Dissertations / Theses on the topic 'Sensor network'

To see the other types of publications on this topic, follow the link: Sensor network.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sensor network.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Karaaslan, Ibrahim. "Anti-sensor Network: Distortion-based Distributed Attack In Wireless Sensor Networks." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609276/index.pdf.

Full text
Abstract:
In this thesis, a novel anti-sensor network paradigm is introduced against wireless sensor networks (WSN). Anti-sensor network (ASN) aims to destroy application reliability by adaptively and anonymously introducing adequate level of artificial distortion into the communication of the event features transported from the sensor nodes (SN) to the sink. ASN is composed of anti-sensor nodes (aSN) randomly distributed over the sensor network field. aSNs pretend to be SNs tomaintain anonymity and so improve resiliency against attack detection and prevention mechanisms. Performance evaluations via mathematical analysis and simulation experiments show that ASN can effectively reduce the application reliability of WSN.
APA, Harvard, Vancouver, ISO, and other styles
2

Tan, Hailun Computer Science &amp Engineering Faculty of Engineering UNSW. "Secure network programming in wireless sensor networks." Awarded By:University of New South Wales. Computer Science & Engineering, 2010. http://handle.unsw.edu.au/1959.4/44835.

Full text
Abstract:
Network programming is one of the most important applications in Wireless Sensor Networks as It provides an efficient way to update program Images running on sensor nodes without physical access to them. Securing these updates, however, remains a challenging and important issue, given the open deployment environment of sensor nodes. Though several security schemes have been proposed to impose the authenticity and Integrity protection on network programming applications, they are either energy Inefficient as they tend to use digital signature or lacks the data confidentiality. In addition, due to the absence of secure memory management in the current sensor hardware, the attacker could inject malicious code into the program flash by exploiting buffer overflow In the memory despite the secure code dissemination. The contribution of this thesis Is to provide two software-based security protocols and one hardware-based remote attestation protocol for network programming application. Our first protocol deploys multiple one-way key chains for a multi-hop sensor network. The scheme Is shown to be lower In computational, power consumption and communication costs yet still able to secure multi??hop propagation of program images. Our second protocol utilizes an Iterative hash structure to the data packets in network programming application, ensuring the data confidentiality and authenticity. In addition, we Integrated confidentiality and DoS-attack-resistance in a multi??hop code dissemination protocol. Our final solution is a hardware-based remote attestation protocol for verification of running codes on sensor nodes. An additional piece of tamper-proof hardware, Trusted Platform Module (TPM), is imposed into the sensor nodes. It secures the sensitive information (e.g., the session key) from attackers and monitors any platform environment changes with the Internal registers. With these features of TPM, the code Injection attack could be detected and removed when the contaminated nodes are challenged in our remote attestation protocol. We implement the first two software-based protocols with Deluge as the reference network programming protocol in TinyOS, evaluate them with the extensive simulation using TOSSIM and validate the simulation results with experiments using Tmote. We implement the remote attestation protocol on Fleck, a sensor platform developed by CSIRO that Integrates an Atmel TPM chip.
APA, Harvard, Vancouver, ISO, and other styles
3

Lim, Tiong Hoo. "Dependable network protocols in wireless sensor networks." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4903/.

Full text
Abstract:
This thesis is concerned with the dependability of Wireless Sensor Networks (WSNs). We propose an approach, inspired by the immune system, that allows individual nodes to detect, diagnose and recover from different failures by switching between different protocols using a multi-modal switching mechanism. A causal link between different failures in WSN is identified. Existing fault tolerance in WSNs approaches are examined. From the survey, it is identified that various attempts have been made to improve the fault tolerance of the communication protocol especially in the routing protocols. Although tests have been performed to evaluate the communication protocols prior to deployment, failures in WSNs are still being reported when deployed in real environments. A Systematic Protocol Evaluation Technique (SPET) is proposed and applied to evaluate the dependability of the proposed multi-modal protocol and reduce the uncertainties in the experiment and to demonstrate the confidence in the measurements taken from experiments.
APA, Harvard, Vancouver, ISO, and other styles
4

Simkhada, Shailendra, Christopher Lee, David Venderwerf, Miranda Tyree, and Tyler Lacey. "Wireless Sensor Network." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595644.

Full text
Abstract:
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada
The scope of this document is the description of design and implementation of the wireless sensor network realized as a part of our Senior Design Capstone Project. The various components and sub-systems that comprise the final product are discussed, followed by the implementation procedures and results.
APA, Harvard, Vancouver, ISO, and other styles
5

Sevgi, Cuneyt. "Network Dimensioning In Randomly Deployed Wireless Sensor Networks." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611213/index.pdf.

Full text
Abstract:
In this study, we considered a heterogeneous, clustered WSN, which consists of two types of nodes (clusterheads and sensor nodes) deployed randomly over a sensing field. We investigated two cases based on how clusterheads can reach the sink: direct and multi-hop communication cases. Network dimensioning problems in randomly deployed WSNs are among the most challenging ones as the attributes of these networks are mostly non-deterministic. We focused on a number of network dimensioning problems based on the connected coverage concept, which is the degree of coverage achieved by only the connected devices. To evaluate connected coverage, we introduced the term cluster size, which is the expected value of the area covered by a clusterhead together with sensor nodes connected to it. We derived formulas for the cluster size and validated them by computer simulations. By using the cluster size formulas, we proposed a method to dimension a WSN for given targeted connected coverage. Furthermore, we formulated cost optimization problems for direct and multi-hop communication cases. These formulations utilize not only cluster size formulas but also the well-connectivity concept. We suggested some search heuristics to solve these optimization problems. Additionally, we justified that, in practical cases, node heterogeneity can provide lower cost solutions. We also investigated the lifetime of WSNs and for mulated a cost optimization problem with connected coverage and lifetime constraints. By solving this optimization problem, one can determine the number of nodes of each type and the initial energies of each type of node that leads to lowest cost solution while satisfying the minimum connected coverage and minimum lifetime requirements.
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Fenghua. "Lightweight network management design for wireless sensor networks." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/F_Yuan_081307.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Damianakis, John. "Proximity sensor network for sensor-based manipulation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29588.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sriporamanont, Thammakit, and Gu Liming. "Wireless Sensor Network Simulator." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-290.

Full text
Abstract:

In the recent past, wireless sensor networks have been introduced to use in many applications. To

design the networks, the factors needed to be considered are the coverage area, mobility, power

consumption, communication capabilities etc. The challenging goal of our project is to create a

simulator to support the wireless sensor network simulation. The network simulator (NS-2) which

supports both wire and wireless networks is implemented to be used with the wireless sensor

network. This implementation adds the sensor network classes which are environment, sensor

agent and sensor application classes and modifies the existing classes of wireless network in NS-

2. This NS-2 based simulator is used to test routing protocols – Destination-Sequenced Distance

Vector (DSDV), and Ad-Hoc On-Demand Distance Vector (AODV) as one part of simulations.

Finally, the sensor network application models and the extension methods of this NS-2 based

simulator for simulations in specific wireless sensor network applications are proposed.

APA, Harvard, Vancouver, ISO, and other styles
9

Qu, Yipeng. "Wireless Sensor Network Deployment." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/854.

Full text
Abstract:
Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.
APA, Harvard, Vancouver, ISO, and other styles
10

Gen-Kuong, Fernando, and Alex Karolys. "Smart Sensor Network System." International Foundation for Telemetering, 1997. http://hdl.handle.net/10150/607534.

Full text
Abstract:
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada
This paper describes a Smart Sensor Network System for applications requiring sensors connected in a multidrop configuration in order to minimize interconnecting cables. The communication protocol was optimized for high speed data collection. The Smart Sensor Network System was developed with the following goals in mind: cost reduction, reliability and performance increase.
APA, Harvard, Vancouver, ISO, and other styles
11

Bekara, Chakib. "Wireless sensor network security." Evry, Institut national des télécommunications, 2008. http://www.theses.fr/2008TELE0020.

Full text
Abstract:
Durant ces dernières années, l’utilisation des réseaux de capteurs sans fils (RCSF), est devenu très répandue. Les capteurs sont habituellement déployés dans une région, pour suivre un phénomène d’intérêt (température, pression, mouvement, présence, radiation, etc,), puis rapporter son évolution à une station de base, qui prendra alors des décisions dépendant des données collectées. Vu que les capteurs sont très limités en termes de ressource (CPU, stockage, énergie), qu’ils sont une proie facile aux compromissions, qu’ils fonctionnent sans assistance humaine, et peuvent être déployés dans des environnements ouverts et hostiles, les RCSF sont sujets à différents types de menaces et d’attaques. Plusieurs travaux de recherches ont été menés pour résoudre les problèmes de sécurité liés aux RCSF, tels que : l’établissement de clés de paires entre capteurs, la sécurité de l’agrégation de données, l’authentification d’une source de diffusion, la sécurité du routage, ainsi que le contrôle d’accès au RCSF. Dans cette thèse, nous traitons trois points fondamentaux de la sécurité des RCSFs : l’établissement de clés cryptographiques de paires, la sécurité de l’agrégation des données, et l’authentification d’une source de diffusion. Pour chacun de ces thèmes, nous décrivons la problématique en jeu, puis nous passons en revue les solutions qui ont été proposées dans la littérature, en analysant leurs avantages et inconvénients. En dernier lieu, nous détaillons les solutions que nous proposons, et présentons leurs avantages comparativement aux solutions existantes
In the last few years, use of Wireless Sensors Network (WSN) became very popular. Sensors are used to be deployed in a regional area to monitor a phenomenon of interest (temperature, pressure, movement, presence, etc. ), and report its evolution to a base station, which will take some decisions, based on the collected sensed data. However sensors have extremely limited resources (computation, storage, and energy), they are unshielded devices, they work without a human assistance, and they can be deployed in a remote open and hostile area. As such, WSNs are target to several threats and attacks, and securing them is not an easy task. Several works have been done to address the security issues and challenges in WSNs, including: key establishment, secure data aggregation, broadcast data source authentication, secure routing and access control. In this thesis, we investigate three keystone security issues in WSNs: key establishment, secure data aggregation and broadcast data source authentication. For each security issue, we describe its problematic, then we review some existing solutions in the literature, and analyze their advantages and shortcomings. Finally, we describe our own proposals, outlining their advantages over the previous solutions
APA, Harvard, Vancouver, ISO, and other styles
12

Nilofar, FNU. "Revisiting network flows: a sensor network perspective." Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5603.

Full text
Abstract:
In wireless sensor networks, data preservation has become a key challenging problem. Data generated by some sensor nodes is huge and due to limited storage space in a sensor node, the data generating nodes have to offload the data to nodes with available storage space and high battery power. The data needs to be preserved in these nodes until the base station collect it. In this thesis, data preservation problem in sensor networks is modeled as network flow problems and it is solved by using network flow algorithms while considering the specific sensor network parameters such as battery power and storage capacity of sensor nodes. The load‐balancing data preservation algorithm maximizes the minimum energy left among the nodes that store data and minimizes the total cost for data redistribution. We also formulated the data‐preserving problem, with limited battery power in each node and minimized the total energy consumption of data preservation. In addition, we also studied and analyzed the feasibility of data preservation when each node has limited battery power.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
13

She, Huimin. "Network-Calculus-based Performance Analysis for Wireless Sensor Networks." Licentiate thesis, KTH, Electronic, Computer and Software Systems, ECS, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10686.

Full text
Abstract:

Recently, wireless sensor network (WSN) has become a promising technologywith a wide range of applications such as supply chain monitoringand environment surveillance. It is typically composed of multiple tiny devicesequipped with limited sensing, computing and wireless communicationcapabilities. Design of such networks presents several technique challengeswhile dealing with various requirements and diverse constraints. Performanceanalysis techniques are required to provide insight on design parametersand system behaviors.

Based on network calculus, we present a deterministic analysis methodfor evaluating the worst-case delay and buffer cost of sensor networks. Tothis end, three general traffic flow operators are proposed and their delayand buffer bounds are derived. These operators can be used in combinationto model any complex traffic flowing scenarios. Furthermore, the methodintegrates a variable duty cycle to allow the sensor nodes to operate at lowrates thus saving power. In an attempt to balance traffic load and improveresource utilization and performance, traffic splitting mechanisms areintroduced for mesh sensor networks. Based on network calculus, the delayand buffer bounds are derived in non-splitting and splitting scenarios.In addition, analysis of traffic splitting mechanisms are extended to sensornetworks with general topologies. To provide reliable data delivery in sensornetworks, retransmission has been adopted as one of the most popularschemes. We propose an analytical method to evaluate the maximum datatransmission delay and energy consumption of two types of retransmissionschemes: hop-by-hop retransmission and end-to-end retransmission.

We perform a case study of using sensor networks for a fresh food trackingsystem. Several experiments are carried out in the Omnet++ simulationenvironment. In order to validate the tightness of the two bounds obtainedby the analysis method, the simulation results and analytical results arecompared in the chain and mesh scenarios with various input traffic loads.From the results, we show that the analytic bounds are correct and tight.Therefore, network calculus is useful and accurate for performance analysisof wireless sensor network.


Ipack VINN Excellence Center
APA, Harvard, Vancouver, ISO, and other styles
14

Samarasinghe, Kasun. "Network Coding with Limited Overhearing in Wireless Sensor Networks." Thesis, KTH, Kommunikationsnät, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53518.

Full text
Abstract:
Network Coding as a recently emerged concept in Communication Networks Research, has attracted a lot of attention in networking research community. Previous research on applying Network Coding in Wireless Sensor Networks, do not consider most crucial constraints inherent to sensor networks. Especially most of them assume overhearing of neighboring transmissions for free, which is unrealistic in practical sensor network environments where nodes have limited energy. Therefore these applications fail to make an impact on real world sensor network deployments. In some sensor networking scenarios it is possible to manipulate overhearing in a controlled manner. In this research we apply network coding in to improve throughput of a Time Division Multiple Access(TDMA) based Medium Access Control(MAC) protocol called GINMAC , manipulating overhearing appropriately. Our results show that network coding can improve the throughput while trading owith other network performance characteristics like reliability and power consumption.
APA, Harvard, Vancouver, ISO, and other styles
15

Al-Hoqani, Noura Y. S. "In-network database query processing for wireless sensor networks." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36226.

Full text
Abstract:
In the past research, smart sensor devices have become mature enough for large, distributed networks of such sensors to start to be deployed. Such networks can include tens or hundreds of independent nodes that can perform their functions without human interactions such as recharging of batteries, the configuration of network routes and others. Each of the sensors in the wireless sensor network is considered as microsystem, which consists of memory, processor, transducers and low bandwidth as well as a low range radio transceiver. This study investigates an adaptive sampling strategy for WSS aimed at reducing the number of data samples by sensing data only when a significant change in these processes is detected. This detection strategy is based on an extension to Holt's Method and statistical model. To investigate this strategy, the water consumption in a household is used as a case study. A query distribution approach is proposed, which is presented in detail in chapter 5. Our developed wireless sensor query engine is programmed on Sensinode testbed cc2430. The implemented model used on the wireless sensor platform and the architecture of the model is presented in chapters six, seven, and eight. This thesis presents a contribution by designing the experimental simulation setup and by developing the required database interface GUI sensing system, which enables the end user to send the inquiries to the sensor s network whenever needed, the On-Demand Query Sensing system ODQS is enhanced with a probabilistic model for the purpose of sensing only when the system is insufficient to answer the user queries. Moreover, a dynamic aggregation methodology is integrated so as to make the system more adaptive to query message costs. Dynamic on-demand approach for aggregated queries is implemented, based in a wireless sensor network by integrating the dynamic programming technique for the most optimal query decision, the optimality factor in our experiment is the query cost. In-network query processing of wireless sensor networks is discussed in detail in order to develop a more energy efficient approach to query processing. Initially, a survey of the research on existing WSN query processing approaches is presented. Building on this background, novel primary achievements includes an adaptive sampling mechanism and a dynamic query optimiser. These new approaches are extremely helpful when existing statistics are not sufficient to generate an optimal plan. There are two distinct aspects in query processing optimisation; query dynamic adaptive plans, which focus on improving the initial execution of a query, and dynamic adaptive statistics, which provide the best query execution plan to improve subsequent executions of the aggregation of on-demand queries requested by multiple end-users. In-network query processing is attractive to researchers developing user-friendly sensing systems. Since the sensors are a limited resource and battery powered devices, more robust features are recommended to limit the communication access to the sensor nodes in order to maximise the sensor lifetime. For this reason, a new architecture that combines a probability modelling technique with dynamic programming (DP) query processing to optimise the communication cost of queries is proposed. In this thesis, a dynamic technique to enhance the query engine for the interactive sensing system interface is developed. The probability technique is responsible for reducing communication costs for each query executed outside the wireless sensor networks. As remote sensors have limited resources and rely on battery power, control strategies should limit communication access to sensor nodes to maximise battery life. We propose an energy-efficient data acquisition system to extend the battery life of nodes in wireless sensor networks. The system considers a graph-based network structure, evaluates multiple query execution plans, and selects the best plan with the lowest cost obtained from an energy consumption model. Also, a genetic algorithm is used to analyse the performance of the approach. Experimental testing are provided to demonstrate the proposed on-demand sensing system capabilities to successfully predict the query answer injected by the on-demand sensing system end-user based-on a sensor network architecture and input query statement attributes and the query engine ability to determine the best and close to the optimal execution plan, given specific constraints of these query attributes . As a result of the above, the thesis contributes to the state-of-art in a network distributed wireless sensor network query design, implementation, analysis, evaluation, performance and optimisation.
APA, Harvard, Vancouver, ISO, and other styles
16

Molineux, Jeffrey S. "Integration of Wireless Sensor Networks Into a Commercial Off-the-Shelf (COTS) Multimedia Network." Thesis, Monterey, California: Naval Postgraduate School, 2012.

Find full text
Abstract:
As the primary military operating environment shifts from the traditional battlefields to a more diverse urban environment, the use of remote wireless sensors is increasing. Traditional development and procurement methods are not capable of meeting the changing requirements and time constraints of commanders. To minimize the time to develop and deploy new systems, commercial solutions must be examined. The focus of this thesis is on the integration of Commercial Off-the-Shelf (COTS) components into a wireless multimedia sensor network. Because components from multiple vendors were utilized, different operating systems and transmission protocols had to be integrated across the network. The network must be capable of providing a varying Quality of Service (QoS) level depending on the active sensors in the network. To ensure the QoS level is met, an adaptive QoS algorithm was implemented in the wireless IEEE 802.11 router which monitored and measured the outgoing transmission interface; from which, it determined the latency and transmission jitter. Based on the results, the program can adjust the bandwidth as necessary. Finally, a user interface is developed that allows end users to monitor the network. The performance of the network is based on the end-to-end throughput, latency and jitter exhibited by the network.
APA, Harvard, Vancouver, ISO, and other styles
17

Barragan, Dante E. "Optimal placement of sensors for network lifetime extension in wireless sensor networks with dynamic routing." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Iqbal, Javed, and Farhan Moughal. "Wireless Sensor Network Setup : Wireless sensor motes embedded programing." Thesis, Halmstad University, Halmstad Embedded and Intelligent Systems Research (EIS), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-5005.

Full text
Abstract:

Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.Exploitation of wireless sensor networks (WSNs) in ubiquitous computing environments is continuously increasing for gathering data. Contemporary distributed software systems on WSNs for pragmatic business applications have become extremely adaptive, dynamic, heterogeneous and large scaled. Management of such system is not trivial to fulfil these features, leading to more and more complex management and configuration. Along with encompassing state of art and novel techniques for such diversely dynamic system, in this thesis two alternative techniques namely “task initiation by command” and “run-time task deployment and processing” are compared, for such system’s setup and configuration. Both techniques have their own pros and cons which makes them suitable according to the requirements and contextual situations. A lot of effort has been put to make WSNs more and more efficient in terms of computations and power consumption. Hence comparative analysis of both techniques used in this report to setup and configure WSN can be a benchmark to lead towards most appropriate solution to compensate the need of efficient energy and resource consumption.Both alternative schemes are implemented to setup WSN on Sun Microsystems sunSPOT (Small Programmable Object Technology) sensor nodes which are embedded microcontrollers and programmed them in java (j2me). It performs radio communication between wireless sensors and host via sink node also called base station, along with over the air run-time management of sensors. SunSPOTs built in libraries and KSN libraries are used to implement these alternatives and compare the memory footprint, communication pattern and energy consumption.

APA, Harvard, Vancouver, ISO, and other styles
19

Brownfield, Michael I. "Energy-efficient Wireless Sensor Network MAC Protocol." Diss., This resource online, 2006. http://scholar.lib.vt.edu/theses/available/etd-04102006-170423/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nozik, Andrew Benjamin. "Wireless smart shipboard sensor network. /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Dec%5FNozik.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, December 2005.
Thesis Advisor(s): Xi ping Yun, Robert Hutchins. Includes bibliographical references (p. 67-68). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
21

Sajadian, Samar, and Alia Ibrahim. "Wireless Sensor Network Group Connectivity." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-14016.

Full text
Abstract:
The importance of monitoring physical and environmental conditions increases day by day and, therefore, so is the necessity of having a reliable wireless sensor network (WSN). The need to overcome challenges in WSN deployment and operation arises due to WSN's nature and characteristics such as possible nodes' mobility, limited radio and processing power, available storage and physical effects of the environment (particularly harsh environments) and balancing energy consumption has motivated us to investigate solutions to those problems. By studying related work, it was possible to observe that techniques such as the use of a good link estimator and the deployment of a suitable topology are essential features for a WSN. The core idea is to capture link connectivity dynamically and use it on routing decisions to gain reliability and estimate the whole network connectivity. The three main steps for deployment of a reliable WSN are the following: -         Link estimator -         Routing and neighbor information -         Suitable routing algorithms In addition, self-organization is an important capability that WSNs need to present. They should be reliable, scalable and energy efficient during the network lifetime and self-organization plays a key role in this context. Summing up all these aspects, it comes to the point that reliable connectivity is an important characteristic of a WSN. The goal of this work is to contribute with the research in the subject by means of implementing a suitable topology management and evaluating the network connectivity by the means of quantitative metric for the network as whole. Practical experiments results are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Goyal, Sandeep. "Fiber optic current sensor network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq24716.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ahmad, Zahir Uddin. "Underwater optical wireless sensor network." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/60562/.

Full text
Abstract:
The thesis details the development of a short range, multi-hop underwater optical wireless sensor network. Multi-hop underwater optical wireless communication using a line of sight (LOS) link can provide a greater range compared to a single hop network, and provide physically secure connections for underwater sensor networks. This kind of system can be very power efficient, and supported data rate can be from tens of kbps up to a few hundred kbps. The aims were to build a cheap communication prototype using “off the shelf” components, such as a microcontroller, optoelectronics etc. for demonstration purpose. To support the built prototype, a directional MAC protocol has been developed which considers the directionality of light propagation. The multi-hop approach has not been considered for underwater optical wireless communication before, while most of the research focus is to develop long range and high powered communication links. In this thesis, a custom built transceiver using blue and green LEDs has been developed, which supports a data rate up to 140kbps, when the NRZ-OOK modulation technique is used. For the transmitter part, a digital LED driver has been used, while on the receiver side, a transimpedance amplifier using a single transistor has been developed. This configuration for optical wireless receiver system design has not been usual, but it works very well for the proposed prototype. A second stage voltage amplifier was also designed to boost the signal up to 5V for the microcontroller, which was also based on transistors. To demonstrate the principle of multi-hop communication, a line-type network prototype using two sensor nodes and a gateway node has been designed, built and tested in the lab environment. Each node was equipped with two transceivers controlled by a microcontroller to make a full-duplex communication system. To minimize the cost, all components of a node were built on a single PCB board. To upload data from the sensor node to the gateway node, a green LED has been used, and to transmit the control signal from gateway node to sensor nodes, a blue LED was used. For the demonstration purpose the communication range was considered up to 1m, which can be increased significantly by using high powered LED, and external optics such as lenses, concentrators, etc. A directional MAC protocol has been designed, considering the directionality of the network. The designed protocol is based on TDMA techniques, but modified for the proposed application. The gateway node controls all other nodes in the network and acts as a master node. Because of the directional full-duplex network, there is much less chance of a collision, when using a TDMA approach. Therefore, a random access protocol was not needed for the proposed architecture. Finally, experimental results validate the fact that the multi-hop approach is a viable solution to increase the communication ranges for underwater optical wireless sensor networks. Different sets of experiments show that the proposed system can be implemented in the real environment, such as, oceans, canals and ponds.
APA, Harvard, Vancouver, ISO, and other styles
24

Nozik, Andrew B. "Wireless smart shipboard sensor network." Thesis, Monterey California. Naval Postgraduate School, 2005. http://hdl.handle.net/10945/1756.

Full text
Abstract:
This thesis studies the feasibility of developing a smart shipboard sensor network. The objective of the thesis is to prove that sensors can be made smart by keeping calibration constants and other relevant data such as network information stored on the sensor and a server computer. Study will focus on the design and implementation of an Ipsil IP(micro)8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information can be seen using a web page. The information to make the sensor "smart" will be stored on the Ipsil chip and server computer and can by accessed by a HTML based program. By taking pre-computed calibration constants that minimize the measurement errors and writing them through the web page stored in the Ipsil chip's EEPROM, the calibrated sensor reading can be calculated. The expected contribution from the research effort would be a reduction in manpower, increased efficiency, and a greater awareness of plant and equipment operation among naval vessels, specifically the DDX. Hardware is relatively inexpensive, reliable, and COTS (Commercial Off the Shelf) available. If implemented, a Smart Shipboard Sensor Network would allow the watch standers, CHENG, OOD, and CO, to all see the same information about the ship.s engineering plant and equipment. A prototype sensor test bed was constructed in the laboratory, which consists of an Ipsil IP(micro)8930 microcontroller, a Linksys LAN router, and a Dell Inspiron 9300 laptop. The newly developed smart sensor was successfully demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
25

Stokes, Alan Barry. "Resilient sensor network query processing." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/resilient-sensor-network-query-processing(208a729a-5d48-47a9-b1f5-3d156932e197).html.

Full text
Abstract:
Sensor networks comprise of a collection of resource-constrained, low cost, sometimes fragile wireless motes which have the capability to gather information about their surroundings through the use of sensors, and can be conceived as a distributed computing platform for applications ranging from event detection to environmental monitoring. A Sensor Network Query Processor (SNQP) is a means of collecting data from sensor networks where the requirements are defined using a declarative query language with a set of Quality of Service (QoS) expectations. As sensor networks are often deployed in hostile environments, there is a high possibility that the motes could break or that the communication links between the motes become unreliable. SNQP Query Execution Plans (QEPs) are often optimised for a specific network deployment and are designed to be as energy efficient as possible whilst ensuring the QEPs meet the QoS expectations, yet little has been done for handling the situation where the deployment itself has changed since the optimisation in such a way as to make the original QEP no longer efficient, or unable to operate. In this respect, the previous work on SNQPs has not aimed at being resilient to failures in the assumptions used at compilation/optimisation time which result in a QEP terminating earlier than expected. This dissertation presents a collection of approaches that embed resilience into a SNQP generated QEPs in such a way that a QEP operates for longer whilst still meeting the QoS expectations demanded of it, thereby resulting in a more reliable platform that can be applicable to a broader range of applications. The research contributions reported here include (a) a strategy designed to adapt to predictable node failures due to energy depletion; (b) a collection of strategies designed to adapt to unpredictable node failures; (c) a strategy designed to handle unreliable communication channels; and (d) an empirical evaluation to show the benefits of a resilient SNQP in relation to a representative non-resilient SNQP.
APA, Harvard, Vancouver, ISO, and other styles
26

Qin, Mian. "Wireless sensor network fault localization /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CSED%202008%20QIN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mogk, Nathan William. "Microwave-Powered Wireless Sensor Network." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244493.

Full text
Abstract:
This thesis describes the design and construction of a wireless sensor network that harvests power for operations from a rectifying antenna. This project represents a proof-of-concept for future systems that will someday operate without the need of batteries or other conventional methods of storing power. This project was completed as a senior design project in the Engineering program at The University of Arizona for Drs. Marcellin and Xin. This project developed the described system from concept to an operational test in the laboratory that demonstrated the system working as expected while being powered by wireless energy transmission. Node input voltage reached a steady state near 0.8 V, and remained so for the entirety of the test. This project was pursued as a group effort.
APA, Harvard, Vancouver, ISO, and other styles
28

ARAM, SIAMAK. "Low Power Wireless Sensor Network." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2595154.

Full text
Abstract:
Wireless sensor networks (WSN) take on an invaluable technology in many applications. Their prevalence, however, is threatened by a number of technical difficulties. In particular, the shortage of energy in sensors is a serious problem to which many solutions have been proposed in recent years. This thesis takes this area of research one step further and proposes solutions to better conserve energy in sensors. The research conducted can be divided into two parts. The first part is on the design and development of low-power sensors and communication devices capable of monitoring the environment. In this part of research, we first show how smartphones can be employed as a device to acquire data from low-power sensors. Then, by using the idea of duty cycling, we achieve a significant reduction in power consumption in environmental sensing. The second part of this research is on the use of data-driven approaches where scholars suggest reducing the amount of required communication so that more energy can be saved in sensors. The main idea is that the components of a sensor, including its radio, can be turned off most of the time without noticeable influence on the judgments made using the sensed data. In fact, the data not sensed when the sensor is powered down can be predicted using the computational intelligence methods. To do so, we employ a multi-layer perceptron to predict missing environmental data on the basis of what is sensed. We also show that the effectiveness of this technique highly relies on the correlation between the points making the time series of sensed data. Our experimental results evidence the usefulness of the technique we propose in the second part of this research. Indeed, we train a nonlinear autoregressive network against various datasets of sensed humidity and temperature in different environments. It is then observed that sensors can be powered on intermittently without any significant influence on the desired behavior of the sensor network. By testing on actual data, it is shown that the predictions by the device greatly obviates the need for sensed data during sensors’ idle periods and saves over 65 percent of energy. It is also established that, among the solutions already proposed, the data- driven approach is best suited to Wireless Sensor Networks especially environmental sensing.
APA, Harvard, Vancouver, ISO, and other styles
29

Mascarenas, David D. L. ""Mobile host" wireless sensor networks a new sensor network paradigm for structural health monitoring applications /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3330318.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed November 19, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 143-148).
APA, Harvard, Vancouver, ISO, and other styles
30

Al-Mousa, Yamin Samir. "MAC/routing design for under water sensor networks /." Online version of thesis, 2007. http://hdl.handle.net/1850/4496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhou, Yuanyuan. "Energy-efficient protocols and topologies for sensor and personal-area networks." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Summer2007/y_zhou_072307.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vedantham, Ramanuja. "Energy-Efficient Network Protocols for Wireless Sensor and Actor Networks." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13959.

Full text
Abstract:
Wireless sensor networks (WSNs) have a wide variety of applications in civilian, medical and military applications. However, the nodes in such a network are limited to one type of action: sensing the environment. With increasing requirements for intelligent interaction with the environment, there is a need to not only perceive but also control the monitored environment. This has led to the emergence of a new class of networks, referred to as wireless sensor and actor networks (WSANs), capable of performing both sensing and acting tasks on the environment. The evolution from WSNs, which can be thought of as performing only read operations, to WSANs, which can perform both read and write operations, introduces unique and new challenges that need to be addressed. In this research, the fundamental challenges required for effective operation of WSANs are analyzed from the following three different perspectives: (i) operation correctness, (ii) resource optimality, and (iii) operation performance. The solutions proposed to address the challenges are evaluated with the optimal solution and other competing approaches through analytical and simulation results. The feasibility of the proposed solutions is demonstrated through a testbed implementation.
APA, Harvard, Vancouver, ISO, and other styles
33

Cui, Nenghui. "Wireless Sensor Networks - Network Coded Cooperative Communication : Design and Implementation." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-188750.

Full text
Abstract:
This thesis is concerned with the design and implementation of a testbed for network coded cooperative communication (NC-CC) in IEEE 802.15.4-based wireless sensor networks (WSNs). The work and test are based on Contiki 2.5 and sensor nodes Zolertia Z1. In the testbed, a new network framework with large extensibility is provided, as well as a basic realization of NC-CC. In our implementation, CC is realized as a Rime primitive in Contiki, while NC is inserted as a new layer between Rime and MAC to perform opportunistic coding. In this way the network stack of Contiki is extended while still keeping the backward compatibility. Because of the lack of multicast in IEEE 802.15.4 protocol and the contradiction of applying continuous overhearing on power-constraint  sensor nodes, new mechanisms called pseudo overhearing and pseudo multicast is proposed in our testbed. A configurable test program is also designed for the purpose of evaluation. A combination of two senders, one relay and one destination is used as our network model. Experiments show that all the designed functions work properly. But to be robust, more experiments under different models should be brought in the future. A more detailed report  on the experiments can be found in my project-partner  Yitian Yan’s thesis.
APA, Harvard, Vancouver, ISO, and other styles
34

Hansen, Ewa. "Centralized Routing for Prolonged Network Lifetime in Wireless Sensor Networks." Licentiate thesis, Västerås : School of Innovation, Design and Engineering, Mälardalen University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

White, Kevin A. "Tactical network load balancing in multi-gateway wireless sensor networks." Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/39036.

Full text
Abstract:
Approved for public release; distribution is unlimited.
A tactical wireless sensor network (WSN) is a distributed network that facilitates wireless information gathering within a region of interest. For this reason, WSNs are finding increased use by the Department of Defense. A challenge in the deployment of WSNs is the limited battery power of each sensor node. This has a significant impact on the service life of the network. In order to improve the lifespan of the network, load balancing techniques using efficient routing mechanisms must be employed such that traffic is distributed between sensor nodes and gateway(s). In this thesis, we study load balancing from a cross-layer point of view, specifically considering energy efficiency. We investigate the impact of deploying single and multiple gateways on the following established energy aware load balancing routing techniques: direct routing, minimum transmission energy, low energy adaptive cluster head routing, and zone clustering. Based on the node die out statistics observed with these protocols, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm maximizes network lifetime and service area coverage.
APA, Harvard, Vancouver, ISO, and other styles
36

Coles, Matthew David. "Bayesian network based intelligent mobility strategies for wireless sensor networks." Thesis, University of Portsmouth, 2009. https://researchportal.port.ac.uk/portal/en/theses/bayesian-network-based-intelligent-mobility-strategies-for-wireless-sensor-networks(23e8243c-d165-40c5-8838-7e8feaa8d965).html.

Full text
Abstract:
This thesis is concerned with the design and analysis of new Bayesian network based mobility algorithms for mobile Wireless Sensor Networks (WSNs). The hypothesis for the work presented herein is that incorporating Artificial Intelligence (Al) at the level of the sensor nodes will improve their performance (coverage, connectivity and lifetime) and result in fault tolerance capabilities, in the face of uncertainty associated with incomplete information regarding the network. Two types of mobility strategy are presented and investigated. Firstly, a new gazing mobility strategy is presented which is biologically inspired from herbivores grazing pastures. As part of the latter strategy, and instead of deploying a large number of static sensor nodes to cover a region of interest, a smaller number of mobile nodes are deployed which migrate around the region to achieve coverage over time. To enable the performance evaluation of this strategy a new coverage measure called Coverage Against Time was created. A new decentralised Bayesian network based grazing mobility algorithm called BNGRAZ is presented which uses evidence derived from neighbouring nodes to predict the probability of performance (coverage and connectivity) changes associated with moving in a particular direction. Evidence is also obtained from a new Coverage Approximation (CA) algorithm which enables each sensor node to approximate the WSN coverage in order to determine areas in need of servicing. The performance of BNGRAZ is compared to a fixed path mobility technique, Random Waypoint (RWP) mobility model, and a new Grazing Reference Point Group Mobility (GRPGM) algorithm developed as part of this work. Secondly, a self-healing strategy which physically relocates sensor nodes to repair coverage holes, due to the failure of sensor nodes, is presented. A new decentralised Bayesian network based mobility algorithm called BayesMob, which uses local neighbour information, was created to coordinate the self-healing motion. The algorithm enables sensor nodes to predict the probability of an increase in coverage given a move in a particular direction to repair coverage holes. In addition, the thesis outlines the development of a WSN simulator. The latter provides a tool for evaluating the performance of mobile WSNs. All mobility strategies and algorithms discussed herein were simulated using the new WSN simulator.
APA, Harvard, Vancouver, ISO, and other styles
37

Johnson, Jennifer Nichole. "Optimizing network lifetime in sensor networks with limited recharging capabilities." Scholarly Commons, 2014. https://scholarlycommons.pacific.edu/uop_etds/227.

Full text
Abstract:
Monitoring the structural health of civil infrastructures with wireless sensor networks aids in detecting failures early, but faces power challenges in ensuring reasonable network lifetimes. Recharging select nodes with Unmanned Aerial Vehicles (UAVs) provides a solution that currently can recharge a single node; however, questions arise on the effectiveness of a limited recharging system, the appropriate node to recharge, and the best sink selection algorithm for improving network lifetime given a limited recharging system. This paper simulates such a network in order to answer those questions. This thesis first determines whether or not recharging with a UAV is an effective method of delivering limited power to the network. It then determines the best way to deliver that power. Finally, this thesis explores five different sink positioning algorithms to find which optimize the network lifetime by load-balancing the energy in the network, all in combination with the added capability of a UAV.
APA, Harvard, Vancouver, ISO, and other styles
38

Skulic, Jelena. "Wireless sensor networks using network coding for structural health monitoring." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/27252.

Full text
Abstract:
Wireless Sensor Networks (WSNs) have been deployed for the purpose of structural health monitoring (SHM) of civil engineering structures, e.g. bridges. SHM applications can potentially produce a high volume of sensing data, which consumes much transmission power and thus decreases the lifetime of the battery-run networks. We employ the network coding technique to improve the network efficiency and prolong its lifetime. By increasing the transmission power, we change the node connectivity and control the number of nodes that can overhear transmitted messages so as to hopefully realize the capacity gain by use of network coding. In Chapter 1, we present the background, to enable the reader to understand the need for SHM, advantages and drawbacks of WSNs and potential the application of network coding techniques has. In Chapter 2 we provide a review of related research explaining how it relates to our work, and why it is not fully applicable in our case. In Chapter 3, we propose to control transmission power as a means to adjust the number of nodes that can overhear a message transmission by a neighbouring node. However, too much of the overhearing by high power transmission consumes aggressively limited battery energy. We investigate the interplay between transmission power and network coding operations in Chapter 4. We show that our solution reduces the overall volume of data transfer, thus leading to significant energy savings and prolonged network lifetime. We present the mathematical analysis of our proposed algorithm. By simulation, we also study the trade-offs between overhearing and power consumption for the network coding scheme. In Chapter 5, we propose a methodology for the optimal placement of sensor nodes in linear network topologies (e.g., along the length of a bridge), that aims to minimise the link connectivity problems and maximise the lifetime of the network. Both simple packet relay and network coding are considered for the routing of the collected data packets towards two sink nodes positioned at both ends of the bridge. Our mathematical analysis, verified by simulation results, shows that the proposed methodology can lead to significant energy saving and prolong the lifetime of the underlying wireless sensor network. Chapter 6 is dedicated to the delay analysis. We analytically calculate the gains in terms of packet delay obtained by the use of network coding in linear multi-hop wireless sensor network topologies. Moreover, we calculate the exact packet delay (from the packet generation time to the time it is delivered to the sink nodes) as a function of the location of the source sensor node within the linear network. The derived packet delay distribution formulas have been verified by simulations and can provide a benchmark for the delay performance of linear sensor networks. In the Chapter 7, we propose an adaptive version of network coding based algorithm. In the case of packet loss, nodes do not necessary retransmit messages as they are able to internally decide how to cope with the situation. The goal of this algorithm is to reduce the power consumption, and decrease delays whenever it can. This algorithm achieves the delay similar to that of three-hop direct-connectivity version of the deterministic algorithm, and consumes power almost like one-hop direct-connectivity version of deterministic algorithm. In very poor channel conditions, this protocol outperforms the deterministic algorithm both in terms of delay and power consumption. In Chapter 8, we explain the direction of our future work. Particularly, we are interested in the application of combined TDMA/FDMA technique to our algorithm.
APA, Harvard, Vancouver, ISO, and other styles
39

Kulathumani, Vinodkrishnan. "Network Abstractions for Designing Reliable Applications Using Wireless Sensor Networks." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211560039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Abuaitah, Giovani Rimon. "Trusted Querying over Wireless Sensor Networks and Network Security Visualization." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1240163119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Praveenkumar, Ramesh. "Investigation of routing protocols in a sensor network." Birmingham, Ala. : University of Alabama at Birmingham, 2006. http://www.mhsl.uab.edu/dt/2006m/praveenkumar.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jingjing, Hao. "Distributed sensor fault detection and isolation over wireless sensor network." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/254423.

Full text
Abstract:
Wireless sensor networks (WSNs) can provide new methods for information gathering for a variety of applications. In order to ensure the network quality of service, the quality of the measurements has to be guaranteed. Distributed fault detection and isolation schemes are preferred to centralized solutions to diagnose faulty sensors in WSNs. Indeed the first approach avoids the need for a central node that collects information from every sensor node, and hence it limits complexity and energy cost while improving reliability.In the case of state estimation over distributed architectures, the sensor faults can be propagated in the network during the information exchanging process. To build a reliable state estimate one has to make sure that the measurements issued by the different sensors are fault free. That is one of the motivations to build a distributed fault detection and isolation (FDI) system that generates an alarm as soon as a measurement is subject to a fault (has drift, cdots ). In order to diagnose faults with small magnitude in wireless sensor networks, a systematic methodology to design and implement a distributed FDI system is proposed. It resorts to distinguishability measures to indicate the performance of the FDI system and to select the most suitable node(s) for information exchange in the network with a view to FDI. It allows one to determine the minimum amount of data to be exchanged between the different nodes for a given FDI performance. In this way, the specifications for FDI can be achieved while the communication and computation cost are kept as small as possible. The distributed FDI systems are designed both in deterministic and stochastic frameworks. They are based on the parity space approach that exploits spacial redundancy as well as temporal redundancy in the context of distributed schemes. The decision systems with the deterministic method and the stochastic method are designed not only to detect a fault but also to distinguish which fault is occurring in the network. A case study with a WSN is conducted to verify the proposed method. The network is used to monitor the temperature and humidity in a computer room. The distributed FDI system is validated both with simulated data and recorded data.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
43

Erdelj, Milan. "Mobile wireless sensor network architecture : applications to mobile sensor deployment." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2013. http://tel.archives-ouvertes.fr/tel-00914987.

Full text
Abstract:
Les progrès de la robotique mobile nous permettent aujourd'hui d'ajouter la notion de mobilité dans plusieurs classes de réseaux de capteurs sans fil. Le déploiement de capteurs mobiles est possible et utile dans de nombreuses applications, comme la surveillance de l'environnement, les applications dans l'industrie, dans la santé et le domaine militaire. Le terme robot mobile peut représenter n'importe quel type de robot avec la capacité de modifier sa position. Cette notion inclut une vaste gamme de robots industriels utilisés dans les lignes de production. Dans le contexte spécifique de cette thèse, l'attention se focalise uniquement sur les robots mobiles et plus particulièrement les véhicules autonomes dont les mouvements ne sont pas limités par leur taille physique. Ainsi, un robot ou un groupe de robots mobiles peuvent être utilisés pour explorer des environnements inconnus et effectuer une variété de fonctions. La mobilité du robot dans le contexte des réseaux de capteurs, nous permet de résoudre les problèmes qui ne pourraient pas être résolues dans un cas statique. Les robots mobiles permettent d'augmenter la robustesse du réseau en remplaçant des nœuds de capteurs et de s'adapter aux environnements inconnus ou dynamiques. Deux thèmes sont abordées dans cette thèse : la conception d'un intergiciels pour les réseaux de robots mobiles et un ensemble d'approches pour le déploiement de robots mobiles dans le cadre de réseaux de capteurs sans fil. L'intergiciel proposé et décrit dans cette thèse permet à l'utilisateur de facilement mettre en œuvre différents types d'algorithmes de déploiement pour les robots mobiles. Il permet de déployer une application sur la station de base centrale qui permet à un utilisateur de rassembler toutes les informations captées par la flotte de robots. L'application de la station de base permet à un utilisateur d'envoyer des commandes à un groupe ou à un robot, introduisant ainsi la commande manuelle en option dans le réseau robotique. L'intergiciel présenté dans ce travail est dédié à être utilisé avec des robots mobiles Wifibot. Il permet réaliser plusieurs tâches. Tout d'abord, il interagit avec le microgiciel du robot pour piloter les moteurs des roues et recueille les informations concernant la sortie du capteur et de l'état de la batterie. Deuxièmement, il gère la communication avec d'autres robots et les stations de base du réseau. Troisièmement, il traite les informations sur l'environnement et les messages reçus des voisins dans le réseau. Enfin, il réagit et il s'adapte de manière rapide et fiable pour aux événements de l'environnement. Dans la deuxième partie de la thèse, trois problèmes sont présentés et analysés : le problème de l'amélioration de la qualité de service avec l'utilisation des réseaux robotiques mobiles, la couverture du point d'intérêt avec des robots mobiles et la découverte de points d'intérêt et leur couverture avec l'utilisation des robots mobiles. Le premier problème est résolu avec l'utilisation de l'algorithme de déploiement qui améliore les performances de la transmission multimédia. Cet algorithme utilise une méthode intrusive pour réunir les métriques de qualité de service. Ensuite, l'attention est focalisé sur l'application des réseaux de capteurs sans fil est la surveillance de l'environnement. Au lieu de surveiller toute la région, couvrir seulement un ensemble de points d'intérêt spécifiques accroît les performances du réseau et réduit le coût de déploiement. Nous faison l'hypothèse que la station de base fixe est placé à l'intérieur du domaine d'intérêt, tandis que les robots mobiles disponibles couvrent le point d'intérêt et relayent l'information vers la station de base. L'approche pour résoudre le dernier problème est basée sur le mouvement continu et à vitesse variable de capteurs mobiles, qui suivent des trajectoires circulaires concentriques afin d'explorer et de couvrir le domaine d'intérêt. En se déplaçant constamment, les capteurs exécutent la tâche de découverte de l'environnement et, en ajustant la vitesse de déplacement, ils répondent aux contraintes de la couverture et la connectivité avec la station de base. L'algorithme installé sur tous les capteurs mobiles est distribué et introduit une nouvelle technique de calcul de la vitesse en fonction des informations disponibles à partir des capteurs dans le voisinage à un-saut. Ces algorithmes de déploiement de robots mobiles ont prouvé leur faisabilité à travers de nom- breuses simulations ainsi que dans la mise en pratique en s'appuyant sur l'intergiciel proposé.
APA, Harvard, Vancouver, ISO, and other styles
44

Hu, Xi. "Network and sensor management for mulitiple sensor emitter location system." Diss., Online access via UMI:, 2008.

Find full text
Abstract:
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Electrical and Computer Engineering, 2008.
Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
45

García, Pineda Miguel. "A group-based architecture and protocol for wireless sensor networks." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/27599.

Full text
Abstract:
There are many works related to wireless sensor networks (WSNs) where authors present new protocols with better or enhanced features, others just compare their performance or present an application, but this work tries to provide a different perspective. Why don¿t we see the network as a whole and split it into groups to give better network performance regardless of the routing protocol? For this reason, in this thesis we demonstrate through simulations that node¿s grouping feature in WSN improves the network¿s behavior. We propose the creation of a group-based architecture, where nodes have the same functionality within the network. Each group has a head node, which defines the area in which the nodes of such group are located. Each node has a unique node identifier (nodeID). First group¿s node makes a group identifier (groupID). New nodes will know their groupID and nodeID of their neighbors. End nodes are, physically, the nodes that define a group. When there is an event on a node, this event is sent to all nodes in its group in order to take an appropriate action. End nodes have connections to other end nodes of neighboring groups and they will be used to send data to other groups or to receive information from other groups and to distribute it within their group. Links between end nodes of different groups are established mainly depending on their position, but if there are multiple possibilities, neighbor nodes could be selected based on their ability ¿, being ¿ a choice parameter taking into account several network and nodes parameters. In order to set group¿s boundaries, we can consider two options, namely: i) limiting the group¿s diameter of a maximum number of hops, and ii) establishing boundaries of covered area. In order to improve the proposed group-based architecture, we add collaboration between groups. A collaborative group-based network gives better performance to the group and to the whole system, thereby avoiding unnecessary message forwarding and additional overheads while saving energy. Grouping nodes also diminishes the average network delay while allowing scaling the network considerably. In order to offer an optimized monitoring process, and in order to offer the best reply in particular environments, group-based collaborative systems are needed. They will simplify the monitoring needs while offering direct control. Finally, we propose a marine application where a variant of this groupbased architecture could be applied and deployed.
García Pineda, M. (2013). A group-based architecture and protocol for wireless sensor networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/27599
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
46

Shankar, Sonu. "Parameter assignment for improved connectivity and security in randomly deployed wireless sensor networks via hybrid omni/uni-directional antennas." Thesis, [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Onoriose, Ovie. "Development of a Wireless Sensor Network System for Occupancy Monitoring." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404547/.

Full text
Abstract:
The ways that people use libraries have changed drastically over the past few decades. Proliferation of computers and the internet have led to the purpose of libraries expanding from being only places where information is stored, to spaces where people teach, learn, create, and collaborate. Due to this, the ways that people occupy the space in a library have also changed. To keep up with these changes and improve patron experience, institutions collect data to determine how their spaces are being used. This thesis involves the development a system that collects, stores, and analyzes data relevant to occupancy to learn how a space is being utilized. Data is collected from a temperature and humidity sensor, passive Infrared sensor, and an Infrared thermal sensor array to observe people as they occupy and move through a space. Algorithms were developed to analyze the collected sensor data to determine how many people are occupying a space or the directions that people are moving through a space. The algorithms demonstrate the ability to track multiple people moving through a space as well as count the number of people in a space with an RMSE of roughly 0.39 people.
APA, Harvard, Vancouver, ISO, and other styles
48

Spinden, David, Jeffrey Jasper, and Kurt Kosbar. "Comparison of Wireless Ad-Hoc Sensor Networks." International Foundation for Telemetering, 2004. http://hdl.handle.net/10150/605786.

Full text
Abstract:
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California
There are a number of telemetry applications where it would be helpful to have networks of sensors that could autonomously discover their connectivity, and dynamically reconfigure themselves during use. A number of research groups have developed wireless ad-hoc sensor network systems. This paper reviews the state-of-the-art in wireless ad-hoc networks, examining the features, assumptions, limitations and unique attributes of some of the more popular solutions to this problem.
APA, Harvard, Vancouver, ISO, and other styles
49

Chidambar, Munavalli Sainath. "Structural Data Acquisition Using Sensor Network." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/879.

Full text
Abstract:
The development cost of any civil infrastructure is very high; during its life span, the civil structure undergoes a lot of physical loads and environmental effects which damage the structure. Failing to identify this damage at an early stage may result in severe property loss and may become a potential threat to people and the environment. Thus, there is a need to develop effective damage detection techniques to ensure the safety and integrity of the structure. One of the Structural Health Monitoring methods to evaluate a structure is by using statistical analysis. In this study, a civil structure measuring 8 feet in length, 3 feet in diameter, embedded with thermocouple sensors at 4 different levels is analyzed under controlled and variable conditions. With the help of statistical analysis, possible damage to the structure was analyzed. The analysis could detect the structural defects at various levels of the structure.
APA, Harvard, Vancouver, ISO, and other styles
50

Whyte, Griogair W. M. "Antennas for wireless sensor network applications." Thesis, University of Glasgow, 2008. http://theses.gla.ac.uk/408/.

Full text
Abstract:
The objective of this thesis is to present an analysis of antennas, which are applicable to wireless sensor networks and, in particular, to the requirements of the Speckled Computing Network Consortium. This was done through a review of the scientific literature on the subject, and the design, computer simulation, and experimental verification, of various suitable designs of antenna The first part of this thesis outlines what an antenna is and how it radiates. An insight is also given to the fundamental limitations of antennas. As antennas investigated in this thesis are planar-printed designs, an insight into the types of feed lines applicable, such as microstrip, CPW and slotline, is given. To help characterise the antennas investigated, the fundamental antenna analysis parameters, such as impedance bandwidth, S-parameters, radiation pattern, directivity, antenna efficiency, gain and polarisation are discussed. Also discussed is the 3D electromagnetic simulation software, HFSS, which was used to simulate the antennas in this thesis. To help illustrate the use of HFSS, a proximity-coupled patch antenna, operating at 5.8 GHz, was used as an example. A range of antennas were designed, manufactured and tested. These used conventional printed circuit boards (PCBs) and Gallium Arsenide (GaAs) substrates, operating at a range of frequencies from 2.4 GHz to 12 GHz. A review was conducted into relevant, suitable radio architectures such as, conventional narrowband systems, Ultra-Wide Band (UWB), and simplified radio architectures such as those based on the diode rectifier method, and Super Regenerative Receivers (SRR). There were several UWB antennas designed, which operate over a 3.1 – 10.16 GHz operational band with a VSWR ≤ 2. All the UWB antennas were required to transmit a UWB pulse with minimal distortion, which placed a requirement of linear phase and low values of group delay to minimise distortion on the pulse. UWB antennas investigated included a Vivaldi antenna, which was large, directional and gave excellent pulse transmission characteristics. A CPW-fed monopole was also investigated, which was small, omni-directional and had poor pulse transmission characteristics. A UWB dipole was designed for use in a UWB channel modelling experiment in collaboration with Strathclyde University. The initial UWB dipole investigated was a microstrip-fed structure that had unpredictable behaviour due to the feed, which excited leakage current down the feed cable and, as a result, distorted both the radiation pattern and the pulse. To minimise the leakage current, three other UWB dipoles were investigated. These were a CPW-fed UWB dipole with slots, a hybrid-feed UWB dipole, and a tapered-feed UWB dipole. Presented for these UWB dipoles are S-parameter results, obtained using a vector network analyser, and radiation pattern results obtained using an anechoic chamber. There were several antennas investigated in this thesis directly related to the Speckled Computing Consortiums objective of designing a 5mm3 ‘Speck’. These antennas were conventional narrowband antenna designs operating at either 2.45 GHz or 5.8 GHz. A Rectaxial antenna was designed at 2.45 GHz, which had excellent matching (S11 = -20dB) at the frequency of operation, and an omni-directional radiation pattern with a maximum gain of 2.69 dBi as measured in a far-field anechoic chamber. Attempts were made to increase the frequency of operation but this proved unsuccessful. Also investigated were antennas that were designed to be integrated with a 5.8 GHz MMIC transceiver. The first antenna investigated was a compact-folded dipole, which provided an insight into miniaturisation of antennas and the effect on antenna efficiency. The second antenna investigated was a ‘patch’ antenna. The ‘patch’ antenna utilised the entire geometry of the transceiver as a radiation mechanism and, as a result, had a much improved gain compared to the compact-folded dipole antenna. As the entire transceiver was an antenna, an investigation was carried into the amount of power flow through the transceiver with respect to the input power.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography