Algorithms were studied here.
4. The confidence ellipsoid of the estimated concentrations and the experimental design theory provide the framework for interpreting the effect of the sensors selected with these criteria on the prediction results of the model and for deriving new guidelines for wavelength selection.
5. The efficacy of the selection criteria in CLS based on the calibration matrix requires there to be no bias in the response at the selected sensors. The quality of the data must be checked before a wavelength selection method is used.
6. The net analyte signal (NAS) is important to understand the quantification process in CLS and the propagation of errors to the predicted concentrations. Diagnostics such as sensitivity, selectivity and net analyte signal regression plots (NASRP) which are based on the NAS for each particular analyte have been used. The norm of the NAS has been found to be related to the prediction error .
7. The NASRP is a tool for graphically detecting whether the measured response of the unknown sample follows the calculated model. The estimated concentration is the slope of the straight line fitted to the points in this plot. The sensors with bias can be detected and the sensors that best follow the model can be selected using the Error Indicator function and a moving window method.
Johnson, Jeremy Ryan. "Fault propagation timing analysis to aid in the selection of sensors for health management systems." Diss., Rolla, Mo. : University of Missouri--Rolla i.e. [Missouri University of Science and Technology], 2008. http://scholarsmine.mst.edu/thesis/pdf/Johnson_09007dcc804bcda7.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 19, 2008) Degree granted by Missouri University of Science and Technology, formerly known as University of Missouri--Rolla. Includes bibliographical references (p. 39-41).
Polyzos, Dimitrios. ""Measuring System Properties & Structured Diagnostics for the Selection of Sensors, Actuators Placement & Eigenstructure Assignment"." Thesis, City University London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524712.
Full textAkpolat, Hacer. "Improvement of Tomato Breeding Selection Capabilities using Vibrational Spectroscopy and Prediction Algorithms." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574812034661898.
Full textLei, Hua. "Modeling and Data Analysis of Conductive Polymer Composite Sensors." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1577.pdf.
Full textSegal, Aleksandr V. "Iterative Local Model Selection for tracking and mapping." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8690e0e0-33c5-403e-afdf-e5538e5d304f.
Full textMartins, Juliano Araújo. "Dados hiperespectrais para predição do teor foliar de nitrogênio em cana-de-açúcar." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-03052016-191304/.
Full textAn alternative method, quite cited in literature to improve nitrogen fertilization management on crops is the remote sensing, highlighted with the use of spectral sensors in the visible and infrared region. In this work, we sought to establish the relationship between variations in leaf nitrogen content and the spectral response of sugarcane leaf using a hyperspectral sensor, with assessments in three experimental areas of São Paulo state, Brazil, with evaluations in different soils and varieties. Each experimental area was allocated in randomized block, with splitted plots and four repetition, hence, receiving doses of 0, 50, 100 and 150 kg of nitrogen per hectare. Spectral analysis was performed on the \"+1\" leaf in laboratory; we collected 10 leaves per subplots; which were subsequently subjected to chemical analysis to leaf nitrogen content determination. We observed a significant correlation between leaf nitrogen content and variations in sugarcane spectral response, we noticed that the region of the green light and red-edge were the most consistent and stable among the studied area and the crop seasons evaluated. The principal component analysis allowed to reinforce these results, since that the scores for principal components showed significant correlations with the leaf nitrogen content, had higher loadings values for the previous spectral regions mentioned. From the spectral curves were also performed calculations of spectral indices previously described in literature, being these submitted to simple regression analysis to direct prediction of leaf nitrogen content. The models were calibrated with 2012/13 and validated with 2013/14 crop season data. Spectral indices that were calculated with green and/or red-edge, combined with near-infrared wavelengths performed well in the validation phase, and the five most stable were the BNi (500, 705 and 750 nm), GNDVI (550 and 780 nm), NDRE (790 and 720 nm), IR-1dB (735 and 720 nm) and VOGa (740 and 720 nm). The variety SP 81 3250 was cultured in the three experimental areas, allowing to compare the performance of a specific site model with a general model for the same variety growing on different soil conditions. Although the general model presents meaningful statistical parameters, there is a significant reduction in sensitivity to predict leaf nitrogen content of sugarcane when compared with specific site calibrated models. We also used on this research the stepwise multiple linear regression (SMLR) that generated models with good precision to estimate the leaf nitrogen content, even when models are calibrated for an experimental area, regardless of spectral differences between varieties, using 5 to 6 wavelengths. This study shows that specific wavelengths are associated with variation in leaf nitrogen content of sugarcane, and these are reported in the region of green (near to 550 nm) and red-edge (680 to 720nm). Despite the low correlation observed between the infrared wavelengths to the leaf nitrogen content of sugarcane, vegetation indices calculated from these wavelengths, or its insertion on linear models generation were important to improve prediction accuracy.
Books on the topic "Sensors selection"
Pressure sensors: Selection and application. New York: M. Dekker, 1991.
Find full textJuds, Scott M. Photoelectric sensors and controls: Selection and application. New York: M. Dekker, 1988.
Find full textNorton, Harry N. Sensor and transducer selection guide. Oxford, UK: Elsevier Advanced Technology, 1990.
Find full textRyan, Margaret A., Abhijit V. Shevade, Charles J. Taylor, M. L. Homer, Mario Blanco, and Joseph R. Stetter, eds. Computational Methods for Sensor Material Selection. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-73715-7.
Full textSuzuki, Yasuo. Preparation and application of ion sensors. Kawasaki-shi: Meiji Daigaku Kagaku Gijutsu Kenkyūjo, 1987.
Find full textGaver, Donald Paul. Asymptotic properties of a sensor allocation model. Monterey, Calif: Naval Postgraduate School, 1995.
Find full textRussotti, J. S. Sensor-operated headset selection for Virginia class submarine consoles (C3I). Groton, CT: Naval Submarine Medical Research Laboratory, 2001.
Find full textCoșofreț, Vasile V. Pharmaceutical applications of membrane sensors. Boca Raton: CRC Press, 1992.
Find full textDrost, Ulrich C. Sensory-motor coupling in musicians. Göttingen: Cuvillier Verlag, 2005.
Find full textElectroanalysis na h'Éireann (International Conference) (1986 Dublin). Electrochemistry, sensors and analysis: Proceedings of the International Conference "Electroanalysis na h'Éireann", Dublin, Ireland, June 10-12, 1986. Amsterdam: Elsevier, 1986.
Find full textBook chapters on the topic "Sensors selection"
Gölz, Jacqueline, and Christian Hatzfeld. "Sensor Design." In Springer Series on Touch and Haptic Systems, 431–516. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04536-3_10.
Full textSajid, Memoon, Jahan Zeb Gul, and Kyung Hyun Choi. "Selection of Sensors, Transducers, and Actuators." In Functional Reverse Engineering of Machine Tools, 29–51. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. | Series: Computers in engineering design and manufacturing: CRC Press, 2019. http://dx.doi.org/10.1201/9780429022876-3.
Full textOlthuis, W., S. Böhm, G. R. Langereis, and P. Bergveld. "Selection in System and Sensor." In Chemical and Biological Sensors for Environmental Monitoring, 60–85. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0762.ch005.
Full textBest, Lincoln, Ernest Foo, Hui Tian, and Zahra Jadidi. "Client Selection Frameworks Within Federated Machine Learning: The Current Paradigm." In Smart Sensors, Measurement and Instrumentation, 61–83. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29845-5_3.
Full textLeschke, André. "Second Degree of Freedom: Selection of Sensors." In Algorithm Concept for Crash Detection in Passenger Cars, 159–75. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29392-5_10.
Full textBen Said, Ahmed, Abdelkarim Erradi, Azadeh Gharia Neiat, and Athman Bouguettaya. "Mobile Crowdsourced Sensors Selection for Journey Services." In Service-Oriented Computing, 463–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03596-9_33.
Full textXu, Li, Xia Luo, and Huanzhu Wang. "Efficient Cluster Head Selection for Multimode Sensors in Wireless Sensor Network." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 98–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67514-1_8.
Full textPirttikangas, Susanna, Kaori Fujinami, and Tatsuo Nakajima. "Feature Selection and Activity Recognition from Wearable Sensors." In Ubiquitous Computing Systems, 516–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11890348_39.
Full textSubramanian, Arun, Kishan G. Mehrotra, Chilukuri K. Mohan, Pramod K. Varshney, and Thyagaraju Damarla. "Feature Selection and Occupancy Classification Using Seismic Sensors." In Trends in Applied Intelligent Systems, 605–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13025-0_62.
Full textYunus, M. A. Md, S. C. Mukhopadhyay, M. S. A. Rahman, N. S. Zahidin, and S. Ibrahim. "The Selection of Novel Planar Electromagnetic Sensors for the Application of Nitrate Contamination Detection." In Smart Sensors, Measurement and Instrumentation, 171–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37006-9_8.
Full textConference papers on the topic "Sensors selection"
Wendt, James B., and Miodrag Potkonjak. "Medical diagnostic-based sensor selection." In 2011 IEEE Sensors. IEEE, 2011. http://dx.doi.org/10.1109/icsens.2011.6127188.
Full textKhokhlov, Igor, Akshay Pudage, and Leon Reznik. "Sensor Selection Optimization with Genetic Algorithms." In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956579.
Full textChuprov, Sergei, Leon Reznik, Igor Khokhlov, and Karan Manghi. "Multi-Modal Sensor Selection with Genetic Algorithms." In 2022 IEEE Sensors. IEEE, 2022. http://dx.doi.org/10.1109/sensors52175.2022.9967296.
Full textSowers, T. Shane, George Kopasakis, and Donald L. Simon. "Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50525.
Full textNemarich, Christopher P., Henry R. Hegner, and Marjorie Ann E. Natishan. "The Selection of Diagnostic Technologies and Sensors for Condition Based Maintenance Systems." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0865.
Full textSeverini, Fabio, Vincenzo Sesta, Francesca Madonini, Alfonso Incoronato, Federica Villa, and Franco Zappa. "dTOF SPAD array with Region-Of-Interest selection and dynamic TDC routing." In Optical Sensors. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/sensors.2021.sf1a.6.
Full textPengfei, Zhang, Teo Keng Boon, and Wang Yixin. "Sensor Selection in Wireless Sensor Networks for Structural Health Monitoring." In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956873.
Full textArar, Malath I. "Gas Turbine Corrected Parameters Control: Humidity Correction – Sensors Evaluation and Selection." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30047.
Full textRoehm, Benjamin. "Concept for the Selection and Positioning of Sensor Technology in the Development of Advanced Systems." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002517.
Full textZhang, Liang, Ping Lu, and Deming Liu. "Pulse selection technique in fiber sensing." In Asia Pacific Optical Sensors Conference 2013, edited by Minghong Yang, Dongning Wang, and Yun-Jiang Rao. SPIE, 2013. http://dx.doi.org/10.1117/12.2031244.
Full textReports on the topic "Sensors selection"
Hegarty-Craver, Meghan, Hope Davis-Wilson, Pooja Gaur, Howard Walls, David Dausch, and Dorota Temple. Wearable Sensors for Service Members and First Responders: Considerations for Using Commercially Available Sensors in Continuous Monitoring. RTI Press, February 2024. http://dx.doi.org/10.3768/rtipress.2024.op.0090.2402.
Full textRatmanski, Kiril, and Sergey Vecherin. Resilience in distributed sensor networks. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45680.
Full textShavlik, Jude. Selection, Combination, and Evaluation of Effective Software Sensors for Detecting Abnormal Usage of Computers Running Windows NT/2000. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada406316.
Full textOlsen. PR-179-07200-R01 Evaluation of NOx Sensors for Control of Aftertreatment Devices. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2008. http://dx.doi.org/10.55274/r0010985.
Full textNenoff, Tina M., and Leo J. Small. Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396079.
Full textAllendorf, Mark D., Aaron Michael Katzenmeyer, Vitalie Stavilla, Joanne V. Volponi, Louise Jacqueline Criscenti, Jeffery A. Greathouse, Terry Rae Guilinger, et al. Selective stress-based microcantilever sensors for enhanced surveillance. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1057255.
Full textBeebe, Kenneth R., and Bruce R. Kowalski. Wavelength or Sensor Selection by Minimization of Prediction Error. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada197231.
Full textSolanki, Pranshoo, Haiyan Xie, John Awaitey, and Tejaswi Reddy. State-of-the-Practice Review of Field-Curing Methods for Evaluating the Strength of Concrete Test Specimens. Illinois Center for Transportation, April 2023. http://dx.doi.org/10.36501/0197-9191/23-003.
Full textRussotti, Joseph S., and Derek W. Schwaller. Sensor-Operated Headset Selection for Virginia Class Submarine Consoles (3CI). Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada408227.
Full textRamschak, Thomas. Efficient Gathering, Storing, Distributing and Validation of Data. IEA SHC Task 68, January 2024. http://dx.doi.org/10.18777/ieashc-task68-2024-0001.
Full text