To see the other types of publications on this topic, follow the link: Sensor Management.

Dissertations / Theses on the topic 'Sensor Management'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sensor Management.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Williams, Jason L. "Information theoretic sensor management." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38534.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 195-203).
Sensor management may be defined as those stochastic control problems in which control values are selected to influence sensing parameters in order to maximize the utility of the resulting measurements for an underlying detection or estimation problem. While problems of this type can be formulated as a dynamic program, the state space of the program is in general infinite, and traditional solution techniques are inapplicable. Despite this fact, many authors have applied simple heuristics such as greedy or myopic controllers with great success. This thesis studies sensor management problems in which information theoretic quantities such as entropy are utilized to measure detection or estimation performance. The work has two emphases: Firstly, we seek performance bounds which guarantee performance of the greedy heuristic and derivatives thereof in certain classes of problems. Secondly, we seek to extend these basic heuristic controllers to nd algorithms that provide improved performance and are applicable in larger classes of problems for which the performance bounds do not apply. The primary problem of interest is multiple object tracking and identification; application areas include sensor network management and multifunction radar control.
(cont.) Utilizing the property of submodularity, as proposed for related problems by different authors, we show that the greedy heuristic applied to sequential selection problems with information theoretic objectives is guaranteed to achieve at least half of the optimal reward. Tighter guarantees are obtained for diffusive problems and for problems involving discounted rewards. Online computable guarantees also provide tighter bounds in specific problems. The basic result applies to open loop selections, where all decisions are made before any observation values are received; we also show that the closed loop greedy heuristic, which utilizes observations received in the interim in its subsequent decisions, possesses the same guarantee relative to the open loop optimal, and that no such guarantee exists relative to the optimal closed loop performance. The same mathematical property is utilized to obtain an algorithm that exploits the structure of selection problems involving multiple independent objects. The algorithm involves a sequence of integer programs which provide progressively tighter upper bounds to the true optimal reward. An auxiliary problem provides progressively tighter lower bounds, which can be used to terminate when a near-optimal solution has been found.
(cont.) The formulation involves an abstract resource consumption model, which allows observations that expend different amounts of available time. Finally, we present a heuristic approximation for an object tracking problem in a sensor network, which permits a direct trade-o between estimation performance and energy consumption. We approach the trade-o through a constrained optimization framework, seeking to either optimize estimation performance over a rolling horizon subject to a constraint on energy consumption, or to optimize energy consumption subject to a constraint on estimation performance. Lagrangian relaxation is used alongside a series of heuristic approximations to and a tractable solution that captures the essential structure in the problem.
by Jason L. Williams.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Johansson, Marcus. "Energy-efficient sensor management : How dynamic sensor management affects energy consumption in battery-powered mobile sensor devices." Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-6114.

Full text
Abstract:
This thesis has investigated how the energy consumption can be reduced in a mobile sensor unit by using a dynamic measurement scheme. This was done by developing a scheme based on inspiration from existing works in related areas and on techniques found in literature. The developed scheme was then implemented on a mobile sensor unit and tests were conducted where the energy consumed by the scheme was measured. This was compared to a static baseline approach in order to evaluate the efficiency of the scheme. The results showed that on the platform used in this thesis the developed scheme can reduce the energy consumption in a typical scenario by 4.7% or 6.7% depending on which sensors are used. A conclusion drawn is that the platform has a major impact on how effective the scheme can be.
APA, Harvard, Vancouver, ISO, and other styles
3

Huber, Marco. "Probabilistic framework for sensor management." Karlsruhe Univ-Verl. Karlsruhe, 2009. http://d-nb.info/997573252/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Xi. "Network and sensor management for mulitiple sensor emitter location system." Diss., Online access via UMI:, 2008.

Find full text
Abstract:
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Electrical and Computer Engineering, 2008.
Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Teuber, Kristoffer. "Sensor Management in a Distributed Environment." Thesis, University of Skövde, Department of Computer Science, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-780.

Full text
Abstract:

In this work an investigation of the benefits and problems of implementing a tracker using sensor management is done. The tracker is implemented in a fusion node in a distributed radar simulator provided by Ericsson Microwave. To investigate this, a literature study of sensor fusion and sensor management is first done, after which a practical study is chosen as method. The fusion method presented in this work is then tested so that tests of sensor management, which depend upon implemented sensor fusion, can be trusted. Sensor management is tested by letting the system track a specific target in the simulated environment. The system is tested to see what impact the delay in the distributed environment has on the implemented system’s capability to track an object. Two different scenarios are chosen to test the system, where a scenario in this thesis is a fly-by of two aircrafts in the terrain covered by the radar sensors. To test the actual correctness of the system, three dimensional coordinates of the objects are used and Euclidian distance between the original value and the fused value is used as an error measurement. The results are then displayed in a series of graphs and tables.

The results show that the chosen fusion algorithm works well with the unsynchronized data. The delay simulated in the system creates a great uncertainty where the object will be, but the presented prediction algorithm manages to find good estimates of the new positions of the object tracked. Loss of data however forces the system to use less information when estimating positions which leads to loss of track. Even though there is a long time delay the presented prediction algorithm can track the object for a period of time, until it looses track due to loss of data. It is also concluded that a system that manages to track an object using a narrow tracking beam is able to track more objects simultaneously using the same radar sensors.

APA, Harvard, Vancouver, ISO, and other styles
6

Yoon, Suyoung. "Power Management in Wireless Sensor Networks." NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-01232007-222425/.

Full text
Abstract:
One of the unique characteristics of wireless sensor networks (WSNs) is that sensor nodes have very constrained resources. Typical sensor nodes have lower computing power, communication bandwidth, and smaller memory than other wireless devices, and operate on limited capacity batteries. Hence power efficiency is very important in WSNs because power failure of some sensor nodes may lead to total network failure. In many cases the WSNs have to operate in harsh environments without human intervention for expended period time. Thus, much research on reducing or minimizing the power consumption, and thereby increasing the network lifetime, has been performed at each layer of the network layers. In this dissertation we approach three important issues related power management in WSNs: routing, time synchronization, and medium access control (MAC). We first discuss the effect of selecting routing protocols on the lifetime of the WSNs. The maximum and minimum bounds of the lifetime with respect to the routing protocols are derived. The routing protocols corresponding to the bounds are also presented. The simulation results show that the choice of the routing protocol has very little impact on the lifetime of the network and that simple routing protocols such as shortest path routing perform very close to the the maximum bound of the lifetime of the network. Next, we propose a simple and accurate time synchronization protocol that can be used a a fundamental component of other synchronization-based protocols in WSNs. Analytical bounds on the synchronization errors of proposed protocol are discussed. The implementation results on Mica2 and Telos motes show that proposed time synchronization protocol outperforms existing ones in terms of the precision and required resources. Finally, we model the power consumption of WSN MAC protocols. We derive analytically the power consumption of well known MAC protocols for WSNs, and analyze and compare their performance. We validate the models by measuring the power consumption on Mica 2 motes and comparing those measured power consumption with the analytical results.
APA, Harvard, Vancouver, ISO, and other styles
7

Zanelli, Paul Richard. "Structural pattern matching for sensor management." Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Page, Scott F. "Multiple objective sensor management and optimisation." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/66600/.

Full text
Abstract:
One of the key challenges associated with exploiting modern Autonomous Vehicle technology for military surveillance tasks is the development of Sensor Management strategies which maximise the performance of the on-board Data-Fusion systems. The focus of this thesis is the development of Sensor Management algorithms which aim to optimise target tracking processes. Three principal theoretical and analytical contributions are presented which are related to the manner in which such problems are formulated and subsequently solved. Firstly, the trade-offs between optimising target tracking and other system-level objectives relating to expected operating lifetime are explored in an autonomous ground sensor scenario. This is achieved by modelling the observer trajectory control design as a probabilistic, information--theoretic, multiple-objective optimisation problem. This novel approach explores the relationships between the changes in sensor-target geometry that are induced by tracking performance measures and those relating to power consumption. This culminates in a novel observer trajectory control algorithm based on the minimax approach. The second contribution is an analysis of the propagation of error through a limited-lookahead sensor control feedback loop. In the last decade, it has been shown that the use of such non-myopic (multiple-step) planning strategies can lead to superior performance in many Sensor Management scenarios. However, relatively little is known about the performance of strategies which use different horizon lengths. It is shown that, in the general case, planning performance is a function of the length of the horizon over which the optimisation is performed. While increasing the horizon maximises the chances of achieving global optimality, by revealing information about the substructure of the decision space, it also increases the impact of any prediction error, approximations, or unforeseen risk present within the scenario. These competing mechanisms are demonstrated using an example tracking problem. This provides the motivation for a novel sensor control methodology that employs an adaptive length optimisation horizon. A route to selecting the optimal horizon size is proposed, based on a new non-myopic risk equilibrium which identifies the point where the two competing mechanisms are balanced. The third area of contribution concerns the development of a number of novel optimisation algorithms aimed at solving the resulting sequential decision making problems. These problems are typically solved using stochastic search methods such as Genetic Algorithms or Simulated Annealing. The techniques presented in this thesis are extensions of the recently proposed Repeated Weighted Boosting Search algorithm. In its original form, it is only applicable to continuous, single-objective, optimisation problems. The extensions facilitate application to mixed search spaces and Pareto multiple-objective problems. The resulting algorithms have performance comparable with Genetic Algorithm variants, and offer a number of advantages such as ease of implementation and limited tuning requirements.
APA, Harvard, Vancouver, ISO, and other styles
9

Obenofunde, Simon. "Topology Management in wireless sensor networks." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK025.

Full text
Abstract:
La mise en réseau de capteurs sans fil s'intègre dans presque tous les domaines des activités humaines. Les moteurs de cette technologie comprennent ses domaines d'application et les améliorations des techniques de fabrication microélectroniques. Le réseau est constitué de plusieurs nœuds de capteurs de petite taille déployés dans la zone à détecter. Les nœuds ont des capacités de traitement, de communication et de détection qui leur permettent d'exécuter leur fonction de manière collaborative. Ils détectent les événements et transmettent les informations à un puits directement ou via des nœuds intermédiaires servant de relais.Des progrès considérables ont été réalisés sur cette technologie au cours des dernières années, cependant la gestion de l’énergie n’a pas connu la même évolution. Ceci est principalement dû au fait que la batterie est la principale source d'énergie. De plus, l’environnement du réseau peut empêcher les batteries d'être rechargées ou changées après le déploiement.Une solution classique à ce problème d'efficacité énergétique réside dans la gestion des cycles d’activation. Il s'agit d’alterner, de façon périodique ou non, les états actif et inactif des nœuds. Cela introduit des problèmes de performances réseaux en termes de disponibilité, de latence et de taux d’acheminement des paquets, car les nœuds inactifs ne participent pas aux communications. Il est donc important de trouver des solutions permettant d’utiliser les cycles d’activation tout en garantissant la disponibilité et en réduisant la latence et le taux de perte de paquets.Dans cette thèse, nous utilisons le cycle d’activation en combinaison avec la gestion de la topologie pour prolonger la durée de vie du réseau. Nous proposons cinq algorithmes pour construire différentes topologies que nous divisons en deux classes. La première classe organise les nœuds en ensembles de manière répétitive et entrelacée. C'est-à-dire que les nœuds appartenant à différents ensembles sont intercalés de manière à assurer la continuité des communications. La seconde classe d'algorithmes organise les nœuds en ensembles successifs en couronne. Nous avons montré expérimentalement la construction des différents ensembles.En utilisant la construction successive d’ensembles, nous proposons deux algorithmes qui construisent des réseaux dorsaux (backbones) virtuels disjoints pouvant être activés alternativement. Une évaluation des algorithmes fait ressortir leur efficacité, avec notamment un facteur d’approximation faible (de l’ordre de 3.5) en comparaison avec ceux des travaux de la littérature.Nous proposons ensuite un protocole basé sur les mécanismes de sommeil et relais sur ces topologies. Les périodes d’activité/inactivité sont définies par ensemble. Les résultats expérimentaux montrent que ce protocole permet une économie d’énergie sans dégrader les critères de performance tels que la latence et le taux d’acheminement des paquets
Wireless sensor networking is ingratiating itself into almost every area of human endeavors. Its drivers include its usages, improvements in microelectronics and manufacturing techniques. The network is made up of multiple tiny sensor nodes deployed in the area to be sensed, with nodes having processing, communicating, and sensing capabilities that enable them to perform their function collaboratively. Nodes sense events and transmit their data to the sink directly or through intermediate nodes acting as relay.Despite all the tremendous advances that have been made on this technology over the past few years, energy has not kept pace. This is based mostly on the fact that battery is its main source of energy. Furthermore, some applications of the network may preclude batteries from either being recharged or changed after deployment.A renowned solution to energy efficiency is duty cycling. This is the periodic or aperiodic placing of a node in an active and an inactive state. This introduces network performance issues of availability, latency, and packet delivery ratio, all linked to the fact that once a node is inactive or off, it is unavailable to communicate. It is therefore important to look for means of still applying duty cycling yet not losing out in availability, latency, and packet delivery ratio.In this dissertation we employ duty cycle on topology management to extend the network lifetime. We propose five algorithms to build various topologies that we divide into two classes. The first class enables nodes to arrange themselves into repetitive and interleaving sets. That is, nodes in the same set repeat themselves on the ground such that a set spans the entire area to be sensed. The second class of algorithms arranges nodes in continuous successive sets with members of a set covering a transmission range. We demonstrate the set formation experimentally.Building on the continuous set formation we propose two algorithms that build disjoint virtual backbone networks, with the disjointedness used for activity scheduling. We then measure the performances of the algorithms notably the approximation ratio and find it quite low (in the order of 3.5) compared to what is obtained in the literature.Finally, we propose a sleep and relay protocol that works on these topologies. Nodes sleep in sets and the activeness is relayed between sets. We evaluate the performance of this protocol and confirm that it actually leads to increase energy savings while not deteriorating other network performance metrics, like latency and packet delivery ratio
APA, Harvard, Vancouver, ISO, and other styles
10

Setty, Rahul Sridhar. "Sensor-less Smart Waste Management System." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393301.

Full text
Abstract:
In order to improve the municipal solid waste management efficiency, smart management approaches have been proposed such as wireless sensor network architecture solution which includes the use of sensors to detect the garbage bin fill levels and vehicle route optimization techniques. Experimental results show that we can save up to 35% of the operational cost by improving the efficiency of solid waste management. In this thesis, a new low-cost architecture solution is proposed for improving the efficiency of municipal solid waste management without the use of sensors. Instead, a messaging application is used to ask the customers for pick up of garbage. Based on their reply, the prototype architecture uses a cluster-first route-second method that implements a clustering algorithm with truck capacity as the constraint and solves a travelling salesman algorithm in each cluster. The prototype architecture consists of a back-end server that implements sweep clustering algorithm for clustering the customers by their location and solves travelling salesman problem with dynamic programming method in each cluster, firebase realtime database and front-end using android application for the mobile. The experimental results show that the prototype system can adapt to the change in dataset size and truck capacity constraints. We have observed that with an increase in truck capacity constraint, the number of clusters formed for the data set decreases. Forward and backward sweep clustering methods have been compared where there is no significant difference in the results produced. The dataset has been generated manually due to unavailability of real data from various sources. As a future work, we need to test the prototype with the real data in order to produce more accurate results.
APA, Harvard, Vancouver, ISO, and other styles
11

Tang, Zhijun. "Information-theoretic management of mobile sensor agents." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126882086.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xiii, 170 p.; also includes graphics (some col.). Includes bibliographical references (p. 162-170). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
12

Kim, Min Young. "Configuration and management of wireless sensor networks. /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Dec%5FKim%5FMin.pdf.

Full text
Abstract:
Thesis (M.S. in Computer Science)--Naval Postgraduate School, December 2005.
Thesis Advisor(s): Gurminder Singh, Arijit Das. Includes bibliographical references (p. 127-129). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
13

Bougiouklis, Theodoros C. "Traffic management algorithms in wireless sensor networks." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FBougiouklis.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, September 2006.
Thesis Advisor(s): Weillian Su. "September 2006." Includes bibliographical references (p. 79-80). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
14

Kamsuvan, Thanisara. "Power management in Wireless Sensor Networks (WSNs)." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13499.

Full text
Abstract:
The wireless sensor network (WSN) is increasingly used in many areas nowadays. It can be applied to provide the solutions to environmental problems, help increasing security and safety systems, and make the detection of the problems more efficient, e.g. the earthquake or tidal wave, which will harmful to humans. The WNS is durable and resistant to all types of terrain and climate, but while the WSN system is more and more widespread, one of the obstacles hindering the growth of this technology and the demand for WSN applications is the limited battery lifespan. Consequently, there is a significant requirement for techniques for prolonging the battery’s lifespan. Therefore, one potential solution is to use alternative energy sources combined with the sensor nodes in WSN, specifically energy harvesting from existing environmental sources. This research project reviews the characteristics of each kind of energy harvesting, understanding the various energy sources (solar energy, vibration energy and wind power), including wireless power transfer (WPT) by using electromagnetic (EM) radiation energy transfer or RF radio-frequency emission and magnetic coupled energy transfer. They are adopted for extending node’s life in the WSN, based on published information. Then it compares these diverse alternative energy methods and identifies for the most suitable energy harvesting method for application to wireless sensor nodes in order to prolong the lifespan of the battery. The major findings from the researcher include that wireless power transfer energy harvesting (WPT) using the magnetic field is the most appropriate tool for extending the lifespan of the WSN system. In addition, the author also designed an experiment to test this alternative energy, achieving by modelling the wireless power transfer with four coils. From the experimental results, it can be seen that the WPT technique using energy harvesting with magnetic inductive source can be applied to prolong the lifespan of the WSN system.
APA, Harvard, Vancouver, ISO, and other styles
15

Mehallegue, N. "Efficient Key Management for Wireless Sensor Networks." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tucker, Andrew Neil. "Nitrogen management of corn with sensor technology." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/4608.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
David B. Mengel
Corn (Zea mays) is an important cereal crop in Kansas primarily used as livestock feed for cattle in the feedlots, and there has been increased use of corn for ethanol production as well. According to the USDA National Agriculture Statistics approximately 1.7 million hectares of corn is planted each year in Kansas, with an average yield ranging from 5,750-7,750 kg ha[superscript]-1 within the last five years (2005-2009). With this variability in yield and volatility of crop and fertilizer prices over that same period, it seems logical that optimum nitrogen or N rates may vary. A series of 14 field experiments were conducted across Kansas from 2006 through 2009 to address this issue. Specific experiments included: evaluating optimum N rates from side-dressing nitrogen fertilizer; timing of nitrogen application, pre-plant vs. split applications and normal side-dress V-6-V-9 vs. late side-dress V-14-V-16; N response of corn to a late side-dress of nitrogen fertilizer; and the evaluation of optical sensors for making in season N recommendations. The specific objectives of this research were to: a. Determine the optimum N application rate and timing to optimize corn grain yields in different corn producing regions in Kansas. b. Confirm or revise the current K-State soil test based N recommendation system for corn. c. Evaluate N management strategies using the GreenSeeker, Crop Circle, and SPAD meter, crop sensors. d. Develop draft GreenSeeker, Crop Circle, and SPAD sensor algorithms for producers to use. Grain corn yields were responsive to N at all but 3 sites. Grain yields obtained at the sites ranged from 3,460 to 15,480 kg ha[superscript]-1. Optimum N rates varied from 0 to 246 kg N ha[superscript]-1. This work suggests that current K-State N fertilizer recommendations for corn need revisions due to over recommendation of N. Including different coefficients for irrigated and dry land corn along with N recovery terms would create a more accurate N recommendation system that more closely reflects the results obtained in these experiments, and provide a significant improvement over the current system. The optical sensors used in this study were effective at making N recommendations for corn. These sensors can be a valuable tool for producers to use and determine in season N status of corn.
APA, Harvard, Vancouver, ISO, and other styles
17

Srivastava, Rahul. "Efficient Energy Management in Wireless Sensor Networks." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1290622805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Min Y. "Configuration and management of wireless sensor networks." Thesis, Monterey, California. Naval Postgraduate School, 2005. http://hdl.handle.net/10945/1763.

Full text
Abstract:
Wireless sensor networks (WSNs) are expected to play an essential role in the upcoming age of pervasive computing. As a new research area, there are several open problems that need to be investigated. One such problem is configuration and management of WSNs. To deploy sensors efficiently in a wide area, we need to consider coverage, purpose and geographic situation. By considering these elements, we can make general deployment strategies. Another issue is management of various sensors in wide area. To handle these issues, we need approaches from different view, management levels, WSN functionalities, and management functional areas. In this thesis, I describe some of the key configuration and management problems in WSNs. Then, I present a newly developed application to address these problems.
APA, Harvard, Vancouver, ISO, and other styles
19

Regini, Edoardo. "Resource management in heterogeneous wireless sensor networks." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1470301.

Full text
Abstract:
Thesis (M.S.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed December 2, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 43-45).
APA, Harvard, Vancouver, ISO, and other styles
20

Tian, Biming. "Key management for wireless sensor network security." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/1157.

Full text
Abstract:
Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V.
APA, Harvard, Vancouver, ISO, and other styles
21

Almalkawi, Islam. "Wireless multimedia sensor networks, security and key management." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129557.

Full text
Abstract:
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs.
APA, Harvard, Vancouver, ISO, and other styles
22

Xu, Hòng. "Uncertainty management, sensor fusion and mobile robot navigation." Doctoral thesis, Universite Libre de Bruxelles, 1993. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hu, Wen Computer Science &amp Engineering Faculty of Engineering UNSW. "Resource provisioning and management in hybrid sensor networks." Awarded by:University of New South Wales. School of Computer Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/25174.

Full text
Abstract:
The development of embedded system technologies have made it feasible to deploy large-scale sensor and actuator networks. These networks are revolutionizing the way in which we understand, monitor and control complex physical environment, and provide one of the missing connections between the Internet and the physical world. Because of size, form factor and cost considerations, wireless sensor networks suffer from severe resource constraints, such as communication bandwidth and range, computation power, memory and energy. Furthermore, sensor networks are expected to consist of hundreds of sensors in the future. The resource constraints of tiny embedded devices, together with the large network size, create many research challenges which do not appear in traditional networks. In this dissertation, we address the challenges involved in designing robust and scalable sensor network system. In contrast to the flat networking model considered in previous sensor networks research, we propose a hierarchical or hybrid network architecture which is more scalable and robust. Hybrid sensor networks consist of resource-impoverished sensors and resource-rich sensors, called micro-servers. Because of the different capabilities of heterogeneous devices in hybrid sensor networks, there is need for effective deployment and utilization of network resources. Therefore, we introduce resource provisioning and management algorithms to optimize the performance of hybrid sensor networks. The first contribution of this dissertation is the design and implementation of new network architecture and algorithms to address the computation power and memory limitations of tiny embedded devices. The second contribution of this dissertation is the design and evaluation of an Anycast communication paradigm for hybrid sensor and actuator networks. We propose and evaluate a reverse tree-based Anycast mechanism tailored to deal with the unique event dynamics in sensor networks. The third contribution of this dissertation is the design and evaluation of an energy provisioning and management algorithm for hybrid sensor and actuator networks. Our studies show that the location of extra energy-provisioning can affect the lifetime of system dramatically; and hybrid sensor networks are financially cost-effective for a large number of cases which makes them a scalable solution. Together, these contributions enable effective resource provisioning and management in hybrid sensor networks.
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Su. "Sensor data management in bridge health monitoring systems /." Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1068237721&sid=13&Fmt=2&clientId=1509&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yuan, Fenghua. "Lightweight network management design for wireless sensor networks." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Fall2007/F_Yuan_081307.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ai, Chunyu. "Energy-Efficient Data Management in Wireless Sensor Networks." Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/cs_diss/55.

Full text
Abstract:
Wireless Sensor Networks (WSNs) are deployed widely for various applications. A variety of useful data are generated by these deployments. Since WSNs have limited resources and unreliable communication links, traditional data management techniques are not suitable. Therefore, designing effective data management techniques for WSNs becomes important. In this dissertation, we address three key issues of data management in WSNs. For data collection, a scheme of making some nodes sleep and estimating their values according to the other active nodes’ readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, Data Estimation using a Physical Model (DEPM) and Data Estimation using a Statistical Model (DESM). Most of existing data processing approaches of WSNs are real-time. However, historical data of WSNs are also significant for various applications. No previous study has specifically addressed distributed historical data query processing. We propose an Index based Historical Data Query Processing scheme which stores historical data locally and processes queries energy-efficiently by using a distributed index tree. Area query processing is significant for various applications of WSNs. No previous study has specifically addressed this issue. We propose an energy-efficient in-network area query processing scheme. In our scheme, we use an intelligent method (Grid lists) to describe an area, thus reducing the communication cost and dropping useless data as early as possible. With a thorough simulation study, it is shown that our schemes are effective and energy- efficient. Based on the area query processing algorithm, an Intelligent Monitoring System is designed to detect various events and provide real-time and accurate information for escaping, rescuing, and evacuation when a dangerous event happened.
APA, Harvard, Vancouver, ISO, and other styles
27

Ghassemi, Farhad. "Sensor management with applications in localization and tracking." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/9964.

Full text
Abstract:
In this dissertation, we explore several themes in sensor management with an emphasis on their applications for target localization and tracking. We consider the sensor subset selection problem where a pre-specified number of sensors must be selected in a sensor network to estimate an unknown value of a time-invariant parameter, e.g. the position of a target. We study the Lagrangian and continuous relaxations of this problem with the determinant of the Fisher information matrix as the objective function. We prove that the continuous bound is tighter than the Lagrangian bound and outline an algorithm based on the so-called natural selection process to compute the continuous bound when sensors are allowed to make more than one measurement. We also study how a target can identify the informative sensors when it is facing a network that attempts to estimate its position or its other critical parameters. We show that by borrowing the notion of symmetric probabilistic values from cooperative game theory, the target can assign a power index to each sensor to determine how informative it is relative to the other ones. We further show that by choosing the determinant of the Fisher information matrix as the metric of estimation accuracy, the computational complexity associated with a power index gracefully increases with the number of sensors. Finally, we study the trajectory design problem for bearings-only tracking where the motion of a mobile sensor, called the observer, must be planned in order to estimate the position and the velocity of a moving target via bearing measurements. Our analysis of this problem demonstrates that the optimal solutions can be uniquely specified by only two ratios: (i) The distance that the observer can travel along a straight line during the observation period to the relative distance between the observer and the target. (ii) The speed of the observer relative to the speed of the target.
APA, Harvard, Vancouver, ISO, and other styles
28

Roseveare, Nicholas. "Optimization and resource management in wireless sensor networks." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15730.

Full text
Abstract:
Doctor of Philosophy
Department of Electrical and Computer Engineering
Balasubramaniam Natarajan
In recent years, there has been a rapid expansion in the development and use of low-power, low-cost wireless modules with sensing, computing, and communication functionality. A wireless sensor network (WSN) is a group of these devices networked together wirelessly. Wireless sensor networks have found widespread application in infrastructure, environmental, and human health monitoring, surveillance, and disaster management. While there are many interesting problems within the WSN framework, we address the challenge of energy availability in a WSN tasked with a cooperative objective. We develop approximation algorithms and execute an analysis of concave utility maximization in resource constrained systems. Our analysis motivates a unique algorithm which we apply to resource management in WSNs. We also investigate energy harvesting as a way of improving system lifetime. We then analyze the effect of using these limited and stochastically available communication resources on the convergence of decentralized optimization techniques. The main contributions of this research are: (1) new optimization formulations which explicitly consider the energy states of a WSN executing a cooperative task; (2) several analytical insights regarding the distributed optimization of resource constrained systems; (3) a varied set of algorithmic solutions, some novel to this work and others based on extensions of existing techniques; and (4) an analysis of the effect of using stochastic resources (e.g., energy harvesting) on the performance of decentralized optimization methods. Throughout this work, we apply our developments to distribution estimation and rate maximization. The simulation results obtained help to provide verification of algorithm performance. This research provides valuable intuition concerning the trade-offs between energy-conservation and system performance in WSNs.
APA, Harvard, Vancouver, ISO, and other styles
29

Nevala, Christian. "Mobility management for software defined wireless sensor networks." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-31936.

Full text
Abstract:
By advancing technologies in both hardware and software, it is possible to support more complex applications. Wireless Sensor Networks (WSNs) comprised of tiny sensing devices with wireless radios are the key enablers for future Internet of Things(IoT) applications, where collecting measurements and delivering them to their destination is the most important task. In traditional sensor networks, sensor nodes were typically stationary and each node periodically measured and sent data to the next predefined router. However, in current applications, some nodes are expected to move. For instance, in health monitoring applications, where patients with sensors attached to their body are free to move in the hospital or their houses. Software Defined Networking (SDN) is a technique that was conventionally used in wired networks, and recently was used in some wireless networks, such as cellular and wireless local area networks. The idea of SDN is to provide more flexibility in the network by getting the advantage of re-programmability of the network devices during run-time. In networks based on SDN, the control plane is shifted from the infrastructure to a higher level in order to provide re-configuration. The controller decides on updating forwarding rules by getting some feedback from nodes in the network. In wireless sensor networks, the feedback may contain information related to the link quality and available resources such as battery level and the location of the sensor node (number of hops away from the sink). In this thesis, a study ofseveral relevant SDN-based architectures for wireless sensor networks is given, outlining the main advantages and disadvantages for each. In addition, some mobility solutions in sensor networks such as localization, routing and hand-off algorithms are explored. One of the drawbacks with SDN is that it was originally built for wired networks there experience with mobility does not exist. Thus the thesis considers the possibility to use SDN solutions in WSN were certain applications are in need of mobility. Finally, the thesis propose mobility solution for sensor networks that takes advantage of SDN and uses a handoff algorithm. In fact, the hand-off mechanism is achieved by means of control message exchanges that is supervised by the controller.
APA, Harvard, Vancouver, ISO, and other styles
30

Asim, Muhammad. "Self-organization and management of wireless sensor networks." Thesis, Liverpool John Moores University, 2010. http://researchonline.ljmu.ac.uk/5998/.

Full text
Abstract:
Wireless sensor networks (WSNs) are a newly deployed networking technology consisting of multifunctional sensor nodes that are small in size and communicate over short distances. These sensor nodes are mainly in large numbers and are densely deployed either inside the phenomenon or very close to it. They can be used for various application areas (e.g. health, military, home). WSNs provide several advantages over traditional networks, such as large-scale deployment, highresolution sensed data, and application adaptive mechanisms. However, due to their unique characteristics (having dynamic topology, ad-hoc and unattended deployment, huge amount of data generation and traffic flow, limited bandwidth and energy), WSNs pose considerable challenges for network management and make application development nontrivial. Management of wireless sensor networks is extremely important in order to keep the whole network and application work properly and continuously. Despite the importance of sensor network management, there is no generalize solution available for managing and controlling these resource constrained WSNs. In network management of WSNs, energy-efficient network selforganization is one of the main challenging issues. Self-organization is the property which the sensor nodes must have to organize themselves to form the network. Selforganization of WSNs is challenging because of the tight constraints on the bandwidth and energy resources available in these networks. A self organized sensor network can be clustered or grouped into an easily manageable network. However, existing clustering schemes offer various limitations. For example, existing clustering schemes consume too much energy in cluster formation and re-formation. This thesis presents a novel cellular self-organizing hierarchical architecture for wireless sensor networks. The cellular architecture extends the network life time by efficiently utilizing nodes energy and support the scalability of the system. We have analyzed the performance of the architecture analytically and by simulations. The results obtained from simulation have shown that our cellular architecture is more energy efficient and achieves better energy consumption distribution. The cellular architecture is then mapped into a management framework to support the network management system for resource constraints WSNs. The management framework is self-managing and robust to changes in the network. It is application-co-operative and optimizes itself to support the unique requirements of each application. The management framework consists of three core functional areas i.e., configuration management, fault management, and mobility management. For configuration management, we have developed a re-configuration algorithm to support sensor networks to energy-efficiently re-form the network topology due to network dynamics i.e. node dying, node power on and off, new node joining the network and cells merging. In the area of fault management we have developed a new fault management mechanism to detect failing nodes and recover the connectivity in WSNs. For mobility management, we have developed a two phase sensor relocation solution: redundant mobile sensors are first identified and then relocated to the target location to deal with coverage holes. All the three functional areas have been evaluated and compared against existing solutions. Evaluation results show a significant improvement in terms of re-configuration, failure detection and recovery, and sensors relocation.
APA, Harvard, Vancouver, ISO, and other styles
31

Sridharan, Vaikunth. "Sensor Data Streams Correlation Platform for Asthma Management." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527546937956439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Moreira, Helder. "Sensor data integration and management of smart environments." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17884.

Full text
Abstract:
Mestrado em Engenharia de Computadores e Telemática
Num mundo de constante desenvolvimento tecnológico e acelerado crescimento populacional, observa-se um aumento da utilização de recursos energéticos. Sendo os edifícios responsáveis por uma grande parte deste consumo energético, desencadeiam-se vários esforços de investigações de forma a criarem-se edifícios energeticamente eficientes e espaços inteligentes. Esta dissertação visa, numa primeira fase, apresentar uma revisão das atuais soluções que combinam sistemas de automação de edifícios e a Internet das Coisas. Posteriormente, é apresentada uma solução de automação para edifícios, com base em princípios da Internet das Coisas e explorando as vantagens de sistemas de processamento complexo de eventos, de forma a fornecer uma maior integração dos múltiplos sistemas existentes num edifício. Esta solução é depois validada através de uma implementação, baseada em protocolos leves desenhados para a Internet das Coisas, plataformas de alto desempenho, e métodos complexos para análise de grandes fluxos de dados. Esta implementação é ainda aplicada num cenário real, e será usada como a solução padrão para gestão e automação num edifício existente.
In a world of constant technological development and accelerated population growth, an increased use of energy resources is being observed. With buildings responsible for a large share of this energy consumption, a lot of research activities are pursued with the goal to create energy efficient buildings and smart spaces. This dissertation aims to, in a first stage, present a review of the current solutions combining Building Automation Systems (BAS) and Internet of Things (IoT). Then, a solution for building automation is presented based on IoT principles and exploiting the advantages of Complex Event Processing (CEP) systems, to provide higher integration of the multiple building subsystems. This solution was validated through an implementation, based on standard lightweight protocols designed for IoT, high performance and real time platforms, and complex methods for analysis of large streams of data. The implementation is also applied to a real world scenario, and will be used as a standard solution for management and automation of an existing building
APA, Harvard, Vancouver, ISO, and other styles
33

Medlej, Maguy. "Big data management for periodic wireless sensor networks." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2029/document.

Full text
Abstract:
Les recherches présentées dans ce mémoire s’inscrivent dans le cadre des réseaux decapteurs périodiques. Elles portent sur l’étude et la mise en oeuvre d’algorithmes et de protocolesdistribués dédiés à la gestion de données volumineuses, en particulier : la collecte, l’agrégation etla fouille de données. L’approche de la collecte de données permet à chaque noeud d’adapter sontaux d’échantillonnage à l’évolution dynamique de l’environnement. Par ce modèle le suréchantillonnageest réduit et par conséquent la quantité d’énergie consommée. Elle est basée surl’étude de la dépendance de la variance de mesures captées pendant une même période voirpendant plusieurs périodes différentes. Ensuite, pour sauvegarder plus de l’énergie, un modèled’adpatation de vitesse de collecte de données est étudié. Ce modèle est basé sur les courbes debézier en tenant compte des exigences des applications. Dans un second lieu, nous étudions unetechnique pour la réduction de la taille de données massive qui est l’agrégation de données. Lebut est d’identifier tous les noeuds voisins qui génèrent des séries de données similaires. Cetteméthode est basée sur les fonctions de similarité entre les ensembles de mesures et un modèle defiltrage par fréquence. La troisième partie est consacrée à la fouille de données. Nous proposonsune adaptation de l’approche k-means clustering pour classifier les données en clusters similaires,d’une manière à l’appliquer juste sur les préfixes des séries de mesures au lieu de l’appliquer auxséries complètes. Enfin, toutes les approches proposées ont fait l’objet d’études de performancesapprofondies au travers de simulation (OMNeT++) et comparées aux approches existantes dans lalittérature
This thesis proposes novel big data management techniques for periodic sensor networksembracing the limitations imposed by wsn and the nature of sensor data. First, we proposed anadaptive sampling approach for periodic data collection allowing each sensor node to adapt itssampling rates to the physical changing dynamics. It is based on the dependence of conditionalvariance of measurements over time. Then, we propose a multiple level activity model that usesbehavioral functions modeled by modified Bezier curves to define application classes and allowfor sampling adaptive rate. Moving forward, we shift gears to address the periodic dataaggregation on the level of sensor node data. For this purpose, we introduced two tree-based bilevelperiodic data aggregation techniques for periodic sensor networks. The first one look on aperiodic basis at each data measured at the first tier then, clean it periodically while conservingthe number of occurrences of each measure captured. Secondly, data aggregation is performedbetween groups of nodes on the level of the aggregator while preserving the quality of theinformation. We proposed a new data aggregation approach aiming to identify near duplicatenodes that generate similar sets of collected data in periodic applications. We suggested the prefixfiltering approach to optimize the computation of similarity values and we defined a new filteringtechnique based on the quality of information to overcome the data latency challenge. Last butnot least, we propose a new data mining method depending on the existing K-means clusteringalgorithm to mine the aggregated data and overcome the high computational cost. We developeda new multilevel optimized version of « k-means » based on prefix filtering technique. At the end,all the proposed approaches for data management in periodic sensor networks are validatedthrough simulation results based on real data generated by periodic wireless sensor network
APA, Harvard, Vancouver, ISO, and other styles
34

Shaun, Ferdous Jahan. "Multi-Parameters Miniature Sensor for Water Network Management." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1138/document.

Full text
Abstract:
L’eau est une ressource vitale, indispensable à la vie sur terre. A l’instar de nombreuses autres ressources naturelles, l’eau propre à la consommation est soumise à une forte pression à cause de l’impact de l’activité humaine d’une part et de l’augmentation continue de la population mondiale d’autre part. Une pression tellement forte que l’eau propre représente l’un des 17 objectifs de développement durable des Nations Unies. Dans ce contexte, une gestion rationnelle et durable de la ressource s’avère indispensable. Dans ce but, un système intelligent de supervision des réseaux d’eau potable peut s’avérer très utile. Les systèmes existant sont toutefois peu intégrés et compacts, nécessitent souvent une alimentation externe, et restent relativement chers pour un déploiement massif sur les réseaux. La présente thèse s’inscrit dans le cadre d’un projet de recherche européen, PROTEUS, visant à pallier ces différents problèmes en mettant au point un système de mesure pour la supervision de la ressource en eau permettant la mesure de 9 paramètres physico-chimiques, reconfigurable, et énergétiquement autonome. La contribution de la présente thèse à ce projet porte sur la conception et l’optimisation des différents capteurs physiques (conductivité électrique, pression, température et débit) ainsi qu’à leur co-intégration sur une même puce. Le système proposé montre des performances au moins égales à celle de l’état de l’art en ce qui concerne la robustesse, assurée par la redondance de nombreux éléments sensibles, le domaine de sensibilité et la consommation énergétique. Le présent manuscrit est par conséquent construit comme suit : le premier chapitre est une introduction générale à la supervision de grandeurs environnementales et à la puce multi-capteurs. Le second chapitre décrit la structure de la puce multi-capteurs ainsi que les méthodes de fabrication utilisées, avec une attention particulière accordée aux capteurs de pression et de conductivité électrique. Le troisième chapitre porte sur l’utilisation de résistances électriques pour la mesure de diverses grandeurs physiques, notamment la température. Le dernier chapitre s’attarde plus particulièrement sur l’utilisation de ce type de résistances pour la mesure de débit avant de conclure et de proposer des perspectives pour des travaux futurs
Water is a vital element for every living being on the earth. Like many other dwindling natural resources, clean water faces a strong pressure because of human activity and the rapid growth of global population. The situation is so critical that clean water has been identified as one of the seventeenth sustainable development goals of the United Nations. Under these conditions, a sustainable management of water resources is necessary. For this purpose, a smart solution for water networks monitoring can be very helpful. However, commercially available solutions lack compactness, self-powering capabilities cost competitiveness, necessary to enable the large rollout over water networks. The present thesis takes place in the framework of a European research project, PROTEUS, which addresses these different problems by designing and fabricating a multi-parameter sensor chip (MPSC) for water resources monitoring. The MPSC enables the measurement of 9 physical and chemical parameters, is reconfigurable and self-powered. The present thesis addresses more precisely physical sensors, their design, optimization and co-integration on the MPSC. The developed device exhibits state of the art or larger performances with regard to its redundancy, turn-down ratio and power consumption. The present manuscript is split into two main parts: Part-I and Part-II. Part-I deals with non-thermal aspects of the MPSC, the pressure and conductivity sensor for instance, as well as the fabrication process of the whole device (Chapter 1 and 2). The background of environmental monitoring is presented in Chapter 1 along with the State of Art review. Chapter 2 describes fabrication methods of the MPSC. Preliminary characterization results of non-thermal sensors are also reported in this chapter. Chapter 3 and 4, included in Part-II, deal with thermal sensors (temperature and flow-rate). Chapter 3 describes the many possible uses of electric resistances for sensing applications. Finally, in chapter four, we focus on flowrate sensors before concluding and making a few suggestions for future works
APA, Harvard, Vancouver, ISO, and other styles
35

Skowyra, Richard William. "A centralized energy management system for wireless sensor networks." Worcester, Mass. : Worcester Polytechnic Institute, 2009. http://www.wpi.edu/Pubs/ETD/Available/etd-050509-144150/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tabella, Gianluca. "Subsea Oil Spill Risk Management based on Sensor Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
This thesis consists of the evaluation of sensor-based risk management against oil spills using an underwater distributed sensor network. The work starts by highlighting the importance of having a performing leak detection system both from an environmental, safety and economic point of view. The case study is the Goliat FPSO in the Barents Sea which has to meet requirements dictated by Norwegian authorities to prevent oil spills. The modeled network is made of passive acoustic sensors monitoring the subsea manifolds. These sensors send their local 1-bit decision to a Fusion Center which takes a global decision on whether the leakage is occurring. This work evaluates how the choice of adapted Fusion Rules (Counting Rule and Weighted Fusion Rule) can affect the performances of the leak detection system in its current geometry. It will also be discussed how different thresholds, selected for a specific FR or sensor test, can change the system performance. The detection methods are based on statistical signal processing adapted to fit this application within the Oil&Gas field. The work also proposes some new leak localization methods developed so they can be coupled with the proposed leak detection methods, giving a coherent set of operations that the sensors and the FC must perform. Performances of detection techniques are assessed balancing the need for high values of True Positive Rate and Precision and low values of False Positive Rate using indexes based both on the ROC curve (like the Youden's Index) and on the PR curve (the F-scores). Whereas, performances of localization techniques will be assessed on their ability to localize the spill in the shortest time; if this is not possible, parameters like the difference between the estimated and the real leak position will be considered. Finally, some tests are carried out applying the different sets of proposed methods.
APA, Harvard, Vancouver, ISO, and other styles
37

Cao, Minh Trang. "A self-organizing management platform for wireless sensor networks." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/283135.

Full text
Abstract:
Through advances in sensor, networking, semiconductor and energy storage technologies, Wireless Sensor Networks (WSNs) are increasingly being deployed in many important applications to enable users to access information about the physical world. As a result, WSNs role as one of key components of the Internet Of Things. However, the increase of number of sensors, the number of sensor types, and the number of applications will make very difficult for the management systems of WSNs. In this thesis, we propose a self organizing management platform designed to ensure sensor nodes and user applications are set up and running as intended. Our management platform, called DISON (DIstributed Self Organizing Network) uses a multilevel management schema to provide scalability for large sensor networks. We show how sensor nodes self adapt to the changes in network resources and application requirements and how network resources are coordinated efficiently among groups of adjacent sensor nodes. For flexibility, our platform are implemented and performed in an independent layer and interact with the user application and network protocols through public interfaces. This helps our platform to be easily integrated to an existing or a new application. A set of management data models and protocols are developed to validate the efficiency of the proposed platform in resolving challenging management problems in both single and shared sensor networks. Finally, in order to qualitatively evaluate our platform, we present two case studies, one with a single sensor network and another with a shared sensor network, where DISON was used to coordinate network resources and application requirements. The results from extensive experiments show that using DISON can bring a dramatic improvement to the scalability, the stability, the efficiency, the reliability and the flexibility of WSNs.
Gracias a los avances en la tecnología de sensores, redes, semiconductores y almacenamiento de energía, el uso de las redes de sensores inalámbricos (WSNs) ha augmentado notablemente en los últimos años con la aparación de multitud de nuevas aplicaciones que permiten a los usuarios acceder a la información sobre el mundo físico. Como resultado, las WSNs son uno de los componentes clave en la Internet of Things. Sin embargo, el aumento del número de sensores, la diversidad de sensores, y del número de aplicaciones hará muy difícil para los sistemas de gestión de redes inalámbricas de sensores. En esta tesis, se propone una plataforma de gestión auto-organizativa diseñada para asegurar que los nodos sensores y aplicaciones de usuario estén siempre configurados y funcionando según lo previsto. Nuestra plataforma de gestión, llamada DISON (DIstributed Self Organizing Network), utiliza un esquema de gestión de varios niveles para proporcionar escalabilidad en redes de sensores de gran tamaño. Mostramos cómo los nodos sensores se auto-adaptan a los cambios en los recursos de la red y en los requisitos de las aplicaciones y cómo los recursos de red se coordinan de manera eficiente entre grupos de nodos de sensores adyacentes. Para una mayor flexibilidad, nuestra plataforma se implementa y materializa en una capa independiente que interactúa con la aplicación de usuario y los protocolos de red a través de interfaces públicas. Esto ayuda a nuestra plataforma a integrarse fácilmente a una aplicación ya existente o a una nueva. Un conjunto de modelos de datos y protocolos de gestión se han desarrollado para validar la eficacia de la plataforma propuesta en la resolución de problemas de gestión de desafío en tanto las redes individuales y compartidas de los sensores. Por último, con el objetivo de evaluar nuestra plataforma, presentamos dos estudios de caso, uno con una red individual de sensores y otra con una red compartidas de sensores, donde se utilizó DISON para coordinar los recursos de red y aplicaciones de usuario. Los resultados de extensos experimentos muestran que el uso de DISON puede aportar una mejora dramática a la escalabilidad, la estabilidad, la eficiencia, la fiabilidad y la flexibilidad de WSN.
APA, Harvard, Vancouver, ISO, and other styles
38

Bapat, Sandip Shriram. "On reliable and scalable management of wireless sensor networks." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1164809365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Udenze, A. "Power management Algorithms for Low Power Wireless Sensor Networks." Thesis, University of Essex, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ediriweera, Damjee Dharshana. "A learning-based architecture for flexible sensor network management." Thesis, Lancaster University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658320.

Full text
Abstract:
The thesis investigates the use of machine learning as an effective means of supporting autonomous flexibility within complex sensor network management systems. Policy-based management has often been the tool of choice for addressing such requirements, but is often only a partial solution, due to its reliance on end-user capacity for timely and accurate policy creation. A new systems architecture HYBRID, capable of autonomous system flexibility through user-independent adaptation, is therefore proposed. HYBRID combines policy based management with self-learning algorithms to realise a single architecture capable of flexible automation at all levels of a management system. The work described in this thesis demonstrates the limitations of policy-based management, and illustrates how best to mitigate them through the adoption of self-learning techniques. The availability and suitability of today's learning algorithms for facilitating such automation is investigated, and where necessary, algorithmic enhancements to selected techniques are proposed and evaluated to explore relevant complexities. Validity of the architecture is demonstrated through two real -world trials. HYBRID has been applied to address distinct management problems, demonstrating on each occasion, 'how' the proposed architecture supports effective and safe exploitation of machine learning to enable greater behavioural flexibility within complex management systems.
APA, Harvard, Vancouver, ISO, and other styles
41

Darden, Kelvin S. "Smart Microgrid Energy Management Using a Wireless Sensor Network." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404560/.

Full text
Abstract:
Modern power generation aims to utilize renewable energy sources such as solar power and wind to supply customers with power. This approach avoids exhaustion of fossil fuels as well as provides clean energy. Microgrids have become popular over the years, as they contain multiple renewable power sources and battery storage systems to supply power to the entities within the network. These microgrids can share power with the main grid or operate islanded from the grid. During an islanded scenario, self-sustainability is crucial to ensure balance between supply and demand within the microgrid. This can be accomplished by a smart microgrid that can monitor system conditions and respond to power imbalance by shedding loads based on priority. Such a method ensures security of the most important loads in the system and manages energy by automatically disconnecting lower priority loads until system conditions have improved. This thesis introduces a prioritized load shedding algorithm for the microgrid at the University of North Texas Discovery Park and highlight how such an energy management algorithm can add reliability to an islanded microgrid.
APA, Harvard, Vancouver, ISO, and other styles
42

Rosenfeld, Abraham M. "Data collection and management of a mobile sensor platform." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85486.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 53).
This thesis explores the development of a platform to better collect and manage data from multiple senor inputs mounted on a car sensor platform. Specifically, focusing on the collection and synchronization of multiple forms of data across a single mobile sensor system. The project will be implemented for three versions of a light-sensing platform, and will cover the different methods of data collection and different types of sensor devices implemented in each version. It will also cover the different technical challenges faced when collecting and managing data across multiple mobile sensors.
by Abraham M. Rosenfeld.
M. Eng.
APA, Harvard, Vancouver, ISO, and other styles
43

Vezouviou, Evangelia. "A near infrared holographic glucose sensor for diabetes management." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chorzempa, Michael William. "Key Management for Wireless Sensor Networks in Hostile Environments." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/32105.

Full text
Abstract:
Large-scale wireless sensor networks (WSNs) are highly vulnerable to attacks because they consist of numerous resource-constrained devices and communicate via wireless links. These vulnerabilities are exacerbated when WSNs have to operate unattended in a hostile environment, such as battlefields. In such an environment, an adversary poses a physical threat to all the sensor nodes. An adversary may capture any node, compromising critical security data including keys used for encryption and authentication. Consequently, it is necessary to provide security services to these networks to ensure their survival. We propose a novel, self-organizing key management scheme for large-scale and long-lived WSNs, called Survivable and Efficient Clustered Keying (SECK). SECK provides administrative services that ensures the survivability of the network. SECK is suitable for managing keys in a hierarchical WSN consisting of low-end sensor nodes clustered around more capable gateway nodes. Using cluster-based administrative keys, SECK provides five efficient security administration mechanisms: 1) clustering and key setup, 2) node addition, 3) key renewal, 4) recovery from multiple node captures, and 5) re-clustering. All of these mechanisms have been shown to localize the impact of attacks and considerably improve the efficiency of maintaining fresh session keys. Using simulation and analysis, we show that SECK is highly robust against node capture and key compromise while incurring low communication and storage overhead.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Hailong. "Analytical Model for Energy Management in Wireless Sensor Networks." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367936881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Davis, James. "A Novel Aquatic Sensor and Network." Thesis, Rensselaer Polytechnic Institute, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10243159.

Full text
Abstract:

Water quality monitoring is essential to human health, ecological stability, and scientific research but remains hampered by Large, expensive, inflexible, and sometimes unreliable systems. To address these problems, an open source, flexible, and inexpensive sonde was designed and created capable of meeting research needs, along with a buoy system to support its use. A new optical UV based sensor was created to help measure phosphate ion levels. Together these technologies could further ecological research and help safeguard ecosystems.

APA, Harvard, Vancouver, ISO, and other styles
47

Barragan, Dante E. "Optimal placement of sensors for network lifetime extension in wireless sensor networks with dynamic routing." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Romanazzi, Stefano. "Water Supply Network Management: Sensor Analysis using Google Cloud Dataflow." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
The growing field of IoT increases the amount of time series data produced every day. With such information overload it is necessary to promptly clean and process those information extracting meaningful knowledge and avoiding raw data storage. Nowadays cloud infrastructures allow to adopt this processing demand by providing new models for defining data-parallel processing pipelines, such as the Apache Beam unified model which evolved from Google Cloud Dataflow and MapReduce paradigm. The projects of this thesis have been implemented during a three-month internship at Injenia srl, and face this exact trail, by processing external IoT-acquired data, going through a cleansing and a processing phase in order to obtain neural networks ready-to-feed data. The sewerage project acquires signals from IoT sensors of a sewerage infrastructure and aims at predicting signals' trends over close future periods. The aqueduct project acquires the same information type from aqueduct plants and aims to reduce the false alarm rate of the telecontrol system. Given the good results of both projects it can be concluded that the data processing phase has produced high-quality information which is the main objective of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
49

Alaei, Mohammad. "Energy efficient cooperative node management for wireless multimedia sensor networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129154.

Full text
Abstract:
In Wireless Multimedia Sensor Networks (WMSNs) the lifetime of battery operated visual nodes is limited by their energy consumption, which is proportional to the energy required for sensing, processing, and transmitting the data. The energy consumed in multimedia sensor nodes is much more than in the scalar sensors; a multimedia sensor captures images or acoustic signals containing a huge amount of data while in the scalar sensors a scalar value is measured (e.g., temperature). On the other hand, given the large amount of data generated by the visual nodes, both processing and transmitting image data are quite costly in terms of energy in comparison with other types of sensor networks. Accordingly, energy efficiency and prolongation of the network lifetime has become a key challenge in design and implementation of WMSNs. Clustering in sensor networks provides energy conservation, network scalability, topology stability, reducing overhead and also allows data aggregation and cooperation in data sensing and processing. Wireless Multimedia Sensor Networks (WMSNs) are characterized for directional sensing, the Field of View (FoV), in contrast to scalar sensors in which the sensing area usually is uniform and non-directional. Therefore, clustering and the other coverage-based techniques designed for WSNs, do not satisfy WMSNs. In WMSNs, sensor management policies are needed to assure balance between the opposite requirements imposed by the wireless networking and vision processing tasks. While reducing energy consumption by limiting data transmissions is the primary challenge of energy-constrained visual sensor networks, the quality of the image data and application, QoS, improve as the network provides more data. In such an environment, the optimization methods for sensor management developed for wireless sensor networks are hard to apply to multimedia sensor networks. Such sensor management policies usually employ the clustering methods which form clusters based on sensor neighbourhood or radiocoverage. But, as it was mentioned, because of the main difference between directional sensing region of multimedia sensors and the sensing range of scalar sensors, these schemes designed for WSNs, do not have efficiency for WMSNs. Moreover, sensor management strategies of WSNs do not consider the eventdriven nature of multimedia sensor networks, nor do they consider the unpredictability of data traffic caused by a monitoring procedure. This thesis, first, present a novel clustering mechanism based on the overlapping of the FoV of multimedia nodes. The proposed clustering method establishes clusters with grouping nodes that their FoVs overlap at least in a minimum threshold area. Two styles of cluster membership are offered by the mechanism depending on the desired network application; Single Cluster Membership (SCM) and Multi Cluster Membership (MCM). The name of MCM comes from the fact that a node may belong to multiple clusters, if its FoV intersects more than one cluster-head (CH) and satisfies the threshold area while in SCM each node belongs to exactly one cluster. Then, the proposed node management schemes designed for WMSNs are presented; the node selection and scheduling schemes manage the acts of the multimedia sensor nodes in a collaborative manner in clusters with employing the mentioned clustering method. Intra-Cluster Cooperation (ICC) and Intra&Inter-Cluster Cooperation (IICC) use the SCM and MCM clusters respectively. The monitoring period is optimized and the sensing region is divided among clusters and multimedia tasks are performed applying cooperation within and between clusters. The objective is conserving the residual energy of nodes to prolong the network lifetime. Finally, a hybrid architecture for WMSNs in order to energy efficient collaborative surveillance is proposed. The proposed mechanism employs a mixed random deployment of acoustic and visual sensor nodes. Acoustic sensors detect and localize the occurred event/object(s) in a duty-cycled manner by sampling the received signals and then trigger the visual sensor nodes covering the objects to monitor them. Hence, visual sensors are warily scheduled to be awakened just for monitoring the object(s) detected in their domain, otherwise they save their energy. Section B. 4 of Chapter I introduces the contributions of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
50

Askgaard, Jens Martin Breivik. "Sea Cage Gateway - A Distributed Sensor Management Network in ActorFrame." Thesis, Norwegian University of Science and Technology, Department of Telematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10139.

Full text
Abstract:

This master thesis has been written in connection with the ongoing Sea Cage Gateway (SCG) project, a project investigating the possibility of remotely administering fish farming facilities. These facilities consist of sea cages placed offshore and connected to the mainland through wireless communication technologies. The sea cages all contain a number of sensors optimizing production and increasing safety. Not only must this sensor data be read, it must also be transported, collected, interpreted, handled, saved and retrieved. In addition, it is necessary to provide backup communication links in case of failures in the main communication systems. The system should be as autonomous as possible, allowing it to be unmanned for longer periods of time. This thesis has further investigated the possibility of remotely controlling and administering a fish farm through distributed nodes over wireless communication links. As a basis for this thesis domain descriptions from previous master theses written in connection with the SCG-project have been used. This thesis has also aimed to collect inspiration from other domains and concepts which have similarities with the SCG-project. With the increasing numbers of nodes and communication links present at the fish farm installations, areas such as grid computing and sensor networks have many applicable principles for the SCG-system. These principles have been integrated into the system design to give the basis for further such functionality in the SCG-domain. In addition to the areas of grid computing and sensor networks, the current and latest wireless communication technologies available for providing the services required by the SCG-system have been presented. The communication links also influence the system design since their connection types must be handled by the SCG-system elements. The SCG-system proposed has been designed and implemented with ActorFrame. The implemented system has functioned as a demonstrator for the main principles presented in the design. It has incorporated a GPS-receiver and a GPRS-modem to represent a sensor on a sea cage and a redundant communication link. The system implemented reports GPS-data to a central unit and issues alerts upon sensor data deviations (sea cage out of position). Furthermore, the demonstrator can detect a failed communication link and switch to the backup GPRS-modem, generate alarms, and continue to provide basic services. All elements and their status are reported and registered in a database and are presented through a dynamic web interface. The demonstrator has shown that ActorFrame can be utilized to provide the necessary functionality the SCG-domain requires. A few improvements are proposed for the framework to increase the flexibility and performance of the system, especially in the area of handling the distribution of actors on independent nodes and how the heterogeneous network technologies present in SCG-system require a higher-level of network-awareness on behalf of the application. This thesis has also suggested several possible extensions and future areas of work.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography