Dissertations / Theses on the topic 'Sensors fusion for localisation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sensors fusion for localisation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Millikin, R. L. "Sensor fusion for the localisation of birds in flight." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ65871.pdf.
Full textWelte, Anthony. "Spatio-temporal data fusion for intelligent vehicle localization." Thesis, Compiègne, 2020. http://bibliotheque.utc.fr/EXPLOITATION/doc/IFD/2020COMP2572.
Full textLocalization is an essential basic capability for vehicles to be able to navigate autonomously on the road. This can be achieved through already available sensors and new technologies (Iidars, smart cameras). These sensors combined with highly accurate maps result in greater accuracy. In this work, the benefits of storing and reusing information in memory (in data buffers) are explored. Localization systems need to perform a high-frequency estimation, map matching, calibration and error detection. A framework composed of several processing layers is proposed and studied. A main filtering layer estimates the vehicle pose while other layers address the more complex problems. High-frequency state estimation relies on proprioceptive measurements combined with GNSS observations. Calibration is essential to obtain an accurate pose. By keeping state estimates and observations in a buffer, the observation models of these sensors can be calibrated. This is achieved using smoothed estimates in place of a ground truth. Lidars and smart cameras provide measurements that can be used for localization but raise matching issues with map features. In this work, the matching problem is addressed on a spatio-temporal window, resulting in a more detailed pictur of the environment. The state buffer is adjusted using the observations and all possible matches. Although using mapped features for localization enables to reach greater accuracy, this is only true if the map can be trusted. An approach using the post smoothing residuals has been developed to detect changes and either mitigate or reject the affected features
Lilja, Robin. "A Localisation and Navigation System for an Autonomous Wheel Loader." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12157.
Full textMatsumoto, Takeshi, and takeshi matsumoto@flinders edu au. "Real-Time Multi-Sensor Localisation and Mapping Algorithms for Mobile Robots." Flinders University. Computer Science, Engineering and Mathematics, 2010. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20100302.131127.
Full textKhairallah, Mahmoud. "Flow-Based Visual-Inertial Odometry for Neuromorphic Vision Sensors." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST117.
Full textRather than generating images constantly and synchronously, neuromorphic vision sensors -also known as event-based cameras- permit each pixel to provide information independently and asynchronously whenever brightness change is detected. Consequently, neuromorphic vision sensors do not encounter the problems of conventional frame-based cameras like image artifacts and motion blur. Furthermore, they can provide lossless data compression, higher temporal resolution and higher dynamic range. Hence, event-based cameras conveniently replace frame-based cameras in robotic applications requiring high maneuverability and varying environmental conditions. In this thesis, we address the problem of visual-inertial odometry using event-based cameras and an inertial measurement unit. Exploiting the consistency of event-based cameras with the brightness constancy conditions, we discuss the availability of building a visual odometry system based on optical flow estimation. We develop our approach based on the assumption that event-based cameras provide edge-like information about the objects in the scene and apply a line detection algorithm for data reduction. Line tracking allows us to gain more time for computations and provides a better representation of the environment than feature points. In this thesis, we do not only show an approach for event-based visual-inertial odometry but also event-based algorithms that can be used as stand-alone algorithms or integrated into other approaches if needed
Salehi, Achkan. "Localisation précise d'un véhicule par couplage vision/capteurs embarqués/systèmes d'informations géographiques." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC064/document.
Full textThe fusion between sensors and databases whose errors are independant is the most re-liable and therefore most widespread solution to the localization problem. Current autonomousand semi-autonomous vehicles, as well as augmented reality applications targeting industrialcontexts exploit large sensor and database graphs that are difficult and expensive to synchro-nize and calibrate. Thus, the democratization of these technologies requires the exploration ofthe possiblity of exploiting low-cost and easily accessible sensors and databases. These infor-mation sources are naturally tainted by higher uncertainty levels, and many obstacles to theireffective and efficient practical usage persist. Moreover, the recent but dazzling successes ofdeep neural networks in various tasks seem to indicate that they could be a viable and low-costalternative to some components of current SLAM systems.In this thesis, we focused on large-scale localization of a vehicle in a georeferenced co-ordinate frame from a low-cost system, which is based on the fusion between a monocularvideo stream, 3d non-textured but georeferenced building models, terrain elevation models anddata either from a low-cost GPS or from vehicle odometry. Our work targets the resolutionof two problems. The first one is related to the fusion via barrier term optimization of VS-LAM and positioning measurements provided by a low-cost GPS. This method is, to the bestof our knowledge, the most robust against GPS uncertainties, but it is more demanding in termsof computational resources. We propose an algorithmic optimization of that approach basedon the definition of a novel barrier term. The second problem is the data association problembetween the primitives that represent the geometry of the scene (e.g. 3d points) and the 3d buil-ding models. Previous works in that area use simple geometric criteria and are therefore verysensitive to occlusions in urban environments. We exploit deep convolutional neural networksin order to identify and associate elements from the map that correspond to 3d building mo-del façades. Although our contributions are for the most part independant from the underlyingSLAM system, we based our experiments on constrained key-frame based bundle adjustment.The solutions that we propose are evaluated on synthetic sequences as well as on real urbandatasets. These experiments show important performance gains for VSLAM/GPS fusion, andconsiderable improvements in the robustness of building constraints to occlusions
Héry, Elwan. "Localisation coopérative de véhicules autonomes communicants." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2516.
Full textTo be able to navigate autonomously, a vehicle must be accurately localized relatively to all obstacles, such as roadside for lane keeping and vehicles and pedestrians to avoid causing accidents. This PhD thesis deals with the interest of cooperation to improve the localization of cooperative vehicles that exchange information. Autonomous navigation on the road is often based on coordinates provided in a Cartesian frame. In order to better represent the pose of a vehicle with respect to the lane in which it travels, we study curvilinear coordinates with respect to a path stored in a map. These coordinates generalize the curvilinear abscissa by adding a signed lateral deviation from the center of the lane and an orientation relative to the center of the lane taking into account the direction of travel. These coordinates are studied with different track models and using different projections to make the map-matching. A first cooperative localization approach is based on these coordinates. The lateral deviation and the orientation relative to the lane can be known precisely from a perception of the lane borders, but for autonomous driving with other vehicles, it is important to maintain a good longitudinal accuracy. A one-dimensional data fusion method makes it possible to show the interest of the cooperative localization in this simplified case where the lateral deviation, the curvilinear orientation and the relative positioning between two vehicles are accurately known. This case study shows that, in some cases, lateral accuracy can be propagated to other vehicles to improve their longitudinal accuracy. The correlation issues of the errors are taken into account with a covariance intersection filter. An ICP (Iterative Closest Point) minimization algorithm is then used to determine the relative pose between the vehicles from LiDAR points and a 2D polygonal model representing the shape of the vehicle. Several correspondences of the LiDAR points with the model and different minimization approaches are compared. The propagation of absolute vehicle pose using relative poses with their uncertainties is done through non-linear equations that can have a strong impact on consistency. The different dynamic elements surrounding the ego-vehicle are estimated in a Local Dynamic Map (LDM) to enhance the static high definition map describing the center of the lane and its border. In our case, the agents are only communicating vehicles. The LDM is composed of the state of each vehicle. The states are merged using an asynchronous algorithm, fusing available data at variable times. The algorithm is decentralized, each vehicle computing its own LDM and sharing it. As the position errors of the GNSS receivers are biased, a marking detection is introduced to obtain the lateral deviation from the center of the lane in order to estimate these biases. LiDAR observations with the ICP method allow to enrich the fusion with the constraints between the vehicles. Experimental results of this fusion show that the vehicles are more accurately localized with respect to each other while maintaining consistent poses
Jacobson, Adam. "Bio-inspired multi-sensor fusion and calibration for robot place learning and recognition." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/116179/1/Adam%20Jacobson%20Thesis.pdf.
Full textEricsson, John-Eric, and Daniel Eriksson. "Indoor Positioning and Localisation System with Sensor Fusion : AN IMPLEMENTATION ON AN INDOOR AUTONOMOUS ROBOT AT ÅF." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168841.
Full textExamensjobbet presenterar riktlinjer för hur sensorer och algoritmer för inomhuspositionering och lokaliseringssystem med sensorfusion bör väljas. Riktlinjerna är baserade på en omfattande teori och state of the art undersökning. Olika scenarion presenteras för att ge exempel på metoder för att välja sensorer och algoritmer för applikationer. Självklart finns det inga kombinationer som är rätt eller fel, men vissa faktorer är bra att komma ihåg när ett system designas. För att ge exempel på de föreslagna riktlinjerna har ett “Simultaneous Localisation and Mapping” (SLAM) system samt ett Inomhus Positioneringssystem (IPS) designats och implementerats på en inbyggd robotplattform. Det implementerade SLAM systemet baserades på en FastSLAM2algoritm med ultraljudssensorer och det implementerade IPS baserades på en Wifi RSS profileringsmetod som använder en Weibullfördelning. Metoderna, sensorerna och infrastrukturenhar valts utifrån krav som framställts från önskningar av intressenten samt utifrån kunskap från teori och state of the art undersökningen. En kombination av SLAM och IPS har föreslagits och valts att kallas WiFi SLAM för att reducera osäkerheter från de båda metoderna. Tyvärr har ingen kombination implementerats och testats på grund av oväntade problem med plattformen. Systemen simulerades individuellt före implementationen på den inbyggda plattformen. Resultat från dessa simuleringar tydde på att kraven skulle kunna uppfyllas samt gav en indikation av den minsta “set-upen” som behövdes för implementering. Båda de implementerade systemen visade sig ha de förväntade noggrannheterna under testning och med mer tid kunde bättre kalibrering ha skett, vilket förmodligen skulle resulterat i bättre resultat. Från resultaten kunde slutsatsen dras att en kombinerad WiFi SLAM lösning skulle förbättrat resultatet i en större testyta än den som användes. IPS skulle ha ökat sin precision medan SLAM skulle ha ökat sin robusthet. Examensjobbet har visat att det inte finns något exakt sätt att hitta en perfekt sensor och metodlösning. Viktigast är dock viktningen mellan tid, kostnad och kvalitet. Andra viktigafaktorer är att bestämma miljön systemet skall operera i och om systemet är säkerhetskritiskt. Det visade sig även att fusionerad sensordata kommer överträffa resultatet från endast en sensor och att det inte finns någon maxgräns för antalet fusionerade sensorer. Det kräver dock att sensorfusionsalgoritmen är väl kalibrerad, annars kan det motsatta inträffa.
Ladhari, Maroua. "Architecture générique de fusion par approche Top-Down : application à la localisation d’un robot mobile." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC052.
Full textThe issue that will be addressed in this thesis is the localization of a mobile robot. Equipped with low- cost sensors, the robot aims to exploit the maximum possible amount of information to meet an objective set beforehand. A data fusion problem will be treated in a way that at each situation, the robot will select which information to use to locate itself in a continuous way. The data we will process will be of different types.In our work, two properties of localization are desired: accuracy and confidence. In order to be controlled, the robot must know its position in a precise and reliable way. Indeed, accuracy refers to the degree of uncertainty related to the estimated position. It is returned by a fusion filter. If, in addition, the degree of certainty of being in this uncertainty zone is important, we will have a good confidence contribution and the estimate will be considered as reliable. These two properties are generally related. This is why they are often represented together to characterize the returned estimate of the robot position. In this work, our objective is to simultaneously optimize these two properties.To take advantage of the different existing techniques for an optimal estimation of the robot position, we propose a top-down approach based on the exploitation of environmental map environmental map defined in an absolute reference frame. This approach uses an a priori selection of the best informative measurements among all possible measurement sources. The selection is made according to a given objective (of accuracy and confidence), the current robot state and the data informational contribution.As the data is noisy, imprecise and may also be ambiguous and unreliable, the consideration of these limitations is necessary in order to provide the most accurate and reliable robot position estimation. For this, spatial focusing and a Bayesian network are used to reduce the risk of misdetection. However, in case of ambiguities, these misdetections may occur. A backwards process has been developed in order to react efficiently to these situations and thus achieve the set objectives.The main contributions of this work are on one side the development of a high-level generic and modular multi sensory localization architecture with a top-down process. We used a concept of perceptual triplet which is the set of landmark, sensor and detector to designate each perceptual module. At each time, a prediction and an update steps are performed. For the update step, the system selects the most relevant triplet (in terms of accuracy and confidence) according to an informational criterion. In order to ensure an accurate and relaible localization, our algorithm has been written in such a way that ambiguity aspects can be managed.On the other side, the developed algorithm allows to locate a robot in an environment map. For this purpose, the possibility of bad detections due to ambiguity phenomena has been taken into account in the backward process. Indeed, this process allows on the one hand to correct a bad detection and on the other hand to improve the returned position estimation to meet a desired objective
Lassoued, Khaoula. "Localisation de robots mobiles en coopération mutuelle par observation d'état distribuée." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2289/document.
Full textIn this work, we study some cooperative localization issues for mobile robotic systems that interact with each other without using relative measurements (e.g. bearing and relative distances). The considered localization technologies are based on beacons or satellites that provide radio-navigation measurements. Such systems often lead to offsets between real and observed positions. These systematic offsets (i.e, biases) are often due to inaccurate beacon positions, or differences between the real electromagnetic waves propagation and the observation models. The impact of these biases on robots localization should not be neglected. Cooperation and data exchange (estimates of biases, estimates of positions and proprioceptive measurements) reduce significantly systematic errors. However, cooperative localization based on sharing estimates is subject to data incest problems (i.e, reuse of identical information in the fusion process) that often lead to over-convergence problems. When position information is used in a safety-critical context (e.g. close navigation of autonomous robots), one should check the consistency of the localization estimates. In this context, we aim at characterizing reliable confidence domains that contain robots positions with high reliability. Hence, set-membership methods are considered as efficient solutions. This kind of approach enables merging adequately the information even when it is reused several time. It also provides reliable domains. Moreover, the use of non-linear models does not require any linearization. The modeling of a cooperative system of nr robots with biased beacons measurements is firstly presented. Then, we perform an observability study. Two cases regarding the localization technology are considered. Observability conditions are identified and demonstrated. We then propose a set-membership method for cooperativelocalization. Cooperation is performed by sharing estimated positions, estimated biases and proprioceptive measurements. Sharing biases estimates allows to reduce the estimation error and the uncertainty of the robots positions. The algorithm feasibility is validated through simulation when the observations are beacons distance measurements with several robots. The cooperation provides better performance compared to a non-cooperative method. Afterwards, the cooperative algorithm based on set-membership method is tested using real data with two experimental vehicles. Finally, we compare the interval method performance with a sequential Bayesian approach based on covariance intersection. Experimental results indicate that the interval approach provides more accurate positions of the vehicles with smaller confidence domains that remain reliable. Indeed, the comparison is performed in terms of accuracy and uncertainty
Michot, Julien. "Recherche linéaire et fusion de données par ajustement de faisceaux : application à la localisation par vision." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00626489.
Full textAbu-Mahfouz, Adnan Mohammed. "Accurate and efficient localisation in wireless sensor networks using a best-reference selection." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/28662.
Full textThesis (PhD(Eng))--University of Pretoria, 2011.
Electrical, Electronic and Computer Engineering
unrestricted
Wang, Zhan. "Guaranteed Localization and Mapping for Autonomous Vehicles." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS395.
Full textWith the rapid development and extensive applications of robot technology, the research on intelligent mobile robot has been scheduled in high technology development plan in many countries. Autonomous navigation plays a more and more important role in the research field of intelligent mobile robot. Localization and map building are the core problems to be solved by the robot to realize autonomous navigation. Probabilistic techniques (such as Extented Kalman Filter and Particle Filter) have long been used to solve the robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer the inconsistency problem in the non linear, non Gaussian scenarios. This thesis focus on study the interval analysis based methods applied to solve the robotic localization and mapping problem. Instead of making hypothesis on the probability distribution, all the sensor noises are assumed to be bounded within known limits. Based on such foundation, this thesis formulates the localization and mapping problem in the framework of Interval Constraint Satisfaction Problem and applied consistent interval techniques to solve them in a guaranteed way. To deal with the “uncorrected yaw” problem encountered by Interval Constraint Propagation (ICP) based localization approaches, this thesis proposes a new ICP algorithm dealing with the real-time vehicle localization. The proposed algorithm employs a low-level consistency algorithm and is capable of heading uncertainty correction. Afterwards, the thesis presents an interval analysis based SLAM algorithm (IA-SLAM) dedicates for monocular camera. Bound-error parameterization and undelayed initialization for nature landmark are proposed. The SLAM problem is formed as ICSP and solved via interval constraint propagation techniques. A shaving method for landmark uncertainty contraction and an ICSP graph based optimization method are put forward to improve the obtaining result. Theoretical analysis of mapping consistency is also provided to illustrated the strength of IA-SLAM. Moreover, based on the proposed IA-SLAM algorithm, the thesis presents a low cost and consistent approach for outdoor vehicle localization. It works in a two-stage framework (visual teach and repeat) and is validated with a car-like vehicle equipped with dead reckoning sensors and monocular camera
Hardt, Hans-Joachim von der. "Contribution au pilotage et à la localisation d'un robot mobile." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL120N.
Full textDia, Roxana. "Towards Environment Perception using Integer Arithmetic for Embedded Application." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM038.
Full textThe main drawback of using grid-based representations for SLAM and for global localization is the required exponential computational complexity in terms of the grid size (of the map and the pose maps). The required grid size for modeling the environment surrounding a robot or of a vehicle can be in the order of thousands of millions of cells. For instance, a 2D square-shape space of size 100m × 100m, with a cell size of 10cm is modelled with a grid of 1 million cells. If we include a 2m of height to represent the third dimension, 20 millions of cells are required. Consequently, classical grid-based SLAM and global localization approaches require a parallel computing unit in order to meet the latency imposed by safety standards. Such a computation is usually done over workstations embedding Graphical Processing Units (GPUs) and/or a high-end CPUs. However, autonomous vehicles cannot handle such platforms for cost reason, and certification issues. Also, these platforms require a high power consumption that cannot fit within the limited source of energy available in some robots. Embedded hardware platforms are com- monly used as an alternative solution in automotive applications. These platforms meet the low-cost, low-power and small-space constraints. Moreover, some of them are automotive certified1, following the ISO26262 standard. However, most of them are not equipped with a floating-point unit, which limits the computational performance.The sigma-fusion project team in the LIALP laboratory at CEA-Leti has developed an integer-based perception method suitable for embedded devices. This method builds an occupancy grid via Bayesian fusion using integer arithmetic only, thus its "embeddability" on embedded computing platforms, without floating-point unit. This constitutes the major contribution of the PhD thesis of Tiana Rakotovao [Rakotovao Andriamahefa 2017].The objective of the present PhD thesis is to extend the integer perception framework to SLAM and global localization problems, thus offering solutions “em- beddable” on embedded systems
Féraud, Thomas. "Rejeu de chemin et localisation monoculaire : application du Visual SLAM sur carte peu dense en environnement extérieur contraint." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00697028.
Full textPibre, Lionel. "Localisation d'objets urbains à partir de sources multiples dont des images aériennes." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS107/document.
Full textThis thesis addresses problems related to the location and recognition of urban objects in multi-source images (optical, infrared, terrain model) of very high precision acquired by air.Urban objects (lamp posts, poles, car, tree...) have dimensions, shapes, textures and very variable colors. They can be glued to each other and are small with respect to the size of an image. They are present in large numbers but can be partially hidden. All this makes urban objects difficult to identify with current image processing techniques.First, we compared traditional learning approaches, consisting of two stages - extracting features through a predefined descriptor and using a classifier - to deep learning approaches and more precisely Convolutional Neural Networks (CNN). CNNs give better results but their performances are not sufficient for industrial use. We therefore proposed two contributions to increase performance.The first is to efficiently combine data from different sources. We compared a naive approach that considers all sources as components of a multidimensional image to an approach that merges information within CNN itself. For this, we have processed the different information in separate branches of the CNN.For our second contribution, we focused on the problem of incomplete data. Until then, we considered that we had access to all the sources for each image but we can also place ourselves in the case where a source is not available or usable. We have proposed an architecture to take into account all the data, even when a source is missing in one or more images. We evaluated our architecture and showed that on an enrichment scenario, it allows to have a gain of more than 2% on the F-measure.The proposed methods were tested on a public database. They aim to be integrated into a Berger-Levrault company software in order to enrich geographic databases and thus facilitate the management of the territory by local authorities
Wei, Lijun. "Multi-sources fusion based vehicle localization in urban environments under a loosely coupled probabilistic framework." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2013. http://tel.archives-ouvertes.fr/tel-01004660.
Full textAntigny, Nicolas. "Estimation continue de la pose d'un équipement tenu en main par fusion des données visio-inertielles pour les applications de navigation piétonne en milieux urbains." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0027/document.
Full textTo support pedestrian navigation in urban and indoor spaces, an accurate pose estimate (i.e. 3Dposition and 3D orientation) of an equipment held inhand constitutes an essential point in the development of mobility assistance tools (e.g.Augmented Reality applications). On the assumption that the pedestrian is only equipped with general public devices, the pose estimation is restricted to the use of low-cost sensors embedded in the latter (i.e. an Inertial and Magnetic Measurement Unit and a monocular camera). In addition, urban and indoor spaces, comprising closely-spaced buildings and ferromagnetic elements,constitute challenging areas for localization and sensor pose estimation during large pedestrian displacements.However, the recent development and provision of data contained in 3D Geographical Information System constitutes a new wealth of data usable for localization and pose estimation.To address these challenges, this thesis proposes solutions to improve pedestrian localization and hand-held device pose estimation in urban and indoor spaces. The proposed solutions integrate inertial and magnetic-based attitude estimation, monocular Visual Odometry with pedestrian motion estimation for scale estimation, 3D GIS known object recognition-based absolute pose estimation and Pedestrian Dead-Reckoning updates. All these solutions are fused to improve accuracy and to continuously estimate a qualified pose of the handheld device. This qualification is required tovalidate an on-site augmented reality display. To assess the proposed solutions, experimental data has been collected during pedestrian walks in an urban space with sparse known objects and indoors passages
Amri, Mohamed-Hédi. "Fusion ensembliste de donn´ees pour la surveillance des personnes d´ependantes en habitat intelligent." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2030/document.
Full textOur research work is a part of the project FUI 14 FEDER Collectivités E-monitor’âge. This project takes place within the framework of Ambient Assisted Living (AAL) which aims to improve the safety and the comfort of elderly people living in smart nursing homes. This work aims to monitor the activities of elderly persons using information from different sensors. The ADL (Activities of Daily Living) are used to evaluate the ability of the person to perform on their own a selection of the activities which are essential for an independent living in the everyday life. Generally, process knowledge and measurements coming from sensors are prone to indeterminable noise. In our work, we suppose that these errors are unknown but bounded. Taking into account this hypothesis, we show how to solve the estimation issue using set-membership computations techniques. Our algorithm, based on set-membership approach, consists of two steps. The prediction step, based on the use of a random walk mobility with minimum assumptions (maximum speed of moving), employs the previous state estimate to provide the prediction zone where the person may be located. The correction step uses the informations coming from the sensors to refine this predicted zone. This step uses a relaxed constraints propagation technique, q-relaxed intersection, to deal with faulty measurements. This proposed method allows us to compute the uncertainty domain for the reconstructed localization of moving targets as dealing with outliers
Han, Cheng-Yu. "Clock Synchronization and Localization for Wireless Sensor Network." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS453/document.
Full textWireless sensor networks (WSNs) play an important role in applications such as environmental monitoring, source tracking, and health care,... In WSN, sensors have the ability to perform data sampling, distributed computing and information fusion. To perform such complex tasks, clock synchronization and localization are two fundamental and essential algorithms. WSNs have been widely studied in the past years, and the scientific literature reports many outcomes that make them applicable for some applications. For some others, research still needs to find solutions to some of the challenges posed by battery limitation, dynamicity, and low computing clock rate. With the aim of contributing to the research on WSN, this thesis proposes new algorithms for both clock synchronization and localization. For clock synchronization, sensors converge their local physical clock to perform data fusion. By applying the clock synchronization algorithm, sensors converge the time difference and therefore work at the same rate. In view of dynamicity, low computing and sparsity of WSN, a new pulse-coupled decentralized synchronization algorithm is proposed to improve the precision of the synchronization. The benefit of this kind of algorithm is that sensors only exchange zero-bit pulse instead of packets, so not only the communication is efficient but also robust to any failure of the sensors in the network. Localization of sensors has been widely studied. However, the quality and the accuracy of the localization still have a large room to improve. This thesis apply Leave-out Sign-dominant Correlated Regions (LSCR) algorithm to localization problem. With LSCR, one evaluates the accurate estimates of confidence regions with prescribed confidence levels, which provide not only the location but also the confidence of the estimation. In this thesis, several localization approaches are implemented and compared. The simulation result shows under mild assumptions, LSCR obtains competitive results compared to other methods
Vivet, Damien. "Perception de l'environnement par radar hyperfréquence. Application à la localisation et la cartographie simultanées, à la détection et au suivi d'objets mobiles en milieu extérieur." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00659270.
Full textTao, Zui. "Autonomous road vehicles localization using satellites, lane markings and vision." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2261/document.
Full textEstimating the pose (position and attitude) in real-time is a key function for road autonomous vehicles. This thesis aims at studying vehicle localization performance using low cost automotive sensors. Three kinds of sensors are considered : dead reckoning (DR) sensors that already exist in modern vehicles, mono-frequency GNSS (Global navigation satellite system) receivers with patch antennas and a frontlooking lane detection camera. Highly accurate maps enhanced with road features are also key components for autonomous vehicle navigation. In this work, a lane marking map with decimeter-level accuracy is considered. The localization problem is studied in a local East-North-Up (ENU) working frame. Indeed, the localization outputs are used in real-time as inputs to a path planner and a motion generator to make a valet vehicle able to drive autonomously at low speed with nobody on-board the car. The use of a lane detection camera makes possible to exploit lane marking information stored in the georeferenced map. A lane marking detection module detects the vehicle’s host lane and provides the lateral distance between the detected lane marking and the vehicle. The camera is also able to identify the type of the detected lane markings (e.g., solid or dashed). Since the camera gives relative measurements, the important step is to link the measures with the vehicle’s state. A refined camera observation model is proposed. It expresses the camera metric measurements as a function of the vehicle’s state vector and the parameters of the detected lane markings. However, the use of a camera alone has some limitations. For example, lane markings can be missing in some parts of the navigation area and the camera sometimes fails to detect the lane markings in particular at cross-roads. GNSS, which is mandatory for cold start initialization, can be used also continuously in the multi-sensor localization system as done often when GNSS compensates for the DR drift. GNSS positioning errors can’t be modeled as white noises in particular with low cost mono-frequency receivers working in a standalone way, due to the unknown delays when the satellites signals cross the atmosphere and real-time satellites orbits errors. GNSS can also be affected by strong biases which are mainly due to multipath effect. This thesis studies GNSS biases shaping models that are used in the localization solver by augmenting the state vector. An abrupt bias due to multipath is seen as an outlier that has to be rejected by the filter. Depending on the information flows between the GNSS receiver and the other components of the localization system, data-fusion architectures are commonly referred to as loosely coupled (GNSS fixes and velocities) and tightly coupled (raw pseudoranges and Dopplers for the satellites in view). This thesis investigates both approaches. In particular, a road-invariant approach is proposed to handle a refined modeling of the GNSS error in the loosely coupled approach since the camera can only improve the localization performance in the lateral direction of the road. Finally, this research discusses some map-matching issues for instance when the uncertainty domain of the vehicle state becomes large if the camera is blind. It is challenging in this case to distinguish between different lanes when the camera retrieves lane marking measurements.As many outdoor experiments have been carried out with equipped vehicles, every problem addressed in this thesis is evaluated with real data. The different studied approaches that perform the data fusion of DR, GNSS, camera and lane marking map are compared and several conclusions are drawn on the fusion architecture choice
Moody, Leigh. "Sensors, measurement fusion and missile trajectory optimisation." Thesis, Cranfield University; College of Defence Technology; Department of Aerospace, Power and Sensors, 2003. http://hdl.handle.net/1826/778.
Full textLitant, Thomas F. "The fusion and integration of virtual sensors." W&M ScholarWorks, 2002. https://scholarworks.wm.edu/etd/1539623397.
Full textMakhoul, Abdallah. "Réseaux de capteurs : localisation, couverture et fusion de données." Besançon, 2008. http://www.theses.fr/2008BESA2025.
Full textThis thesis tackles the problems of localization, coverage and data fusion in randomly deployed sensor networks. First, we introduce a novel approach for node's localization. It is based on a single mobile beacon aware of its positions. Sensor nodes receiving beacon packets will be able to locate themselves. The mobile beacon follows a defined Hilbert curve. On the other hand, we exploit the localization phase to construct sets of active nodes that ensure as much as possible the zone coverage. To optimize the energy consumption, we construct disjoint sets of active nodes such that only one of them is active at any moment, while ensuring at the same time both the network connectivity and the area coverage. We present and study four different scheduling methods. Ln a third step, we study the problem of data fusion in sensor networks in particular the" average consensus" problem. It allows the nodes of a sensor network to track the average of n sensor measurements. To compute the average, we propose an iterative asynchronous algorithm that is robust to the dynamic topology changes and the loss of messages. To show the effectiveness of the proposed algorithms, we conducted series of simulations based on OMNet++
Ndjeng, Ndjeng Alexandre. "Localisation robuste multi-capteurs et multi-modèles." Thesis, Evry-Val d'Essonne, 2009. http://www.theses.fr/2009EVRY0013/document.
Full textMany research works have been devoted in the last years in order to provide an accurate and high integrity solution to the problem outdoor vehicles localization. These research efforts are mainly based on the probability estimation theory. They use multi-sensor fusion approach and a single-model based Kalman filtering, through some variants adapted to nonlinear systems. The single complex model that is used is assumed to describe the dynamics of the vehicle. We rather propose a multiple model approach in this thesis. The presented study derives from a modular analysis of the dynamics of the vehicle, ie the evolution of the vehicle is considered as a discrete process, which combines several simple models. Each model is dedicated to a particular manoeuvre of the vehicle. This evolution space discretizing will improves the system robustness to modelling defects. Our approach is a variant of the IMM algorithm, which takes into account the asynchronism of the embedded sensors. In order to achieve this goal, a new system constrained modelling is developed, which allows to update the various models likelihood even in absence of exteroceptive sensors. However, the performance of such a system requires the use of good quality data. Several operations are presented, illustrating the corrections on the sensors bias, measurements noise and taking into account the road bank angle. The developed methodology is validated through a comparison with the probabilistic fusion algorithms EKF, UKF, DD1, DD2 and particle filtering. This comparison is based on measurements of accuracy and confidence, then the use of statistical consistency and credibility measures, from simulation scenarios and then real data
Barro, Alessandro. "Indirect TPMS improvement: sensor fusion with ultrasound parking sensors." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23765/.
Full textMarin, Giulio. "3D data fusion from multiple sensors and its applications." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425367.
Full textL'introduzione di sensori di profondità nel mercato di massa ha contribuito a rendere la visione artificiale applicabile in molte applicazioni reali, come l'interazione dell'uomo in ambienti virtuali, la guida autonoma, la robotica e la ricostruzione 3D. Tutti questi problemi sono stati originariamente affrontati con l'utilizzo di normali telecamere ma l'ambiguità intrinseca delle immagini bidimensionali ha portato allo sviluppo di tecnologie per sensori di profondità. La visione stereoscopica è stata la prima tecnologia a permettere di stimare la geometria tridimensionale della scena. Sensori a luce strutturata sono stati sviluppati per sfruttare gli stessi principi della visione stereoscopica ma risolvere alcuni problemi dei dispositivi passivi. Infine i sensori a tempo di volo cercano di risolvere lo stesso problema di stima della distanza utilizzando una differente tecnologia. Questa tesi si focalizza nell'acquisizione di dati di profondità da diversi sensori e presenta tecniche per combinare efficacemente le informazioni dei diversi sistemi di acquisizione. Per prima cosa le tre principali tecnologie sviluppate per fornire una stima di profondità sono esaminate in dettaglio, presentando i principi di funzionamento e i problemi dei diversi sistemi. Successivamente è stato studiato l'utilizzo congiunto di sensori, fornendo delle soluzioni pratiche al problema della ricostruzione 3D e del riconoscimento dei gesti. I dati di un sistema stereoscopico e di un sensore a tempo di volo sono stati combinati per fornire una mappa di profondità più precisa. Per ognuno dei due sensori sono state sviluppate delle mappe di confidenza utilizzate per controllare la fusione delle mappe di profondità. La mancanza di collezioni con dati di diversi sensori è stato affrontato proponendo un sistema per la collezione di dati da diversi sensori e la generazione di mappe di profondità molto precise, oltre ad un sistema per la generazioni di dati sintetici per sistemi stereoscopici e sensori a tempo di volo. Per il problema del riconoscimento dei gesti è stato sviluppato un sistema per l'utilizzo congiunto di un sensore di profondità e un sensore Leap Motion, per migliorare le prestazioni dell'attività riconoscimento. Un insieme di descrittori ricavato dai due sistemi è stato utilizzato per la classificazione dei gesti con un sistema basato su Support Vector Machines e Random Forests.
Dickinson, Victoria Jane. "The cloning and subcellular localisation of maize streak virus ORF V1." Thesis, University of Hull, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321050.
Full textEkwevugbe, Tobore. "Advanced occupancy measurement using sensor fusion." Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/10103.
Full textAhmed, Bacha Adda Redouane. "Localisation multi-hypothèses pour l'aide à la conduite : conception d'un filtre "réactif-coopératif"." Thesis, Evry-Val d'Essonne, 2014. http://www.theses.fr/2014EVRY0051/document.
Full text“ When we use information from one source,it's plagiarism;Wen we use information from many,it's information fusion ”This work presents an innovative collaborative data fusion approach for ego-vehicle localization. This approach called the Optimized Kalman Particle Swarm (OKPS) is a data fusion and an optimized filtering method. Data fusion is made using data from a low cost GPS, INS, Odometer and a Steering wheel angle encoder. This work proved that this approach is both more appropriate and more efficient for vehicle ego-localization in degraded sensors performance and highly nonlinear situations. The most widely used vehicle localization methods are the Bayesian approaches represented by the EKF and its variants (UKF, DD1, DD2). The Bayesian methods suffer from sensitivity to noises and instability for the highly non-linear cases. Proposed for covering the Bayesian methods limitations, the Multi-hypothesis (particle based) approaches are used for ego-vehicle localization. Inspired from monte-carlo simulation methods, the Particle Filter (PF) performances are strongly dependent on computational resources. Taking advantages of existing localization techniques and integrating metaheuristic optimization benefits, the OKPS is designed to deal with vehicles high nonlinear dynamic, data noises and real time requirement. For ego-vehicle localization, especially for highly dynamic on-road maneuvers, a filter needs to be robust and reactive at the same time. The OKPS filter is a new cooperative-reactive localization algorithm inspired by dynamic Particle Swarm Optimization (PSO) metaheuristic methods. It combines advantages of the PSO and two other filters: The Particle Filter (PF) and the Extended Kalman filter (EKF). The OKPS is tested using real data collected using a vehicle equipped with embedded sensors. Its performances are tested in comparison with the EKF, the PF and the Swarm Particle Filter (SPF). The SPF is an interesting particle based hybrid filter combining PSO and particle filtering advantages; It represents the first step of the OKPS development. The results show the efficiency of the OKPS for a high dynamic driving scenario with damaged and low quality GPS data
Charmette, Baptiste. "Localisation temps-réel d'un robot par vision monoculaire et fusion multicapteurs." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00828573.
Full textArnould, Philippe. "Étude de la localisation d'un robot mobile par fusion de données." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL095N.
Full textWong, Charence Cheuk Lun. "Fusion of wearable and visual sensors for human motion analysis." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/28630.
Full textAnsari, Abdul Wahab. "The control simulation of tactile sensors using constraint modelling techniques." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357684.
Full textWood, Graham. "Micro-sensors utilising the mode-localisation effect in electrostatically coupled MEMS resonators." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/400147/.
Full textHucks, John A. "Fusion of ground-based sensors for optimal tracking of military targets." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27067.
Full textNowakowski, Mathieu. "Localisation d'un robot humanoïde en milieu intérieur non-contraint." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM026/document.
Full textAfter the democratization of industrial robots, the current trend is the development of social robots that create strong interactions with their users. The deployment of such platforms in shops, museums or train stations raises various issues including the autonomous localization of mobile robots. This thesis focuses on the localization of Pepper robots in a non-constrained indoor environment. Pepper robots are daily used in many shops in Japan and must be as autonomous as possible. However, localization solutions in the literature suffer from the limitations of the platform. This thesis is split into two main themes. First, the problem of relocalization in a visually redundant environment is studied. The proposed solution combines vision and Wi-Fi in a probabilistic approach based on the appearance. Then, the question of a consistent metrical mapping is examined. In order to compensate the numerous losses of tracking caused by the low acquisition frequency, odometric constraints are added to a bundle adjustment optimization. These solutions have been tested and validated on several Pepper robots, from data collected in different indoor environments over more than 7 km
Bercier, Yanic. "A multimodality image fusion and localisation system for radiosurgery treatments of arteriovenous malformations /." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33379.
Full textTsesmetzis, Nicolaos. "A systematic screen for subcellular protein localisation using a GFP::cDNA fusion library." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273519.
Full textDaunizeau, Jean. "Localisation et dynamique des sources d'activité cérébrale par fusion d'informations multimodales EEG/IRMf." Paris 11, 2005. http://www.theses.fr/2005PA112204.
Full textCombining electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) should enable better characterization of brain activity in both space and time. To do so, the potential decoupling between haemodynamic and bioelectric must be accounted for. Therefore, we proposed three graphical and hierarchical models, associated with Bayesian inference processes:-Compared fusion: an EEG data generative model that introduces all available and physiologically plausible information about the expected structure of bioelectric activity. The extended sources mixing model provides a specific feature that can be compared with fMRI activation maps: the spatial profile of the bioelectric sources. -Constrained fusion: a method to assess the relevance of any informative fMRI-derived prior that is to be included in the resolution of the EEG inverse problem. By quantifying the adequacy between EEG data and fMRI active sources, this approach allows us to decide whether the fMRI-based informative prior should, or not, be introduced in the resolution of the EEG inverse problem. -Symmetrical fusion: a joint EEG/fMRI data generative model, which defines spatially concordant (bioelectric and haemodynamic) responses. Based on the spatio-temporal decomposition of the extended sources mixing model, this approach defines the spatial substrate common to EEG and fMRI activity sources. This extends both previous approaches, and allows us to identify the areas of strong coupling between bioelectric and haemodynamic activities. The three approaches were extensively evaluated on simulated data and validated on real patient data in the context of epileptogenic network characterization
Ollander, Simon. "Wearable Sensor Data Fusion for Human Stress Estimation." Thesis, Linköpings universitet, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122348.
Full textI syfte att klassificera och modellera stress har olika sensorer, signalegenskaper, maskininlärningsmetoder och stressexperiment jämförts. Två databaser har studerats: MIT:s förarstressdatabas och en ny databas baserad på egna experiment, där stressuppgifter har genomförts av nio försökspersoner: Trier Social Stress Test, Socially Evaluated Cold Pressor Test och d2-testet, av vilka det sistnämnda inte normalt används för att generera stress. Support vector machine-, naive Bayes-, k-nearest neighbour- och probabilistic neural network-algoritmer har jämförts, av vilka support vector machine har uppnått den högsta prestandan i allmänhet (99.5 ± 0.6 % på förardatabasen, 91.4 ± 2.4 % på experimenten). För båda databaserna har signalegenskaper såsom medelvärdet av hjärtrytmen och hudens ledningsförmåga, tillsammans med medelvärdet av beloppet av hudens ledningsförmågas derivata identifierats som relevanta. En ny signalegenskap har också introducerats, med hög prestanda i stressklassificering på förarstressdatabasen. En kontinuerlig modell har också utvecklats, baserad på den upplevda stressnivån angiven av försökspersonerna under experimenten, där support vector regression har uppnått bättre resultat än linjär regression och variational Bayesian regression.
Hol, Jeroen D. "Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS." Doctoral thesis, Linköpings universitet, Reglerteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66184.
Full textMATRIS (Markerless real-time Tracking for Augmented Reality Image), a sixth framework programme funded by the European Union
CADICS (Control, Autonomy, and Decision-making in Complex Systems), a Linneaus Center funded by the Swedish Research Council (VR)
Strategic Research Center MOVIII, funded by the Swedish Foundation for Strategic Research (SSF)
Liu, Kaibo. "Data fusion for system modeling, performance assessment and improvement." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52937.
Full textPeyraud, Sébastien. "Localisation 3D de mobile en milieu urbain par fusion d’informations satellitaires, proprioceptives et cartographiques." Limoges, 2012. https://aurore.unilim.fr/theses/nxfile/default/1bba77a7-475c-406c-83b3-f9c39f532397/blobholder:0/2012LIMO4026.pdf.
Full textThis work joins in the search for the control of land mobiles localization by using jointly informations outcomes from satellite constellations, from Geographical Information Systems and from vehicle motion sensors. It is characterized: -by a description of the environment in 3 dimensions (generally restricted to the 2 dimensions of a flat world). The localization consists then in estimating a 6 dimensional configuration vector instead of 3 in a flat world. This concern allows in particular to consider if, because of the occultation by buildings, satellites are in direct view or not. -by the joint use of raw satellite informations to cartographic data and to proprioceptive measurements, designated by the concept of tight coupling. The tight coupling allows to benefit from situations where the receiver receives information of few satellites as it is the case in urban environments where the sky visibility is restricted. -by the joint use of estimation algorithms based on stochastic (Kalman filtering) or set-membership models of uncertainties. -by the experimentation of the proposed methods on real data sets. In particular, the data processing of the final demonstration of the CityVIP project (ANR-07-TSFA-013-01 ), realized in Paris, brings a lot of credibility to the proposed methods. The presented results establish a technological brick in the constitution of Individual Vehicles Public (VIP). This approach by technological brick was motivated by the fact that this thesis synthesizes a set of works carried out in the CityVIP project
Alam, Muhammad Mansoor. "Corrigé de localisation dans un environment extérieur sans fil en utilisant estimation, filtrage, la prévision et des techniques de fusion : une application par wifi utilisant le terrain à base de connaissances." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00815919.
Full textKueviakoe, Kangni. "Localisation multi-capteurs garantie : résolution d'un problème de satisfaction de contraintes." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112241/document.
Full textThis thesis deals with the vehicle locationand addresses the problem of SLAM (simultaneous localization and mapping). Several methods are used to solve this kind of problem. They can be classified into two broad categories of approaches: probabilistic approach and deterministic approaches. This work addresses the deterministic approaches and more precisely the approach based on interval analysis. The work has been conducted on real data sets collected in outdoor environments with proprioceptive and exteroceptive sensors.When multiple sensors providing complementary or redundant information are put into play, it is important to merge the data to improve the estimated pose. The approach detailed in this document uses the intervals methods and presents the localization problem as a constraint satisfaction problem.The resolution is done using a solver interval. Several solvers were compared. One thing is clear: local consistency algorithms do not address the uncertainty of the orientation. This thesis proposes a method of locating usable in real time applications and corrects the uncertainty in the heading of the vehicle. We compared our results with those of the extended Kalman filter (probabilistic reference method) and highlighted one of the interests of our method: the assurance of consistency of the pose (position and orientation of the mobile).This thesis proposes two contributions. The first is methodological. In the state of the art all works affirm the need (or obligation) to pre-decompose the constraints of the problem before the resolution step. Our work allows to prove otherwise. The second contribution relates to the reduction of the orientation uncertainty by combining constraint propagation and a bisection approach
Abuhadrous, Iyad. "Système embarqué temps réel de localisation et de modélisation 3D par fusion multi-capteur." Phd thesis, École Nationale Supérieure des Mines de Paris, 2005. http://pastel.archives-ouvertes.fr/pastel-00001118.
Full text