Dissertations / Theses on the topic 'Sensor Instrumentation'

To see the other types of publications on this topic, follow the link: Sensor Instrumentation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sensor Instrumentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Abhijith, N. "Semi Conducting Metal Oxide Gas Sensors: Development And Related Instrumentation." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/281.

Full text
Abstract:
A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds. Technological developments in the recent decades have brought along with it several environmental problems and human safety issues to the fore. In today's world, therefore, sensors, which detect toxic and inflammable chemicals quickly, are necessary. Gas sensors which form a subclass of chemical sensors have found extensive applications in process control industries and environmental monitoring. The present thesis reports the attempt made in development of Zinc oxide thin film based gas sensors. ZnO is sensitive to many gases of interest like hydrocarbons, hydrogen, volatile organic compounds etc. They exhibit high sensitivity, satisfactory stability and rapid response. In the present work the developed sensors have been tested for their sensitivity for a typical volatile organic compound, acetone. An objective analysis of the various substrates namely borosilicate glass, sintered alumina and hard anodized alumina, has been performed as a part of this work. The substrates were evaluated for their electrical insulation and thermal diffusivity. The microstructure of the gas sensitive film on the above mentioned substrates was studied by SEM technique. The gas sensitive Zinc oxide film is deposited by D.C reactive magnetron sputtering technique with substrate bias arrangement. The characterization of the as-deposited film was performed by XRD, SEM and EDAX techniques to determine the variation of microstructure, crystallite size, orientation and chemical composition with substrate bias voltage. The thesis also describes the development of the gas sensor test setup, which has been used to measure the sensing characteristics of the sensor. It was observed that the ZnO sensors developed with higher bias voltages exhibited improved sensitivity to test gas of interest. Gas sensors essentially measure the concentration of gas in its vicinity. In order to determine the distribution of gas concentration in a region, it is necessary to network sensors at remote locations to a host. The host acts as a gateway to the end user to determine the distribution of gas concentration in a region. However, wireless gas sensor networks have not found widespread use because of two inherent limitations: Metal oxide gas sensors suffer from output drift over time; frequent recalibration of a number of sensors is a laborious task. The gas sensors have to be maintained at a high temperature to perform the task of gas sensing. This is power intensive operation and is not well suited for wireless sensor network. This thesis reports an exploratory study carried out on the applicability of gas sensors in wireless gas sensor network. A simple prototype sensing node has been developed using discrete electronic components. A methodology to overcome the problem of frequent calibration of the sensing nodes, to tackle the sensor drift with ageing, is presented. Finally, a preliminary attempt to develop a strategy for using gas sensor network to localize the point of gas leak is given.
APA, Harvard, Vancouver, ISO, and other styles
2

Newman, Jason. "A FIBER SENSOR INTEGRATED MONITOR FOR EMBEDDED INSTRUMENTATION SYSTEMS." International Foundation for Telemetering, 2006. http://hdl.handle.net/10150/604111.

Full text
Abstract:
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California
In this paper we will present a new fiber sensor integrated monitor (FSIM) to be used in an embedded instrumentation system (EIS). The proposed system consists of a super luminescent diode (SLD) as a broadband source, a novel high speed tunable MEMS filter with built in photodetector, and an integrated microprocessor for data aggregation, processing, and transmission. As an example, the system has been calibrated with an array of surface relief fiber Bragg gratings (SR-FBG) for high speed, high temperature monitoring. The entire system was built on a single breadboard less than 50 cm² in area.
APA, Harvard, Vancouver, ISO, and other styles
3

Araujo, Maria S., Myron L. Moodie, Greg C. Willden, Ryan J. Thibodeaux, and Ben A. Abbott. "Integrating Wireless Sensor Technologies into Instrumentation and Telemetry Systems." International Foundation for Telemetering, 2010. http://hdl.handle.net/10150/605939.

Full text
Abstract:
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California
Recent technological advancements in low-power, low-cost, small-footprint embedded processors, sensors, and radios are resulting in the very rapid growth of wireless sensor network deployments. Wireless sensor networks merge the scalability and distributed nature of networked systems with the size and energy constraints of remote embedded systems. With the ever increasing need to develop less intrusive, more scalable solutions for instrumentation systems, wireless sensor technologies present several benefits. They largely eliminate the need for power and network wiring, thus potentially reducing cost, weight, and deployment time; their modularity provides the flexibility to rapidly change instrumentation configurations and the capability to increase the coverage of an instrumentation system. While the benefits are exciting and varied, as with any emerging technology, many challenges need to be overcome before wireless sensor networks can be effectively and successfully deployed in instrumentation applications, including throughput, latency, power management, electromagnetic interference (EMI), and band utilization considerations. This paper describes some approaches to addressing these challenges and achieving a useful system.
APA, Harvard, Vancouver, ISO, and other styles
4

Seliskar, Daniel Peter. "Capacitance-based microvolume liquid-level sensor array." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100243.

Full text
Abstract:
A prototype sensor array was developed for use with laboratory automation to permit closed-loop control of liquid-levels in a multiwell microplate geometry. A simple electrical model for non-contact capacitance-based fluid sensors was extended to describe a fluid-level dependency. The new model shows that a charge-transfer based capacitance transducer employing a liquid-specific calibration can be used to obtain an output signal that varies linearly with the liquid-level when fringe-field effects are negligible. The calibration also compensates for liquid-to-liquid conductivity and permittivity differences.
The sensor was tested using sodium chloride (NaCl) and ethanol solutions to simulate the range of conductivity and permittivity typical in biological and chemical research. Measured capacitance was a second-order function of liquid volume due to fringe-field effects and was compensated for by adding a hardware-based calibration. Liquid-volume measurement error averaged 0.2% of the 120mul fill volume with a standard deviation of 0.6% (< mul). The maximum absolute error for all liquids was 2.7% (3mul).
APA, Harvard, Vancouver, ISO, and other styles
5

Faulstich, Raymond J., Lawrence W. Jr Burke, and William P. D’Amico. "HARDENED SUBMINIATURE TELEMETRY AND SENSOR SYSTEM." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/607637.

Full text
Abstract:
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California
The Army development and test community must demonstrate the functionality and reliability of gun-launched projectiles and munitions systems, especially newer smart munitions. The best method to satisfy this requirement is to combine existing optical and tracking systems data with internal data measured with on-board instrumentation (i.e. spin, pitch, and yaw measurements for standard items and terminal sensor, signal processor, and guidance/navigation system monitoring for smart munitions). Acquisition of internal data is usually limited by available space, harsh launch environments, and high associated costs. A technology development and demonstration effort is underway to provide a new generation of products for use in this high-g arena. This paper describes the goals, objectives, and progress of the Hardened Subminiature Telemetry and Sensor System (HSTSS) program.
APA, Harvard, Vancouver, ISO, and other styles
6

Silva, Diogo Fonte da. "SAW sensor validation and instrumentation for torque and temperature measurement." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22736.

Full text
Abstract:
Mestrado em Engenharia Eletrónica e Telecomunicações
The work here presented is inserted in the framework of the RTMGear Project, that has the objective of measuring several physical parameters, such as torque and temperature, directly within the rotating parts present in a power reduction gearbox. The urge of this study comes from the aircraft industry demand for systems able to perform real-time monitoring of torque in the most critical components operating inside a gearbox. However, the existing sensing technologies have limitations in terms of accuracy. There are also considerable di culties to its implementation such as space constraints and very harsh conditions which make inappropriate the use of cables and electronic devices inside the gearbox. For this e ect, sensing devices based in SAW(Surface Acoustic Waves) technology were used. This devices are microelectromechanic (MEMS) systems whose characteristics are appropriate to the harsh conditions at hand. In order to proceed with the study two mechanical set- ups have been fabricated, to support the sensors evaluation tests. The rst consisted in a static set- up designed to proceed to the calibration of the strain sensors for torque measurement. The second was a dynamic set- up designed to reach rotation speed as high as 2500 rpm and with the capability of heating the sensors application area above its operating range. This set- up accommodated tests to evaluate the e ect of speed and temperature in the uncertainty of the measurements and nally, an experiment to perform torque measurement with temperature compensation was made. Tests to evaluate the curve dependence of the SAW sensors wrt temperature and the communication link established by two special antennas designated as RF rotary Couplers, used to establish wireless connection in rotative setups were also realized. The results obtained allowed the achievement of several conclusion regarding the work done and future improvements, given that a complete study on the sensors behaviour with respect to the physical quantities being analysed was made and conclusions about the e ect of speed and temperature in the measurements are obtained. However, in order to obtain validation of the technology for gearbox instrumentation, actual torque measurements in a broader range (0 to 250 Nm) with compensation of temperature and vibration, under broader ranges of speed (up to 3000 rpm) and temperature (between -25 oC up to 85o C or more) would have to be accomplished.
O trabalho aqui apresentado está inserido no âmbito do projeto RTMGear, que visa a instrumentação e medição de grandezas físicas tais como binário e temperatura, diretamente a partir dos componentes rotativos da caixa de transmissão de testes, com a nalidade de validar a tecnologia usada para aplicação na indústria aeroespacial. A tecnologia estudada para realizar a monitorização em tempo real de tais grandezas são sensores SAW (sensores de onda acústica super cial) que se tratam de componentes microeletromecânicos (MEMS), com capacidade de medição em ambientes com condições difíceis como o que está a ser estudado. Com o objetivo de proceder ao estudo referido, dois set- ups mecânicos foram construídos e um conjunto de testes para estudar o comportamento dos sensores em tais condições foi efetuado: O primeiro, um set- up estático foi concebido para proceder à calibração dos sensores de binário para medição desta mesma grandeza, obtendo a curva de variação da sua resposta em função da gama de binário aplicada com recurso a uma máquina de testes universal. Foram ainda efetuados dois testes (um por tipo de sensor) com o intuito de obter as curvas de dependência dos sensores relativamente à temperatura. O segundo, um set- up dinâmico com capacidade de atingir rotação até próximo das 2500 rpm e com capacidade de proceder ao aquecimento da área de aplicação dos sensores até temperaturas superiores às compreendidas na sua gama de funcionamento. Neste Set- up testes para avaliar o efeito da aplicação de velocidade de rotação e temperatura no erro de medição e testes nais para apurar o binário medido com compensação do efeito da temperatura, após calibração prévia, foram efetuados. Os resultados obtidos com os procedimentos experimentais descritos permitiram retirar numerosas conclusões sobre o trabalho realizado mas são insu- cientes para validar a aplicação da tecnologia. Para tal, seriam necessários testes de medição de binário numa gama superior, com compensação de temperatura fossem realizados para valores de velocidade de rotação e temperatura signi cativamente superiores ao caso apresentado em que valores de binário foram efetivamente extraídos da realização experiemtal
APA, Harvard, Vancouver, ISO, and other styles
7

Reader, Nicole. "Delaware's first long term instrumented bridge a prototypical instrumentation and installation plan /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 156 p, 2007. http://proquest.umi.com/pqdweb?did=1338919141&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Huai-Ning. "Electrostatic Feedback for Mems Sensor : Development of in situ TEM instrumentation." Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11649.

Full text
Abstract:

This thesis work is about further developing an existing capacitive MEMS sensor for in situ TEM nanoindentation developed by Nanofactory Instrument AB. Today, this sensor uses a parallel plate capacitor suspended by springs to measure the applied force. The forces are in the micro Newton range. One major issue using with this measurement technique is that the tip mounted on one of the sensor plates can move out of the TEM image when a force is applied. In order to improve the measurement technique electrostatic feedback has been investigated. The sensor’s electrostatic properties have been evaluated using Capacitance-Voltage measurements and a white light interferometer has been used to directly measure the displacement of the sensor with varying voltage. Investigation of the sensor is described with analytical models with detailed treatment of the capacitive response as function of electrostatic actuation. The model has been tested and refined by using experimental data. The model showed the existence of a serial capacitor in the sensor. Moreover, a feedback loop was tested, by using small beads as load and by manually adjusting the voltage. With the success of controlling the feedback loop manually, it is shown that the idea is feasible, but some modifications and improvements are needed to perform it more smoothly.

APA, Harvard, Vancouver, ISO, and other styles
9

Ask, Eric A. (Eric Andrew). "Instrumentation of a sensor for small part inspection using laswer fluorescence." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kupferschmidt, Benjamin. "INTEGRATING ENGINEERING UNIT CONVERSIONS AND SENSOR CALIBRATION INTO INSTRUMENTATION SETUP SOFTWARE." International Foundation for Telemetering, 2007. http://hdl.handle.net/10150/604520.

Full text
Abstract:
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada
Historically, different aspects of the configuration of an airborne instrumentation system were specified in a variety of different software applications. Instrumentation setup software handled the definition of measurements and PCM Formats while separate applications handled pre-flight checkout, calibration and post-flight data analysis. This led to the manual entry of the same data multiple times. Industry standards such as TMATS strive to address this problem by creating a data-interchange format for passing setup information from one application to another. However, a better alternative is to input all of the relevant setup information about the sensor and the measurement when it is initially created in the instrumentation vendor’s software. Furthermore, an additional performance enhancement can be achieved by adding the ability to perform sensor calibration and engineering unit conversions to pre-flight data visualization software that is tightly coupled with the instrumentation setup software. All of the setup information can then be transferred to the ground station for post-flight processing and data reduction. Detailed reports can also be generated for each measurement. This paper describes the flow of data through an integrated airborne instrumentation setup application that allows sensors and measurements to be defined, acquired, calibrated and converted from raw counts to engineering units. The process of performing a sensor calibration, configuring engineering unit conversions, and importing calibration and transducer data sheets will also be discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Freeborn, Scott Stuart. "Pulsed laser photoacoustic instrumentation for the monitoring of crude oil in produced water." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/1241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

MONK, DAVID JAMES. "DEVELOPMENT OF A REMOTE SPECTROELECTROCHEMICAL SENSOR FOR TECHNETIUM AS PERTECHNETATE." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1052761078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liao, FengTing. "Development of xenon level instrumentation for the LZ dark matter detector." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:271ab287-bd35-40b9-ba56-be662f9aad35.

Full text
Abstract:
Galactical and cosmological evidence show that a quarter of the energy budget of our universe is made of collisionless, non-relativistic, and non-baryonic dark matter. Its potential coupling to standard model particles, however, has not yet been understood. One of the leading candidates - Weakly Interacting Massive Particles (WIMP) - allows the production of a dark matter relic density as observed today and couples to standard model particles at or below the weak scale. LUX-ZEPLIN (LZ) is a future tonne-scale two-phase xenon TPC aiming to detect WIMP recoils with xenon nuclei. The experiment will begin WIMP search data-taking in 2020 at the Sanford Underground Research Facility (SURF) in Lead, South Dakota and has a projected sensitivity of 3 × 10-48 cm2 or better in probing a 40 GeV/c2 WIMP. The main observables of particle interactions in LZ are the primary scintillation (S1) and secondary scintillation (S2). However, optimising and achieving a stable S2 signal in such a tonne-scale TPC is non-trivial. Effects from the structural design of the S2 production region (top-corner structure), TPC tilt, and the xenon circulation system requires precise monitoring of the liquid surface. Such monitoring is achieved by the capacitive liquid level sensors developed within this thesis. The sensors are strategically placed to ensure that nonuniformity of the S2 signal due to the effects can be understood and corrected. In this thesis, the development of a monitoring system designed to optimise the quality of the S2 signal, based on the capacitive level sensors is discussed. A design of the electronics scheme based on a differential measurement allows femtofarad precision measurement of sensor's capacitance at picofarad level, even in the presence of cable capacitance at nanofarad level. A systematic study of the response of such a sensor to LXe and the application of the precision level sensors to two-phase TPC was carried out. Findings of intrinsic influences from LXe artefacts and LXe dielectric constant variation with its saturated temperature are identified; the result on the application of the sensors contributes to the designs of LZ circulation and the top-corner region. The final LZ level sensors show an artefact-free liquid level measurement and a 12 μm precision in measuring liquid nitrogen level (projection for LXe: ∼ 9 μm) over a 20 mm measurement range.
APA, Harvard, Vancouver, ISO, and other styles
14

Darr, Timothy, Ronald Fernandes, Michael Graul, John Hamilton, and Charles H. Jones. "Automated Configuration and Validation of Instrumentation Networks." International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606234.

Full text
Abstract:
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California
This paper describes the design and implementation of a test instrumentation network configuration and verification system. Given a multivendor instrument part catalog that contains sensor, actuator, transducer and other instrument data; user requirements (including desired measurement functions) and technical specifications; the instrumentation network configurator will select and connect instruments from the catalog that meet the requirements and technical specifications. The instrumentation network configurator will enable the goal of mixing and matching hardware from multiple vendors to develop robust solutions and to reduce the total cost of ownership for creating and maintaining test instrumentation networks.
APA, Harvard, Vancouver, ISO, and other styles
15

Delezoide, Camille. "Polymer microring resonators for optofluidic evanescent field sensors." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00846193.

Full text
Abstract:
Optofluidic evanescent field sensing, especially microresonator-based label-free biochemical sensing, is an emerging technology under intensive study. In this context, we demonstrate that polymeric microring resonators are excellent transducers. It is partly due to the simplicity and cost-efficiency of their fabrication and integration, and also to their robustness: a fast, repeatable and low-cost method was developed to fabricate devices with long lifetimes and state-of-the-art performances. A second advantage is the extreme sensitivity achievable to grafted molecules: a detectable signal was obtained with only a few hundreds of 5-TAMRA-cadaverine (5-TC) molecules, relatively small as compared to nucleic acids, antibodies and other biomolecules. The surface immobilization of 5-TC molecules was achieved after a simple and reproducible UV/ozone procedure for surface preparation. However, the qualities of polymer microring resonators only become apparent when coupled to high-precision instrumentation. In that respect, a measuring instrument was built to detect minute and real-time variations of the optical resonances, and thus in an optofluidic regime. The detection of absorption and desorption of 5-TC molecules on a surface functionalized with its antibody was achieved. However, truly specific responses of the instrument would only be achieved in a multiplexed configuration. Such configuration is achievable, but has yet to be developed. Meanwhile, the measuring instrument, as is, can be used for a wide variety of applications, from the measurement of dispersion coefficients to the study of local thermal effects.
APA, Harvard, Vancouver, ISO, and other styles
16

Don, Michael, and Tom Harkins. "Achieving High Resolution Measurements Within Limited Bandwidth Via Sensor Data Compression." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581447.

Full text
Abstract:
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California
The U.S. Army Research Laboratory (ARL) is developing an onboard instrument and telemetry system to obtain measurements of the 30mm MK310 projectile's in-flight dynamics. The small size, high launch acceleration, and extremely high rates of this projectile create many design challenges. Particularly challenging is the high spin rate which can reach 1400 Hz at launch. The bandwidth required to continuously transmit solar data using the current method for such a rate would leave no room for data from other sensors. To solve this problem, a data compression scheme is implemented that retains the resolution of the solar sensor data while providing room in the telemetry frame for other measurements.
APA, Harvard, Vancouver, ISO, and other styles
17

Ayranci, Cagri. "Development and testing of a Long Gage Strain (LGS) sensor for concrete structure instrumentation." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26844.

Full text
Abstract:
Reinforced Concrete (RC) is the most commonly used structural material in civil engineering applications. RC structures have long term service lives under normal loading conditions; however, overload due to misuse or statistically remote events such as earthquakes may create damages that, if not detected on time, may eventually cause failure. Hence, it is important to monitor RC structures to take necessary precautions and save human lives. A L&barbelow;ong G&barbelow;age S&barbelow;train (LGS) sensor has been developed to monitor these structures. While it has been developed with concrete applications in mind, the new sensor can be used in a variety of applications, including measuring strains in pipelines, steel structures, and the like. The proposed sensor system has very low cost compared to the commercially available competing systems. Prototypes of the proposed strain sensors have been built and tested to calibrate the sensors and to prove their accuracy, repeatability, and to assess their reliability prior to in-situ concrete experiments. In-situ tests of the proposed sensors embedded into a reinforced concrete beam have been carried out. The steel rebars in the beam are also instrumented with commercial short gage length strain gages in order to compare the strain outputs of the strain gages to that of the proposed strain sensor. Results prove the accuracy, and reliability of the proposed strain sensor.
APA, Harvard, Vancouver, ISO, and other styles
18

Oh, Ki Dong. "Optical Fiber Fabry-Perot Interferometer based Sensor Instrumentation System for Low Magnetic Field Measurement." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29687.

Full text
Abstract:
This dissertation proposes a miniaturized optical fiber based sensor system for the measurement of 3-dimensional vector magnetic fields. The operation of the sensor system is based on the detection of magnetostrictive dimensional changes in the sensor gage using a modified extrinsic Fabry-Perot Interferometer configuration. Because of the magnetostrictive reflector the gap length depends on the magnetic fields applied to the sensor. Since the diameter of the magnetostrictive sensor gage is 125 micrometer which is the same as that of the input/output fiber, the sensor is simply constructed by inserting the sensor gage and the input/output fiber into a small glass tube. The glass tube serves as both an aligner for the sensor gage and input/out fiber, and a passive temperature compensator. In addition, it also enhances the mechanical strength and compactness of the sensor. This sensor design shows 98 percent suppression of the thermally induced sensor output changes. The linear output of the sensor system is enhanced by transverse field annealing which increases magnetostrictive induction in the ferromagnetic sensor gage material and controls the sensor gage geometry. A 5-times increase in sensor sensitivity is obtained with the transverse field annealing and the use of a new magnetostrictive material. A modified sensor gage endface demonstrates 92 percent of fringe visibility, which further improves the performance of the interferometer. The signal fading in the interferometric sensors at the peak or bottom of a fringe is reduced by using a quadrature signal demodulation method. The system has been shown to have a resolution better than 100 nT over a measurement range from 100 to 40,000 nT. This research is supported financially by the Phillips Laboratory of the U.S. Air Force.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
19

JACOBS, JOHN DAVID. "HYPERSPECTRAL PLANNER INSTRUMENTATION FOR PRODUCT GOAL SYNTHESIS IN MATERIAL PROCESS CONTROL." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin995300151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ferreira, Gonzalez Javier. "Textile-enabled Bioimpedance Instrumentation for Personalised Health Monitoring Applications." Licentiate thesis, KTH, Medicinska sensorer, signaler och system (MSSS), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120373.

Full text
Abstract:
A growing number of factors, including the costs, technological advancements, an ageing population, and medical errors are leading industrialised countries to invest in research on alternative solutions to improving their health care systems and increasing patients’ life quality. Personal Health System (PHS) solutions envision the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centred healthcare delivery model toward a preventive and person-centred approach. PHS offers the means to follow patient health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive bio-data acquisition, allowing remote access to patient status and treatment monitoring. Electrical Bioimpedance (EBI) technology is a non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. EBI technology combined with state-of-the-art advances in sensor and textile technology are fostering the implementation of wearable bioimpedance monitors that use functional garments for the implementation of personalised healthcare applications. This research studies the development of a portable EBI spectrometer that can use dry textile electrodes for the assessment of body composition for the purposes of clinical uses. The portable bioimpedance monitor has been developed using the latest advances in system-on-chip technology for bioimpedance spectroscopy instrumentation. The obtained portable spectrometer has been validated against commercial spectrometer that performs total body composition assessment using functional textrode garments. The development of a portable Bioimpedance spectrometer using functional garments and dry textile electrodes for body composition assessment has been shown to be a feasible option. The availability of such measurement systems bring closer the real implementation of personalised healthcare systems.

QC 20130405

APA, Harvard, Vancouver, ISO, and other styles
21

Pleiman, Brock Joseph. "Calibration of a Flow Angularity Probe with a Real-Time Pressure Sensor." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1568119292467936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Davis, Bradford S., and T. Gordon Brown. "COMBINING SENSORS WITH AIRBORNE TELEMETRY INSTRUMENTATION TO MAKE RANGE MEASUREMENTS AND OBTAIN AERODYNAMICS." International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/608710.

Full text
Abstract:
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada
Obtaining a projectile’s free-flight motion profile and its aerodynamic coefficients is typically accomplished at indoor test ranges using photographic techniques synchronized to timing stations. Since these ranges are relatively short, many discrete tests are necessary to compile a complete understanding of the projectile’s behavior. When Time Space Position Information (TSPI) is requested over long-range flights, it has been gathered with expensive video, laser, and radar trackers. These can be inaccurate at times and are limited to locations where the range equipment is able to track the projectile’s entire flight. With the ever-increasing sophistication of ordnance, such as smart and competent munitions that have multi-stage thrusting and maneuvering capability, it is becoming increasingly difficult to make the necessary measurements using current measurement techniques. Microelectromechanical Systems (MEMS) sensors and other electro-optical and magnetic sensors referenced to the sun and earth allow the projectile’s angular rates (spin, pitch, and yaw) and accelerations (axial and radial) to be measured throughout the flight. These sensors have been packaged into miniaturized telemetry instrumentation systems and placed within empty voids of the munition or in place of the fuze or warhead section. By combining this sensor data with a 6-DOF trajectory code, many of the projectiles aerodynamic coefficients including drag, static moment, and damping moment over a large Mach Number range and over multiple flight paths have been obtained. These techniques decrease the number of test shots required, reduce the complexity of the test setup, and reduce the test costs. Test data from instrumented tank, artillery, and rocket flight tests are presented in this report to show the current capability of making inflight measurements using telemetry-based techniques.
APA, Harvard, Vancouver, ISO, and other styles
23

Santos, Jesulino Bispo dos. "Sensor de frente de onda para uso oftalmológico." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-03122004-124215/.

Full text
Abstract:
Este trabalho descreve os passos envolvidos no desenvolvimento de um protótipo de aberroscópio para uso oftalmológico. Este instrumento faz incidir no fundo do olho humano um feixe luminoso de baixa potência e amostra, por meio do método de Hartmann, as frentes de onda da luz espalhada. A partir dos dados coletados, a forma das frentes de onda são reconstituídas e as aberrações eventualmente existentes no olho são calculadas e representadas por intermédio dos polinômios de Zernike. Aqui são expostos os fundamentos deste método, algumas das suas propriedades e limitações. Também é mostrada a caracterização funcional do protótipo desenvolvido, testando-o com elementos ópticos de propriedades conhecidas
This work describes the steps involved in the aberroscope prototype development for ophthalmological use. This instrument injects inside the human eye a low power light beam and sample, by Hartmann method, the wavefronts produced by ocular fundus light scattering. From collected data, the wavefront shape is reconstructed and the eye aberrations that eventually existent are calculated and adjusted by Zernike polynomials. Are discussed the method foundations, some of properties and limitations. Also the functional characterization of the developed prototype is shown, by testing it with optical elements of known properties
APA, Harvard, Vancouver, ISO, and other styles
24

Earp, Brian Edward. "Convective Heat Flux Sensor Validation, Qualification and Integration in Test Articles." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77171.

Full text
Abstract:
The purpose of this study is to quantify the effects of heat flux sensor design and interaction with both test article material choice and geometry on heat flux measurements. It is the public domain component of a larger study documenting issues inherent in heat flux measurement. Direct and indirect heat flux measurement techniques were tested in three thermally diverse model materials at the same Mach 6 test condition, with a total pressure of 1200 psi and total temperature of 1188° R, and compared to the steady analytic Fay-Riddell solution for the stagnation heat flux on a hemisphere. A 1/8 in. fast response Schmidt-Boelter gage and a 1/16 in. Coaxial thermocouple mounted in ¾ in. diameter stainless steel, MACOR, and Graphite hemispheres were chosen as the test articles for this study. An inverse heat flux calculation was performed using the coaxial thermocouple temperature data for comparison with the Schmidt-Boelter gage. Before wind tunnel testing, the model/sensor combinations were tested in a radiative heat flux calibration rig at known static and dynamic heat fluxes from 1 to 20 BTU/ft2/s. During wind tunnel testing, the chosen conditions yielded stagnation point convective heat flux of 15-60 BTU/ft2/s, depending on the stagnation point wall temperature of the model. A computational fluid dynamic study with conjugate heat transfer was also undertaken to further study the complex mechanisms at work. The overall study yielded complex results that prove classic methodology for inverse heat flux calculation and direct heat flux measurement require more knowledge of the thermal environment than a simple match of material properties. Internal and external model geometry, spatial and temporal variations of the heat flux, and the level of thermal contact between the sensor and the test article can all result in a calculated or measured heat flux that is not correct even with a thermally matched sensor. The results of this study supported the conclusions of many previous studies but also examined the complex physics involved across heat flux measurement techniques using new tools, and some general guidance for heat flux sensor design and use, and suggestions for further research are provided.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
25

Meritt, Ryan James. "Skin Friction Sensor Design Methodology and Validation for High-Speed, High-Enthalpy Flow Applications." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54569.

Full text
Abstract:
This investigation concerns the design, build, and testing of a new class of skin friction sensor capable of performing favorably in high-speed, high-enthalpy flow conditions, such as that found in atmospheric re-entry vehicles, scramjets, jet engines, material testing, and industrial processes. Fully understanding and optimizing these complex flows requires an understanding of aerodynamic properties at high enthalpies, which, in turn, requires numerical and analytical modeling as well as reliable diagnostic instrumentation. Skin friction is a key quantity in assessing the overall flight and engine performance, and also plays an important role in identifying and correcting problem areas. The sensor design is founded on a direct-measuring, cantilever arrangement. The design incorporates two fundamental types of materials in regards to thermal conductivity and voltage resistivity properties. The non-conducting material distinction greatly deters the effect of heat soak and prevents EMI transmission throughout the sensor. Four custom fabricated metal-foil strain gauges are arranged in a Wheatstone bridge configuration to increase sensitivity and to provide further compensation for sensitivity effects. The sensor is actively cooled via a copper water channel to minimize the temperature gradient across the electronic systems. The design offers a unique immunity to many of the interfering influences found in complex, high-speed, high-enthalpy flows that would otherwise overshadow the desired wall shear measurement. The need to develop an encompassing design methodology was recognized and became a principal focus of this research effort. The sensor design was developed through a refined, multi-disciplinary approach. Concepts were matured through an extensive and iterative program of evolving key performance parameters. Extensive use of finite element analysis (FEA) was critical to the design and analysis of the sensor. A software package was developed to utilize the powerful advantage of FEA methods and optimization techniques over the traditional trial and error methods. Each sensor endured a thorough series of calibrations designed to systematically evaluate individual aspects of its functionality in static, dynamic, pressure, and thermal responses. Bench-test facilities at Virginia Tech (VT) and Air Force Research Laboratory (AFRL) further characterized the design vibrational effects and electromagnetic interference countermeasure effectiveness. Through iterations of past designs, sources of error have been identified, controlled, and minimized. The total uncertainty of the skin friction sensor measurement capability was determined to be ±8.7% at 95% confidence and remained fairly independent of each test facility. A rigorous, multi-step approach was developed to systematically test the skin friction sensor in various facilities, where flow enthalpy and run duration were progressively increased. Initial validation testing was conducted at the VT Hypersonic Tunnel. Testing at AFRL was first performed in the RC-19 facility under high-temperature, mixing flow conditions. Final testing was conducted under simulated scramjet flight conditions in the AFRL RC-18 facility. Performance of the skin friction sensors was thoroughly analyzed across all three facilities. The flow stagnation enthalpies upward of 1053 kJ/kg (453 Btu/lbm) were tested. A nominal Mach 2.0 to 3.0 flow speed range was studied and stagnation pressure ranged from 172 to 995 kPa (25 to 144 psia). Wall shear was measured between 94 and 750 Pa (1.96 and 15.7 psf). Multiple entries were conducted at each condition with good repeatability at ±5% variation. The sensor was also able to clearly indicate the transient flow conditions of a full scramjet combustion operability cycle to include shock train movement and backflow along the isolator wall. The measured experimental wall shear data demonstrated good agreement with simple, flat-plate analytical estimations and historic data (where available). Numerical CFD predictions of the scramjet flow path gave favorable results for steady cold and hot flow conditions, but had to be refined to handle the various fueling injection schemes with burning in the downstream combustor and surface roughness models. In comparing CFD wall shear predictions to the experimental measurements, in a few cases, the sensor measurement was adversely affected by shock and complex flow interaction. This made comparisons difficult for these cases. The sensor maintained full functionality under sustained high-enthalpy conditions. No degradation in performance was noted over the course of the tests. This dissertation research and development program has proven successful in advancing the development of a skin friction sensor for applications in high-speed, high-enthalpy flows. The sensor was systematically tested in relevant, high-fidelity laboratory environments to demonstrate its technology readiness and to successfully achieve a technology readiness level (TRL) 6 milestone. The instrumentation technology is currently being transitioned from laboratory development to the end users in the hypersonic test community.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
26

Shepherd, Richard Stephen. "Thin film sensor techniques for the instrumentation of ceramic/metal interfaces in next generation aero gas turbines." Thesis, University of Salford, 1999. http://usir.salford.ac.uk/14761/.

Full text
Abstract:
The growth of thrust and improved aeroengine efficiency has been gained by increased temperatures throughout the engine. This has been achieved by improved material technology and the continuous cooling of components complemented by the addition of thermal barrier coatings (TBC) to turbine and combustion chamber components. The aggressive nature of the application process of the TBC has previously made the measurement of metal surface temperature and strain exceedingly difficult on components to which it is applied. In the present study magnetron sputter-deposited thin film sensor techniques have been developed specifically for compressor and turbine applications of noble metal thermocouples and strain gauges. The deposition, patterning and evaluation of reactively sputtered aluminium oxide, type R platinum thermocouples as well as PdCr and PtW dynamic strain gauges is reported. A sputtered NiCoCrAlY coating has been developed to replace the vacuum plasma spray process currently used in the TBC system. The most favourable location for the thin film sensor is at the metal/ceramic interface of the TBC system. However, in order to protect the sensor from the aggressive TBC process, the sensor has been deposited in a novel installation between two layers of NiCoCrAlY bond coat. Several trials have been performed to fabricate this package on turbine blade material substrates. This work has demonstrated that the proposed sensor structure is feasible. However there are problems with delamination due to contamination and residual stress and with poor electrical insulation and these have limited the high temperature testing that could be performed. The novel techniques developed are already being utilised in measurement applications on components without TBCs. This work has been performed in an industrial context. The extensive project and risk management activities are reported.
APA, Harvard, Vancouver, ISO, and other styles
27

Griffiths, Alan David, and alan griffiths@anu edu au. "Development and demonstration of a diode laser sensor for a scramjet combustor." The Australian National University. Faculty of Science, 2005. http://thesis.anu.edu.au./public/adt-ANU20051114.132736.

Full text
Abstract:
Hypersonic vehicles, based on scramjet engines, have the potential to deliver inexpensive access to space when compared with rocket propulsion. The technology, however, is in its infancy and there is still much to be learned from fundamental studies.¶ Flows that represent the conditions inside a scramjet engine can be generated in ground tests using a free-piston shock tunnel and a combustor model. These facilities provide a convenient location for fundamental studies and principles learned during ground tests can be applied to the design of a full-scale vehicle.¶ A wide range of diagnostics have been used for studying scramjet flows, including surface measurements and optical visualisation techniques.¶ The aim of this work is to test the effectiveness of tunable diode laser absorption spectroscopy (TDLAS) as a scramjet diagnostic.¶ TDLAS utilises the spectrally narrow emission from a diode laser to probe individual absorption lines of a target species. By varying the diode laser injection current, the laser emission wavelength can be scanned to rapidly obtain a profile of the spectral line. TDLAS has been used previously for gas-dynamic sensing applications and, in the configuration used in this work, is sensitive to temperature and water vapour concentration.¶ The design of the sensor was guided by previous work. It incorporated aspects of designs that were considered to be well suited to the present application. Aspects of the design which were guided by the literature included the laser emission wavelength, the use of fibre optics and the detector used. The laser emission wavelength was near 1390 nm to coincide with relatively strong water vapour transitions. This wavelength allowed the use of telecommunications optical fibre and components for light delivery. Detection used a dual-beam, noise cancelling detector.¶ The sensor was validated before deployment in a low-pressure test cell and a hydrogen–air flame. Temperature and water concentration measurements were verified to within 5% up to 1550 K. Verification accuracy was limited by non-uniformity along the beam path during flame measurements.¶ Measurements were made in a scramjet combustor operating in a flow generated by the T3 shock tunnel at the Australian National University. Within the scramjet combustor, hydrogen was injected into a flame-holding cavity and the sensor was operated downstream in the expanded, supersonic, post-combustion flow. The sensor was operated at a maximum repetition rate of 20 kHz and could resolve variation in temperature and water concentration over the 3ms running time of the facility.¶ Results were repeatable and the measurement uncertainty was smaller than the turbulent fluctuations in the flow. The scramjet was operated at two fuel-lean equivalence ratios and the sensor was able to show differences between the two operating conditions. In addition, vertical traversal of the sensor revealed variation in flow conditions across the scramjet duct.¶ The effectiveness of the diagnostic was tested by comparing results with those from other measurement techniques, in particular pressure and OH fluorescence measurements, as well as comparison with computational simulation.¶ Combustion was noted at both of the tested operating conditions in data from all three measurement techniques.¶ Computation simulation of the scramjet flow significantly under-predicted the water vapour concentration. The discrepancy between experiments and simulation was not apparent in either the pressure measurements or the OH fluorescence, but was clear in the diode laser results.¶ The diode laser sensor, therefore, was able to produce quantitative results which were useful for comparison with a CFD model of the scramjet and were complimentary to information provided by other diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
28

Duarte, Luís Fernando Caparroz 1980. "Sistema automatizado georreferenciado sem fio para irrigação localizada auxiliado por sensor de unidade do solo." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261378.

Full text
Abstract:
Orientador: Elnatan Chagas Ferreira
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-16T03:41:59Z (GMT). No. of bitstreams: 1 Duarte_LuisFernandoCaparroz_M.pdf: 22217268 bytes, checksum: 70f7c5dbf0e7a70f46654592aa364159 (MD5) Previous issue date: 2010
Resumo: A preocupação com o futuro dos recursos hídricos e o valor agregado dos produtos da agricultura de precisão leva os produtores agrícolas a procurarem formas mais inteligentes e precisas do manejo da água. Neste trabalho apresenta-se uma proposta de um sistema automatizado georreferenciado de irrigação localizada baseado em leitura de sensor de umidade do solo, que visa baixo custo e é independente de uma rede de comunicações atuante em tempo integral ou de uma central de processamento. Neste trabalho foi desenvolvido um Módulo de Irrigação Localizada Inteligente, que atua de acordo com o processamento das informações obtidas pelo sensor de umidade do solo. Também foram desenvolvidos um Módulo Programador responsável pela entrada dos dados e programação dos módulos de irrigação e um Módulo Acionador para Bombas d'Água, que liga e desliga a bomba d'água de acordo com a programação dos módulos de irrigação. Os módulos, que atuam de forma independente, são programados por comunicação sem fio, baseada no SimpliciTI, um protocolo de comunicação sem fio de código aberto da Texas Instruments.
Abstract: Concerns about the future of the water resources and the value of precision agriculture products takes the farmers to look for more intelligent and precise ways to manage the water. This work presents a proposal of an automated georeferenced localized irrigation system aided by soil moisture sensor, that aims for low cost and is independent of a sensor network or a processing central. In this work it was developed an Intelligent Localized Irrigation Module, that actuates according to the informations acquired by the soil moisture sensor. It was also developed a Programming Module, responsible for the data entry and the irrigation modules programming and a Water Bomb Actuator Module, that turns on and off the water bomb according to the irrigation modules program. The independent working modules are programmed wirelessly, based on SimpliciTI, an open source wireless protocol from Texas Instruments.
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
29

Yusifli, Elmar. "Développement d'une instrumentation embarquée pour le contrôle de dermes équivalents en culture." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD020.

Full text
Abstract:
La peau est un organe capable de se régénérer et de cicatriser. Elle constitue la première barrière de protection de notre organisme contre les agressions physico-chimiques extérieures. Depuis plusieurs décennies des recherches ont été menées pour maîtriser la culture du derme pour plusieurs applications telles que la greffe des grands brulés. L’aspect technologique de ce domaine a fait l’objet de plusieurs travaux. Dans les années 2000, l'équipe de notre laboratoire a proposé la méthode de culture du derme associée à des microsystèmes en silicium. C’est l’unique méthode actuelle qui permet la mesure des forces isométrique du derme équivalent lors de sa culture.Dans une première étude, nous avons proposé des nouvelles méthodes de mesure des forces isométriques qui s’exercent dans des peaux reconstruites en culture entre deux lames de silicium afin de fabriquer un bio-dispositif miniaturisé à faible coût. Ainsi, les dimensions optimales ont été calculées et des nouvelles lames ont été fabriquées. L’optimisation que nous avons retenue est relative à l’amélioration de la sensibilité de la mesure des forces. Afin de quantifier le fléchissement de lames due aux forces isométriques appliquées par le derme en culture, nous avons opté pour la mesure des déplacements des lames sous l’effets des forces isométriques, à l’aide d’ondes acoustiques de surface (SAW). Ce choix se justifie par la simplicité de l’intégration des transducteurs interdigités qui génèrent les ondes acoustiques, de la possibilité d’utiliser une interrogation sans fils et la réalisation physique de l’intercorrélation des ondes générées.A l’aide de simulation nous avons identifié les déformations des ondes et les écarts de fréquence qu’elles provoquent. En effet, la dissymétrie de la courbe d’intercorrélation des signaux transmis et reçus, par les transducteurs interdigités, est intiment liée à l’écart de fréquence de l’onde reçue. Nous avons démontré que le fléchissement engendre bien la dissymétrie dans l’axe du temps qui peut être mesurée plus précisément dans les limites d‘échantillonnage. Deux démonstrateurs sont modélisés et fabriqués dans la salle blanche afin de valider l’instrumentation et le principe de transduction d’un signal chirpé avec une onde acoustique de surface. Les résultats obtenus montrent que la méthode de mesure à l’aide d’une onde acoustique nous permet de faire de mesure de force mais dans une gamme d’intensité plus élevée que celle attendue. Par la suite, nous avons étudié la méthode de mesure de forces par les capteurs à base de piézorésistances. Sachant que la technique est basée sur la variation de résistivité du matériau déformé, nous avons décidé de replacer les grilles de lame prévue pour l’accrochage du derme en culture par le matériau piézorésistif implanté sur les micro poutres. Afin d’améliorer la résolution de détection de faibles forces une série de calcul et de simulations de la position et les dimensions du matériau piézorésistif et des micropoutres sont effectués et présentés. Une autre étude que nous avons menée en parallèle concerne le développement d’une instrumentation embarquée permettant de suivre la croissance du derme en culture basé sur un système de vision. Vu les conditions strictes de notre cahier de charges qui exigeait la portabilité et l’autonomie de système final, nous avons prévu le développement d’un système de vision embarqué basé sur un module de caméra et une carte FPGA. La caméra à haute définition montée sur le système de boite de culture finale avec un objectif permet de prendre des images de fluorescences des cellules en culture
The skin is an organ which can regenerate and heal. It is the first shield of protection of our body against external physico-chemical aggression. For several decades, researches have been conducted to control the dermis culture for several applications such as grafting large burns. The technological aspect of this area has been the subject of several works. In the 2000s, the team of our laboratory proposed the dermis culture method associated with silicon microsystems. This is the only current method that allows the measurement of isometric forces of the equivalent dermis during its culture.In a first stage of study, in order to produce a miniaturized and low-cost bio-device, we proposed new methods to measure isometric forces in reconstructed skins in culture between two silicon beams. Thus, the optimal dimensions were calculated and new beams were fabricated. The chosen optimization is related to improve the sensitivity of the force measurement. To quantify the deflection of the beams due to the isometric forces applied by the dermis in culture, we opted for the measurement of the displacements of the beams under the influence of the isometric forces by using surface acoustic waves (SAW). This choice is justified by the simplicity of the integration of the interdigital transducers (IDT) that generate the SAW, the possibility of using a wireless interrogation and the physical realization of the cross-correlation of the generated waves.Using simulation, we have identified the frequency deviations caused by wave deformations. Indeed, the dissymmetry of the cross-correlation curve of the signals generated and received by IDT is closely related to the frequency deviation of the received wave. We have evidenced that the beam deflection generates the dissymmetry in the time axis which can be measured more precisely within the limits of sampling. Two demonstrators were designed and manufactured in the clean room to validate the instrumentation and the principle of transducing a chirped signal with a SAW. The obtained results show that the proposed SAW-based force measuring method allows us to measure force, but in a higher intensity range than expected. Subsequently, we studied the method of force measurement by piezoresistors. Considering that the technique is based on the variation of resistivity of the deformed material, we decided to replace the silicon grids provided for the attachment of the dermis in culture by the piezoresistive material implanted on the silicon micro-beams. To improve the low-resolution detection, a series of calculations and simulations of the positions and the dimensions of the piezoresistive material and the micro-beams have been carried out and presented. Another study that we conducted in parallel concerns the development of an on-board instrumentation to monitor the growth of the dermis in culture based on a vision system. Considering of the strict conditions of our specifications that required the portability and autonomy of the final system, we developed an embedded vision system based on a camera module and a FPGA card. The high definition camera mounted on the system of final culture box with a lens allows to take fluorescence images of cells in culture
APA, Harvard, Vancouver, ISO, and other styles
30

Canu, Antoine. "Conversion Analogique / Numérique versatile dans un environnement avionique contraint." Thesis, Supélec, 2013. http://www.theses.fr/2013SUPL0004/document.

Full text
Abstract:
Les systèmes électroniques embarqués à bord des aéronefs rassemblent des informations sur l’environnement qui les entourent au moyen de différents types de capteurs. À l’heure actuelle, l’acquisition des signaux générés par ces capteurs se fait au moyen de circuits électroniques d’interfaçage dédiés à un type de capteur en particulier, ce qui limite les possibilités d’évolution des calculateurs de bord.Nos travaux visent à remplacer ces circuits d’interfaçage par une interface dite versatile, capable de faire l’acquisition de signaux issus de différents types de capteurs. L’environnement dans lequel les systèmes avioniques sont amenés à fonctionner est particulièrement difficile, notamment par la présence de modes communs parasites importants, supérieures à plusieurs dizaines de volts. Après une exploration détaillée de cet environnement, nous proposons une architecture d’interface versatile, basée sur un ASIC mixte et un FPGA. L’ASIC est chargé du conditionnement analogique des signaux et de leur conversion dans le domaine numérique, et peut-être configuré à plusieurs niveaux (gains, offsets, impédances...). Le FPGA comprend les différents traitements numériques nécessaires à l’extraction de l’information contenue dans les signaux. Nous proposons de plus une méthode mixte permettant de corriger les imprécisions analogiques, telles que les défauts d’appairage, souvent critiques dans l’acquisition de signaux différentiels. Un circuit de test a été réalisé dans une technologie CMOS High Voltage 0.35µm afin de valider les différents principes proposés dans nos travaux
Avionic embedded systems sense their environment through the use of various sensors. Currently, the electrical signals generated by these sensors are acquired by dedicated interface circuits, which limits the functionalities that can be implemented in the computer and slows down their evolution.Our work aims at replacing these interfacing circuits by a more flexible interface, called versatile interface, which has the ability to acquire different kind of signals. Avionic embedded systems usually operate in a pretty harsh environment, in which important common mode voltages of more than thirty volts can superimpose to useful signals. After a thorough exploration of this environment and its specifities, we propose an architecture of the versatile interface, based on a mixed signal ASIC and a FPGA. The ASIC includes a programmable analog signal conditioning stage which is able to withstand the high voltages present in the harsh avionic environment. The FPGA processes the different signals and extract the useful information from them. We also propose method which allows to correct the analog imprecisions due to mismatch or temperature drifts. This method uses analog and digital processing, and allow our versatile interface to be immune to process or temperature variations. A test circuit has been realized in a high voltage 0.35µm CMOS technology, in order to validate the different principles that we propose in this work
APA, Harvard, Vancouver, ISO, and other styles
31

Hart, Alan D. "THE APPLICATION OF HARDENED CRYSTAL REFERENCE OSCILLATORS INTO THE HARDENED SUBMINIATURE TELEMETRY AND SENSOR SYSTEM (HSTSS) PROGRAM." International Foundation for Telemetering, 1999. http://hdl.handle.net/10150/608741.

Full text
Abstract:
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada
This paper briefly reports on concepts for hardening (physically toughening) crystal reference oscillators for the highly integrated program known as HSTSS. Within the HSTSS program is the L & S band transmitter development contract. The harshest requirements for this contract are surviving and functioning, to within 20 ppm of its center frequency, 30 ms after sustaining a shock pulse of 100,000 (g) for 0.5 ms on any axis. Additional requirements call for the transmitter to be no larger than 0.2 in3, and to operate within a 20 ppm frequency stability throughout the temperature range of -400 to +850 centigrade and during centrifugal spins of up to 300 Hz or 25,000 (g). Fundamentally the question is, is it feasible for any telemetry system to be capable of withstanding such harsh conditions and, to be practical on all DoD Test Ranges, still adhere to the stability tolerance guidelines set forth by the Range Commanders Council on Telemetry Standards - IRIG 106-96? Under "normal" conditions, stability requirements for "Range" transmitters are easily satisfied through the use of off-the-shelf crystal reference oscillators which provide the reference frequencies required within a transmitter’s phase lock loop circuitry. Unfortunately, the oscillator is also the most vulnerable part of a transmitter to the conditions listed and is the key to this problem. The oscillator’s weak points are in its resonator’s fragile quartz structure (the blank) and support mechanism. The challenge is to invent and adapt this area to these newer harsher conditions and to do it in the smallest space ever required.
APA, Harvard, Vancouver, ISO, and other styles
32

Fadriquela, Joshua-Jed Doria. "Design, Fabrication, and Implementation of a Single-Cell Capture Chamber for a Microfluidic Impedance Sensor." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/189.

Full text
Abstract:
A microfluidic device was created for single-cell capture and analysis using polydimethylsiloxane (PDMS) channels and a glass substrate to develop a microfluidic single-cell impedance sensor for cell diagnostics. The device was fabricated using photolithography to create a master mold which in turn will use soft lithography to create the PDMS components for constant device production. The commercial software, COMSOLTM Multiphysics, was used to quantify the fluid dynamics in shallow micro-channels. The device will be able to capture a cell and sequester it long enough to enable measurement of the impedance spectra that can characterize cell. The proposed device will be designed to capture a single cell and permit back-flow to flush out excess cells in the chamber. The device will be designed to use syringe pumps and the syringe-controlled channel will also be used to capture and release the cell to ensure cell control and device reusability. We hypothesize that these characteristics along with other proposed design factors will result in a unique microfluidic cell-capture device that will enable single-cell impedance sensing and characterization.
APA, Harvard, Vancouver, ISO, and other styles
33

Mahdavifar, Alireza. "Computational and experimental development of ultra-low power and sensitive micro-electro-thermal gas sensor." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54923.

Full text
Abstract:
In this research a state-of-the-art micro-thermal conductivity detector is developed based on MEMS technology. Its efficient design include a miniaturized 100×2 µm bridge from doped polysilicon, suspended 10 µm away from the single crystalline silicon substrate through a thermally grown silicon dioxide sacrificial layer. The microbridge is covered by 200 nm silicon nitride layer to provide more life time. Analytical models were developed that describe the relationship between the sensor response and ambient gas material properties. To obtain local temperature distribution and accurate predictions of the sensor response, a computational three dimensional simulation based on real geometry and minimal simplifications was prepared. It was able to handle steady-state and transient state, include multiple physics such as flow, heat transfer, electrical current and thermal stresses. Two new methods of measurement for micro TCD were developed; a time resolved method based on transient response of the detector to a step current pulse was introduced that correlates time constant of the response to the concentration of gas mixture. The other method is based on AC excitation of the micro detector; the amplitude and phase of the third harmonic of the resulting output signal is related to gas composition. Finally, the developed micro-sensor was packaged and tested in a GC system and was compared against conventional and complex FID for the detection of a mixture of VOCs. Moreover compact electronics and telemetry modules were developed that allow for highly portable applications including microGC utilization in the field.
APA, Harvard, Vancouver, ISO, and other styles
34

Rameh, Hala. "Instrumentation optimale pour le suivi des performances énergétiques d’un procédé industriel." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM032/document.

Full text
Abstract:
L’efficacité énergétique devient un domaine de recherche incontournable dans la communauté scientifique vu son importance dans la lutte contre les crises énergétiques actuelles et futures. L'analyse des performances énergétiques, pour les procédés industriels, nécessite la connaissance des grandeurs physiques impliquées dans les équilibres de masse et d'énergie. D’où la problématique : comment choisir les points de mesure sur un site industriel de façon à trouver les valeurs de tous les indicateurs énergétiques sans avoir des redondances de mesure (respect des contraintes économiques), et en conservant un niveau de précision des résultats ? La première partie présente la formulation du problème d’instrumentation ayant pour but de garantir une observabilité minimale du système en faveur des variables clés. Ce problème est combinatoire. Une méthode de validation des différentes combinaisons de capteurs a été introduite. Elle est basée sur l’interprétation structurelle de la matrice représentant le procédé. Le verrou de long temps de calcul lors du traitement des procédés de moyenne et grande taille a été levé. Des méthodes séquentielles ont été développées pour trouver un ensemble de schémas de capteurs pouvant être employés, en moins de 1% du temps de calcul initialement requis. La deuxième partie traite le choix du schéma d’instrumentation optimal. Le verrou de propagation des incertitudes dans un problème de taille variable a été levé. Une modélisation du procédé basée sur des paramètres binaires a été proposée pour automatiser les calculs, et évaluer les incertitudes des schémas trouvés. Enfin la méthodologie complète a été appliquée sur un cas industriel et les résultats ont été présentés
Energy efficiency is becoming an essential research area in the scientific community given its importance in the fight against current and future energy crises. The analysis of the energy performances of the industrial processes requires the determination of the quantities involved in the mass and energy balances. Hence: how to choose the placement of the measurement points in an industrial site to find the values of all the energy indicators, without engendering an excess of unnecessary information due to redundancies (reducing measurements costs) and while respecting an accepted level of accuracy of the results ? The first part presents the formulation of the instrumentation problem which aims to guaranteeing a minimal observability of the system in favor of the key variables. This problem is combinatory. A method of validation of the different sensors combinations has been introduced. It is based on the structural interpretation of the matrix representing the process. The issue of long computing times while addressing medium and large processes was tackled. Sequential methods were developed to find a set of different sensor networks to be used satisfying the observability requirements, in less than 1% of the initial required computation time. The second part deals with the choice of the optimal instrumentation scheme. The difficulty of uncertainty propagation in a problem of variable size was addressed. To automate the evaluation of the uncertainty for all the found sensor networks, the proposed method suggested modeling the process based on binary parameters. Finally, the complete methodology is applied to an industrial case and the results were presented
APA, Harvard, Vancouver, ISO, and other styles
35

Fan, Zihao, and Wei Zhao. "Network Coverage Optimization Strategy in Wireless Sensor Networks Based on Particle Swarm Optimization." Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-9764.

Full text
Abstract:
Wireless sensor network is an intelligent network system which has the self-monitoring functionality. It consists of many low-cost, low-power and small-sized sensor nodes that can communicate with each other to perform sensing and data processing. Acting as an important role in the system, network coverage usually has a huge effect on the system’s lifetime.In this thesis, particle swarm algorithm was used as a method to optimize the coverage in the coverage of wireless sensor network. A network coverage optimization strategy based on particle swarm optimization was proposed and MATLAB was used as a tool to apply the algorithm. The model used in this thesis is the probability sensing model and the coverage type is area coverage. Effectiveness of the algorithm is proved by simulation. The simulation of the algorithm suggests the optimal deployment can be determined if a certain parameter which in this thesis is the sensing range is given.
APA, Harvard, Vancouver, ISO, and other styles
36

Roux, Julien. "Conception d'un capteur distribué pour la surveillance de l'état hydrique des sols." Thesis, Toulouse, INSA, 2017. http://www.theses.fr/2017ISAT0031/document.

Full text
Abstract:
A cause du développement du smart farming, des études sont à mener sur la distribution de l’instrumentation pour mesurer l’état hydrique du sol en vue de contrôler l’irrigation. Dans le cadre du projet IRRIS, nous réalisons un capteur d’humidité du sol intelligent. Nous allons tout d’abord réaliser le corps d’épreuve de ce capteur. Nous choisissons une mesure capacitive pour obtenir un capteur réactif malgré un coût de réalisation faible. Le corps est cylindrique pour pouvoir être inséré facilement dans le sol. Les électrodes sont réalisées par dépôt électrochimique de cuivre sur ce cylindre plastique. Nous concevons ensuite l’électronique de mesure associée à ce corps. Pour cela, nous comparons deux solutions, l’une analogique et l’autre logicielle. Puis nous assemblons notre capteur suivant deux modes, le multi capteur ou le mono capteur. Nous réalisons à cette étape la création du réseau de capteurs à l’aide de communication sans fil située dans la bande ISM 868MHz et nous la caractérisons. Enfin, nous observons les résultats de trois campagnes de mesures dans des champs cultivés pour valider le fonctionnement sur différents types de sols et de cultures. Ces travaux aboutissent donc à la création d’un capteur permettant la mesure de l’humidité du sol avec un coût réduit par rapport aux capteurs industriel déjà existant. Les expérimentations sur site montrent sa facilité d’insertion ainsi que son bon fonctionnement
Owing to the development of the smart farming, some new studies need to be lead on a distributed instrumentation to measure soil moisture to control the irrigation.In the project IRRIS context, we realize a smart soil moisture sensor. First, we have to realize the sensing element of this sensor. We choose a capacitive detection to get a reactive sensor despite low cost. The body is a cylinder to be easily buried in the soil. The electrodes are made by electrochemical deposition on the plastic tube. Then, we design the measurement electronic. We compare two solutions, one with discrete components and the other software on embedded microcontroller. We submit those electronics at thermic variations to observe their comportment to create the law of compensation. Next we assemble the sensor according to two ways. The first, the multi sensor, forces the depths of sensing but reduces the costs by pooling the measurement electronic. The second, the mono sensor, frees the choice of depth but multiplies the number of sensors. We create at this step the sensor network thanks a wireless communication placed on 868MHz, an ISM band that we characterize in terms of range depending on the flow rate to optimize this communication. Finally, we observe the results of three measurement campaigns to validate the operating for different soil and cultures.This study ends in the realization of a sensor to measure soil moisture with a reduced cost relative to the industrial sensor on the market. Experiments prove its ease of use as well as its proper functioning
APA, Harvard, Vancouver, ISO, and other styles
37

Albino, André Filipe Rendeiro. "Radiação solar: estudo e criação de plataforma de apoio à conceção de um sensor de radiação solar." Master's thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/12995.

Full text
Abstract:
Radiação solar: estudo e criação de plataforma de apoio à conceção de um sensor de radiação solar. Este trabalho introduz a teoria da instrumentação virtual descrevendo os principais componentes desta. É detalhada a implementação de um instrumento virtual e uma base de dados associada que permitem obter uma estimativa de variáveis ambientais para qualquer ponto do globo e qualquer altura do ano. Este instrumento - Environment simulator – permite fornecer dados ambientais necessários a simulação da radiação solar. Para explicar a implementação da plataforma de apoio introduzem-se noções relativas à radiação solar, à relação entre o planeta Terra e o sol bem como o cálculo da posição solar. É introduzida a noção de radiação espectral, bem como as propriedades óticas da atmosfera que interagem com a mesma. Apresentam-se formulações e aproximações dos coeficientes de extinção e dispersão na atmosfera que levam ao cálculo da radiação solar espectral direta, difusa e global. Por fim, validam-se os resultados através da comparação com valores registados durante a campanha de observações ALEX2014; Abstract: Solar Radiation: study and creation of support platform to design a solar radiation sensor This work introduce the virtual instrumentation theory describing the principal components of this theory. The implementation of a virtual instrument and an associated database is explained. This instrument allow the estimation of the environmental variables anywhere in the world and at any time of the year. This instrument – Environment simulator –provide environmental data necessary to simulate solar radiation. To explain the implementation of the support platform we introduce notions about solar radiation, the relationship between Earth and the sun and the calculation of solar position. The spectral solar radiation is present, as well as the principal atmospheric optical properties that interact with solar radiation. We present formulations and approximations of the extinction coefficient and scattering in the atmosphere that allow the calculation of the spectral direct solar radiation, diffuse and global. Lastly, the result of simulations are validated through comparison with measured values during the ALEX2014 field campaign.
APA, Harvard, Vancouver, ISO, and other styles
38

Parmar, Biren Jagadish. "Development Of Point-Contact Surface Acoustic Wave Based Sensor System." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/279.

Full text
Abstract:
Surface Acoustic Waves (SAW) fall under a special category of elastic waves that need a material medium to propagate. The energy of these waves is confined to a limited depth below the surface over which they propagate, and their amplitudes decay with increasing depth. As a consequence of their being a surface phenomenon, they are easily accessible for transduction. Due to this reason, a lot of research has been carried out in the area, which has resulted in two very popular applications of SAW - SAW devices and in Non-Destructive Testing and Evaluation. A major restriction of SAW devices is that the SAW need a piezoelectric medium for generation, propagation and reception. This thesis reports the attempt made to overcome this restriction and utilize the SAW on non-piezoelectric substrates for sensing capabilities. The velocity of the SAW is known to be dependent purely on the material properties, specifically the elastic constants and material density. This dependence is the motivation for the sensor system developed in the present work. Information on the survey of the methods suitable for the generation and reception of SAW on non-piezoelectric substrates has been included in the thesis. This is followed by the theoretical and practical details of the method chosen for the present work - the point source/point receiver method. Advantages of this method include a simple and inexpensive fabrication procedure, easy customizability and the absence of restrictions due to directivity of the SAW generated. The transducers consist of a conically shaped PZT element attached to a backing material. When the piezoelectric material on the transmitter side is electrically excited, they undergo mechanical oscillations. When coupled to the surface of a solid, the oscillations are transferred onto the solid, which then acts as a point source for SAW. At the receiver, placed at a distance from the source on the same side, the received mechanical oscillations are converted into an electrical signal as a consequence of the direct piezoelectric effect. The details of the fabrication and preliminary trials conducted on metallic as well as non-metallic samples are given. Various applications have been envisaged for this relatively simple sensor system. One of them is in the field of pressure sensing. Experiments have been carried out to employ the acoustoelastic property of a flexible diaphragm made of silicone rubber sheet to measure pressure. The diaphragm, when exposed to a pressure on one side, experiences a varying strain field on the surface. The velocity of SAW generated on the stressed surface varies in accordance with the applied stress, and the consequent strain field generated. To verify the acoustoelastic phenomenon in silicone rubber, SAW velocities have been measured in longitudinal and transverse directions with respect to that of the applied tensile strain. Similar measurements are carried out with a pressure variant inducing the strain. The non-invasive nature of this setup lends it to be used for in situ measurement of pressure. The second application is in the field of elastography. Traditional methods of diagnosis to detect the presence of sub-epidermal lesions, some tumors of the breast, liver and prostate, intensity of skin irritation etc have been mainly by palpation. The sensor system developed in this work enables to overcome the restrictive usage and occasional failure to detect minute abnormal symptoms. In vitro trials have been conducted on tissue phantoms made out of poly (vinyl alcohol) (PVA-C) samples of varying stiffnesses. The results obtained and a discussion on the same are presented.
APA, Harvard, Vancouver, ISO, and other styles
39

Rossi, Anderson Rodrigo 1981. "Uma nova técnica de comunicação e alimentação de transdutores inteligentes utilizando apenas um fio baseada no padrão IEEE 1451." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258976.

Full text
Abstract:
Orientador: Elnatan Chagas Ferreira
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-23T02:42:42Z (GMT). No. of bitstreams: 1 Rossi_AndersonRodrigo_M.pdf: 49446456 bytes, checksum: e180d104b943e830a31e17128fa88249 (MD5) Previous issue date: 2013
Resumo: Sabe-se que atualmente, transmissores de loop de corrente, alimentados por um host ou data logger (equipamentos de leitura e/ou armazenamento de dados) são as técnicas mais utilizadas para medição e controle distribuído. Essa transmissão, normalmente, consiste na conexão individual por meio de, no mínimo, um fio, conectando os sensores remotos ao equipamento de leitura de dados. Ressalta-se que, se faz necessária a utilização de um fio terra para o retorno da corrente elétrica juntamente a esse fio de sinal, sendo descrito no texto como "um fio". Consequentemente, com a complexidade envolvida em um processo industrial, tem-se uma grande quantidade de sensores envolvidos, de modo que a ligação de todos os sensores ocasiona uma grande quantidade de fios que convergem para o equipamento de leitura de dados, gerando uma enorme complexidade nas decisões a serem tomadas em relação à instalação e manutenção do sistema. O trabalho tem como objetivo utilizar apenas um fio para a conexão entre vários sensores e atuadores remotos e o equipamento de leitura de dados, a fim de obter, com a diminuição da quantidade de cabeamento, melhoria no controle, precisão nas decisões a serem tomadas, consequentemente, uma maior simplicidade na manutenção e expansão do sistema, além de ser bastante estável às interferências eletromagnéticas, pois o fio recebe a mesma interferência eletromagnética em toda sua extensão e esse efeito se anula permitindo a comunicação entre grandes distâncias. Trata-se de um sistema de interfaceamento de sensores inteligentes a equipamentos de leitura de dados baseado nos padrões IEEE 1451, o qual emprega uma técnica para envio e recebimento de dados e a própria alimentação dos sensores remotos utilizando apenas um fio. O sistema proposto é formado por um NCAP (Network Capable Application Processor), um TII (Transducer Independent Interface), um TIM (Transducers Interface Module), 64 sensores e 64 atuadores caracterizando 128 TransducerChannels. Foi realizado um comparativo com um sistema utilizado pela FEAGRI-UNICAMP (Faculdade de Engenharia Agrícola) para a medição de temperatura no processo de armazenamento com secagem de grãos em silos por aeração forçada para a validação do sistema. Com isso pôde-se verificar as vantagens com relação à rapidez na instalação, facilidade de manutenção, redução de materiais (fios) e confiabilidade no sistema
Abstract: It's known that nowadays, current loop transmitters, fed by a host or a data logger are the most commonly used techniques to distributed measurement and control. Usually this transmission consists of an individual connection through at least a wire pair, connecting the remote sensors to the data logger. It's noted that it's necessary the use of the ground wire to electric current return with this signal wire, it's described at the text as "1 wire". Consequently, with the complexity involved in an industrial process, there is a great amount of involved sensors, in a way that all sensors connection causes a need of a great amount of wires that converge to the data reading equipment, causing a tremendous complexity around the decisions to be taken about the installation and maintenance of the system. This work has as objective using just 1-Wire (a source/communication wire and a common wire) to connect many remote sensors and actuators to the data logger, causing, with the reduction of the cabling amount, a control improvement, accuracy in the decisions to be taken, consequently, a great simplicity in the system maintenance and expansion, besides it's very stable against electromagnetic interference (EMI), because 1-Wire receives the similar EMI and it cancel this effect allowing taking possible to communicate for greater distances. This work discusses the smart sensors interface to data logger based on IEEE1451 standard and it uses a sending/receiving data and sourcing technique using just 1-Wire. The proposed system is formed by a NCAP (Network Capable Application Processor), a TII (Transducer Independent Interface), a TIM (Transducers Interface Module), 64 sensors and 64 actuators, characterizing 128 TransducerChannels. A comparison was made with a system that is used by FEAGRI-UNICAMP (College of Agricultural Engineering - University of Campinas) to measure the temperature at the storage process with grain drying in recipients by forced aeration to validate the system. Thus it can be verified the advantages related to the velocity in the installation, easier maintenance, materials reduction (wires) and reliability on the system
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
40

Leslie, Brian Robert. "Design, Analysis, and Testing of Nanoparticle-Infused Thin Film Sensors for Low Skin Friction Applications." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/19199.

Full text
Abstract:
Accurate measurement of skin friction in complex flows is important for: documentation and monitoring of fluid system performance, input information for flow control, development of turbulence models and CFD validation. The goal of this study was to explore using new materials to directly measure skin friction in a more convenient way than available devices. Conventional direct measurement skin friction sensors currently in use are intrusive, requiring movable surface elements with gaps surrounding that surface, or require optical access for measurements. Conventional direct measurement sensors are also difficult to apply in low shear environments, in the 1-10 Pa range. A new thin, flexible, nanoparticle infused, piezoresistive material called Metal Rubber" was used to create sensors that can be applied to any surface. This was accomplished by using modern computerized finite element model multiphysics simulations of the material response to surface shear loads, in order to design a sensor configuration with a reduced footprint, minimal cross influence and increased sensitivity. These sensors were then built, calibrated in a fully-developed water channel flow and tested in both the NASA 20x28 inch Shear Flow Control Tunnel and a backwards facing step water flow. The results from these tests showed accurate responses, with no amplification to the sensor output, to shear levels in the range of 1-15 Pa. In addition, the computer model of these sensors was found to be useful for studying and developing refined sensor designs and for documenting sources of measurement uncertainty. These encouraging results demonstrate the potential of this material for skin friction sensor applications.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
41

Davis, Joseph P. "Electronic Interface for an Inductive Wear Debris Sensor for Detection of Ferrous and Non-Ferrous Particles." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1380998832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Oliveira, Alex Lopes de. "Instrumentação inteligente via web services." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-13122006-150545/.

Full text
Abstract:
Neste trabalho é apresentado um sistema de instrumentação inteligente integrado com a arquitetura Web Services e desenvolvido em conformidade com as diretrizes estabelecidas na norma IEEE 1451.1. O protocolo de transmissão de dados do sistema é associado ao conceito das especificações dos transdutores e a um Web Service que permita a configuração remota do sistema de aquisição de dados. Através de uma interface de supervisão remota, acessível via Internet a partir de qualquer navegador, o usuário é capaz de identificar quais são os sensores inteligentes que estão conectados em uma rede, através de uma identificação única associada às suas características (tipo, formatação dos dados, etc.). Nesta mesma interface de apresentação o usuário tem a liberdade de selecionar o número de sensores que deseja ativar para efetuar algum monitoramento. Após a seleção dos sensores é disponibilizada uma interface de monitoramento que permite a visualização dos dados através de um gráfico bem como permite ao usuário salvar em um arquivo texto os dados coletados. Na mesma interface de monitoramento é disponibilizado o Web Service que permite alterar o intervalo de coleta de dados. Um conjunto de computadores em uma rede local (Intranet) simula a rede de sensores inteligentes. Nesta mesma rede está conectado o servidor responsável pela disponibilização da interface de supervisão remota.
In this work is presented the integration of an established system of intelligent instrumentation with the Web Service?s architecture, in accordance with the IEEE 1451.1 standard. It is suggested the association of a data-communication protocol with the concept of Transducer Electronic Data Sheet (TEDS) to a Web Service for making possible the remote configuration of a data acquisition system. Through a remote supervisor interface, accessible via Internet from any browser, the user can, at the first moment, identify which are the smart sensors connected in a network, using an unique identification associated to its characteristics (type, data formatting, etc.). In the same graphical interface the user can choose which sensors wants to monitor and, after the selection, will have available the monitoring interface that enables data visualization through a graph and allows the user to save the collected data in a text file. In the same monitoring interface the Web Service is also available; it admits modifications on the data collection interval. A group of computers in a local network (Intranet) simulates the smart sensors network. In the same network is connected a server responsible for supplying the remote supervisor interface.
APA, Harvard, Vancouver, ISO, and other styles
43

Canata, Tatiana Fernanda. "Sistema de mensuração baseado em tecnologia LiDAR para a estimativa de parâmetros de produção de cana-de-açúcar." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29092017-184829/.

Full text
Abstract:
A participação econômica da cana-de-açúcar (Saccharum spp.) é expressiva no agronegócio brasileiro, especialmente no estado de São Paulo. O monitoramento de produtividade para essa cultura é escasso de soluções consolidadas no nível de pesquisa e comercialmente. Tal monitoramento auxilia na identificação das variabilidades espacial e temporal, além de fornecer subsídio ao gerenciamento agrícola. Como uma alternativa os sensores a laser, abrangidos pela tecnologia LiDAR (Light Detection and Ranging), têm sido utilizados por meio de plataformas aéreas ou terrestes para a estimativa de produtividade de culturas de grãos como milho e trigo, e para o monitoramento de florestas de modo não invasivo. O objetivo deste estudo é a investigação de aplicação do sensor a laser para a cana-de-açúcar em período pré-colheita a partir do desenvolvimento de um sistema de mensuração. O sistema é composto por um sensor a laser, receptor GNSS (Global Navigation Satellite System), uma unidade inercial e um computador portátil. O sensor a laser emite feixes de luz (905 nm) na forma de um único pulso em um plano 2D, a partir desses feixes os valores de distância entre o sensor e o dossel de plantas são calculados durante a trajetória do veículo agrícola. O receptor GNSS com sinal RTK (Real Time Kinematic) foi sincronizado ao sensor a laser para a obtenção da nuvem de pontos, a qual é caracterizada pela alocação de cada ponto impactado pelo feixe de luz nas respectivas coordenadas geográficas. A unidade inercial fornece informações relacionadas à influência da vibração a partir dos dados de oscilação na transversal (roll), lateral (pitch) e longitudinal (yaw). Os equipamentos foram instalados em um suporte de estrutura metálica no trator agrícola e conectados ao computador por meio de protocolos de comunicação. O desenvolvimento do sistema de mensuração envolve a avaliação de sua acurácia utilizando objetos de dimensões pré-estabelecidas e a sua aplicação em áreas experimentais de cana-de-açúcar. São abrangidos dois períodos de estudo, sendo um em 2015 para a área I (0,77 ha) e o segundo em 2016 utilizando as áreas I e II (0,56 ha). A aquisição de dados ocorreu cerca de 10 dias antes da colheita e, em paralelo, foram realizadas as medidas de biometria das plantas. Em 2015 a produtividade foi estimada pela biometria e em 2016 ocorreu a pesagem do material para cada parcela das áreas I e II. Os resultados referentes à avaliação da acurácia do sistema de mensuração demonstraram erros de até 13,0%, o qual não compromete o seu desempenho. A partir dos procedimentos de aquisição e processamento de dados foi possível gerar a nuvem de pontos, realizar a filtragem de dados e extrair as medidas de alturas máxima, média e mediana da vegetação. A influência da vibração no conjunto de dados foi considerada mais expressiva para as condições da área I. A correlação entre o diâmetro de colmos e a produtividade estimada pela biometria na área I em 2015 foi de 0,80. Enquanto que, a correlação entre o diâmetro de colmos e a altura de vegetação indicada pelo sistema de mensuração foi moderada (r=-0,53). Em 2016, para a mesma área, a correlação entre as medidas de altura média e mediana de vegetação obtidas pelo sistema e a produtividade foi de 0,64. Para as condições da área II não foram verificadas correlações entre as medidas de biometria e as alturas de vegetação. O sistema de mensuração utilizando uma plataforma terrestre apresentou desempenho satisfatório em relação à capacidade de detecção da distribuição de plantas de cana-de-açúcar e condizente com as condições das áreas em ambos os períodos de estudo, porém a sua aplicação em áreas com pouca variabilidade espacial apresentou baixa capacidade preditiva de produção de biomassa de cana-de-açúcar.
The economic participation of sugarcane (Saccharum spp.) is significant in Brazilian agribusiness, especially in the state of São Paulo. The yield monitoring for this crop is scarce of solutions consolidated at the research and commercial levels. Such monitoring assists for identification of spatial and temporal variability, as well as providing support to the agricultural management. As an alternative laser sensors, covered by LiDAR (Light Detection and Ranging) technology, have been used by aerial or terrestrial platforms for estimating grain crops yield such as corn and wheat, and for noninvasive forest monitoring. The objective of this study is to investigate the laser sensor applications for sugarcane in the pre-harvest period from development of a measurement system. The measurement system consists of a laser sensor, a Global Navigation Satellite System (GNSS) receiver, an inertial unit and a computer. The laser sensor emits light beams (905 nm) in the form of a single pulse in a 2D plane, from these beams the distance values between sensor and canopy were calculated during the trajectory of the agricultural vehicle. The GNSS receiver with RTK (Real Time Kinematic) signal was synchronized to the laser sensor to obtain the point cloud, which is characterized by the allocation of each point impacted by the light beam in the respective geographical coordinates. The inertial unit provides information related to the data influence of the vibration from oscillation in the transversal (roll), lateral (pitch) and longitudinal (yaw). The equipment were installed in a support of metallic structure in the agricultural tractor and connected to the computer through communication protocols. The development of the measurement system involves evaluation of its accuracy using objects of pre-established dimensions and its application in experimental areas of sugarcane. Two periods are covered by this study, one in 2015 for area I (0.77 ha) and the second in 2016 using areas I and II (0.56 ha). The data acquisition occurred about 10 days before sugarcane harvest and, in parallel, the biometrics measurements were carried out. In 2015 sugarcane yield was estimated by biometry and in 2016 material was weighed for each plot of areas I and II. The results regarding evaluation of the measurement system accuracy showed errors up to 13.0%, which does not compromise its performance. From the data acquisition and processing procedures, it was possible the point cloud generation, data filtering performing and extraction of some measurements as maximum, average and median heights of vegetation. The influence of the vibration on data set was considered more expressive for area I conditions. The correlation between stem diameter and yield estimated by biometry in area I in 2015 was 0.80. Meanwhile, the correlation between stem diameter and vegetation height indicated by the measurement system was moderate (r=-0.53). In 2016, for the same area, the correlation between measurements of average and median heights of vegetation obtained by the system and sugarcane yield was 0.64. For area II conditions no correlations were verified between biometrics measurements and vegetation height. The measurement system using a terrestrial platform presented a satisfactory performance in relation to the capacity of detection of sugarcane plants distribution and consistent with areas conditions for both periods of study, however its application in areas with low spatial variability presented reduced predictive capacity of biomass production of sugarcane.
APA, Harvard, Vancouver, ISO, and other styles
44

DUVET, LUDOVIC. "Instrumentation pour l'etude in-situ des atmospheres neutres et ionises planetaires et cometaires : idm (ion dynamics monitor) et cops (comet pressure sensor)." Paris 6, 2001. http://www.theses.fr/2001PA066296.

Full text
Abstract:
Le travail realise durant cette these a consiste en le developpement, la realisation et les tests de deux instruments destines a l'etude des environnements neutres et ionises planetaires et cometaires. Le premier instrument, idm (ion dynamics monitor), est un spectrometre a plasma thermique et suprathermique (< 200 ev) developpe initialement lors de la phase de consolidation du projet cometaire europeen rosetta. Une version amelioree a ensuite ete adaptee pour l'etude de l'ionosphere et de la couche limite de mars dans le cadre du projet dynamo. Les deux versions du spectrometre ont ete testees en laboratoire et les resultats, en tres bon accord avec la simulation, ont montre le respect des specifications necessaires a la mesure. Le second instrument est destine a la mesure des parametres dynamiques d'une atmosphere neutre. Une etude detaillee des techniques de mesures actuelles de la dynamique d'un gaz neutre est tout d'abord presentee et montre l'interet de l'utilisation d'un concept instrumental reposant sur des jauges de densite a impact electronique et des chambres d'equilibre. L'instrument cops (comet pressure sensor), premiere realisation de ce concept, sera embarque a bord de la sonde rosetta et permettra l'evaluation de la vitesse d'expansion et de la densite du gaz cometaire. Le developpement de l'instrument a necessite la mise au point de techniques de modelisation de l'interaction d'un gaz et d'un solide en regime moleculaire et a conduit a la realisation de tests sous faisceau moleculaire. Les resultats montrent que les principaux objectifs sont atteints. Une seconde application de ce concept instrumental destinee a l'etude de la haute atmosphere martienne est aussi presentee.
APA, Harvard, Vancouver, ISO, and other styles
45

Svärd, Daniel. "Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54520.

Full text
Abstract:

In modern medicine, the measurement of electrophysiological signals play a key role in health monitoring and diagnostics. Electrical activity originating from our nerve and muscle cells conveys real-time information about our current health state. The two most common and actively used techniques for measuring such signals are electrocardiography (ECG) and electroencephalography (EEG).

These signals are very weak, reaching from a few millivolts down to tens of microvolts in amplitude, and have the majority of the power located at very low frequencies, from below 1 Hz up to 40 Hz. These characteristics sets very tough requirements on the electrical circuit designs used to measure them. Usually, measurement is performed by attaching electrodes with direct contact to the skin using an adhesive, conductive gel to fixate them. This method requires a clinical environment and is time consuming, tedious and may cause the patient discomfort.

This thesis investigates another method for such measurements; by using a non-contact, capacitively coupled sensor, many of these shortcomings can be overcome. While this method relieves some problems, it also introduces several design difficulties such as: circuit noise, extremely high input impedance and interference. A capacitively coupled sensor was created using the bottom layer of a printed circuit board (PCB) as a capacitor plate and placing it against the signal source, that acts as the opposite capacitor plate. The PCB solder mask layer and any air in between the two acts as the insulator to create a full capacitor. The signal picked up by this sensor was then amplified by 60 dB with a high input impedance amplifier circuit and further conditioned through filtering.

Two measurements were made of the same circuit, but with different input impedances; one with 10 MΩ and one with 10 GΩ input impedance. Additional filtering was designed to combat interference from the main power lines at 50 Hz and 150 Hz that was discovered during initial measurements. The circuits were characterized with their transfer functions, and the ability to amplify a very low-level, low frequency input signal. The results of these measurements show that high input impedance is of critical importance for the functionality of the sensor and that an input impedance of 10 GΩ is sufficient to produce a signal-to-noise ratio (SNR) of 9.7 dB after digital filtering with an input signal of 25 μV at 10 Hz.

APA, Harvard, Vancouver, ISO, and other styles
46

Gylfason, Kristinn Björgvin. "Integrated Optical Slot-Waveguide Ring Resonator Sensor Arrays for Lab-on-Chip Applications." Doctoral thesis, KTH, Mikrosystemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12214.

Full text
Abstract:
This thesis treats the development of an integrated optical sensor array. The sensors are slot-waveguide ring resonators, integrated with on-chip surface grating couplers and light splitters, for alignment tolerant, real-time, refractive index sensing, and label-free biosensing. The work includes: the design of components and system layouts, the development of fabrication methods, the fabrication of sensor chips, the characterization of the chips, and the development of physical system models for accurate extraction of resonance wavelengths in measured spectra. The main scientific achievements include: The evaluation of a novel type of nano-structured optical waveguide for biochemical sensing. The realization of an array of such slot-waveguide sensors, integrated with microfluidic sample handling, for multiplex assays. The first study of the thermal behavior of slot-waveguide sensors and the discovery of unique temperature compensation capabilities. From an application perspective, the use of alignment tolerant surface gratings to couple light into the optical chip enables quick replacement of cartridges in the read-out instrument. Furthermore, the fabrication sequence avoids polishing of individual chips, and thus ensures that the cost benefits of silicon batch micro-fabrication can be leveraged in mass production. The high sensitivity of the slot waveguide resonators, combined with on-chip referencing and physical modeling, yields low limits of detection. The obtained volume refractive index detection limit of 5 × 10−6 refractive index units (RIU), and the surface mass density detection limit of 0.9 pg/mm2, shows that performance comparable to that of commercial non-integrated surface plasmon resonance sensors, made from bulk optical components, canbe achieved in a compact cartridge.
Qc20100715
SABIO
APA, Harvard, Vancouver, ISO, and other styles
47

Munoz, Nates Franco Miller. "Contribution à l'analyse biomécanique de l'activité en kayak. Mise en place et validation d'une chaîne de mesure dynamométrique tridimensionnelle." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2333/document.

Full text
Abstract:
Les méthodes modernes d'entraînement utilisent des appareillages spécifiques appelés ergomètres sur lesquels, en particulier, des programmes d'entraînement et d'évaluation sont proposés par les entraîneurs. De tels dispositifs favorisent la continuité d'un entraînement pendant les périodes peu favorables à une pratique sportive. De même, lorsque ces outils sont instrumentés, ils apportent à l'entraîneur des informations difficilement accessibles en situation réelle de pratique. Ce travail s'inscrit dans cette problématique scientifique dont l'objet est la conception d'un ergomètre pour la pratique du kayak en ligne. Les travaux réalisés ont conduit à la conception d'un ergomètre kayak capable de reproduire les conditions d'une pratique écologique aussi précisément que possible tant d'un point de vue de la gestuelle (cinématique) que des efforts générés (dynamique) d'une part, de proposer et de valider une instrumentation afin de recueillir l'ensemble des efforts d'interaction kayakiste/ergomètre, d'autre part. De plus, cette instrumentation doit être suffisamment exigeante en termes de poids et d'encombrement pour être installée dans un kayak K1 pour réaliser des mesures in situ. Les moyens mis en œuvre donnent accès aux variables biomécaniques permettant de quantifier les éléments de base de la technique de pagayage qui constituent l'ensemble des facteurs déterminants de la performance (force, endurance, technique, etc.). Scientifiques et entraineurs ont ainsi à leur disposition un outil pour une évaluation objective des performances du kayakiste. Ce travail a été réalisé dans le cadre d'une collaboration entre l'axe RoBioss, le CAIPS et la société SENSIX
The modern training methods developed during the last 20 years involve specific equipments named ergometer. These devices allow semi-specific training sessions on a sheltered environment to develop strength during unfavorable periods of in situ practice. They are also more and more used by coaches to evaluate athlete’s skills and aptitudes. Ergometers provide numerical information that cannot be easily measured during in situ sessions. This work is a significant contribution of the following scientific problems; firstly the design of a flat-water kayak ergometer that reproduces accurately on-water conditions, both kinematics and forces generated (dynamic) during the throughout the whole kayaking cycle, secondly, to propose and validate an instrumentation to collect every dynamic interactions between the ergometer and kayaker (hands, seat, feet). In addition, this instrumentation must be design in terms of weight, size and watertightness to be installed in a kayak K1 for in situ measurements. This instrumentation quantifies the basic biomechanics parameters of the kayaking performance such as external forces, endurance, technique, etc. As a result, researchers and coaches will be able to evaluate kayakers’ performance using an unbiased device. This work was conducted as part of a scientific collaboration between the RoBioSS research team, CAIPS and SENSIX compagny
APA, Harvard, Vancouver, ISO, and other styles
48

Salido, Monzú David, and Sánchez Oliver Roldán. "Robot Positioning System : Underwater Ultrasonic Measurement." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5817.

Full text
Abstract:

This document provides a description about how the problem of the detection of thecenter of a defined geometry object was solved.This named object has been placed in an experimental environment surrounded bywater to be explored using microwaves under the water, to try to find a possibletumor. The receiver antenna is fixed in the tip of the tool of an ABB robot.Due to this working method, it was necessary to locate the center of this object tomake correctly the microwave scanning turning always around the actual center. Thiswork not only consist in give a hypothetic solution to the people who gave us theresponsibility of solve their problem, it is also to actually develop a system whichcarries out the function explained before.For the task of measuring the distance between the tip of the tool where themicrowave antenna is, ultrasonic sensors has been used, as a complement of acomplete system of communication between the sensor and finally the robot handler,using Matlab as the main controller of the whole system.One of these sensors will work out of water, measuring the zone of the object which isout of the water. In the other hand, as the researching side of the thesis, a completeultrasonic sensor will be developed to work under water, and the results obtained willbe shown as the conclusion of our investigation.The document provides a description about how the hardware and software necessaryto implement the system mentioned and some equipment more which were essentialto the final implementation was developed step by step.

APA, Harvard, Vancouver, ISO, and other styles
49

Nguyen, Tien Anh. "Instrumentation électronique et diagnostic de modules de puissance à semi-conducteur." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00910357.

Full text
Abstract:
Les objectifs de la thèse sont d'élaborer des systèmes d'instrumentation électronique qui permettent une analyse et un diagnostic fins de l'état d'intégrité et du processus de vieillissement des composants de puissance à semi-conducteur. Ces travaux visent à évaluer la variation de la conductivité de la métallisation à l'aide de capteurs à Courant Foucault (CF) mais aussi à estimer l'effet du vieillissement des puces et de leur assemblage sur la distribution de courant dans les puces afin de mieux comprendre les mécanismes de défaillance. Des éprouvettes simplifiées mais également des modules de puissance représentatifs ont été vieillis par les cyclages thermique. Les capteurs développés ont été utilisés afin, d'une part de suivre le vieillissement, mais aussi d'autre part afin de comprendre l'effet de ce vieillissement sur le comportement des puces de puissance. Un banc d'instrumentation dédié a été élaboré et exploité pour la mesure locale de la conductivité électrique par le capteur à courants de Foucault, et l'estimation de la distribution de courants à partir de la mesure de cartographies de champ magnétique par capteurs de champ, ou à partir de la cartographie de la distribution de tension sur la métallisation de source. Ce banc a permis en premier lieu d'évaluer la pertinence et les performances de différents types de capteurs exploitables. Le travail s'est également appuyé sur des techniques de traitement de signal, à la fois pour estimer de manière quantitative les informations de conductivité des métallisations issues des capteurs à courant de Foucault, mais aussi pour l'analyse de la distribution de courant à partir des informations fournies par des capteurs de champ magnétiques. Les modèles utilisés exploitent des techniques de modélisation comportementale (le modèle approché de " transformateur analogique " modélisant capteurs à CF ou bien d'inversion de modèle semi-analytique dans le cas l'estimation de la distribution de courant). Les résultats obtenus à partir de ces modèles nous permettrons, d'une part de mieux comprendre certains mécanismes de défaillance, mais également de proposer une implantation et des structures de capteurs pour le suivi " in situ " de l'intégrité des composants.
APA, Harvard, Vancouver, ISO, and other styles
50

Tangerino, Giovana Tripoloni. "Sistemas de sensoriamento embarcado para uso em controle de aplicações de insumos agrícolas à taxa variável." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18145/tde-02032010-153816/.

Full text
Abstract:
O desenvolvimento de sistemas com capacidade de unir ferramentas tecnológicas é de grande importância para oferecer apoio à Agricultura de Precisão e estimular a criação de grupos interdisciplinares para obter resultados favoráveis à produtividade agrícola. O objetivo desse trabalho é estudar as aplicações de sensoriamento embarcado em máquinas agrícolas, explorando a interface da agricultura com a computação e as engenharias mecânica e elétrica por meio de conceitos e tecnologias de sistemas de medidas. Foram desenvolvidos dois sistemas de sensoriamento embarcados. No primeiro realizou-se coleta de informações sobre refletância e altura das plantas em cultura de cana-de-açúcar. No segundo realizou-se coleta de informações e controle de aplicação de fertilizantes à taxa variável baseado em informações de refletância em cultura de milho. Utilizou-se os sensores Crop Circle (medidas de refletância para monitoramento de status da planta), Sonar (medida de altura de plantas) e GPS (Sistema de Posicionamento Global), com os quais foram realizados ensaios para determinar possíveis fontes de erro em uma operação agrícola. Os sistemas desenvolvidos cumpriram o papel de integradores de conhecimento, possibilitando observações práticas sobre necessidades, falhas e acertos no desenvolvimento de sistemas embarcados para uso em aplicações agrícolas
The development of systems able to join different technological tools is very important in order to provide support for Precision Agriculture and it stimulates the creation of interdisciplinary teams to obtain favorable results to increase agricultural productivity. The main goal of this work is to study applications of embedded sensing systems in agricultural machines, exploring the interface between computer science, mechanical, electrical, and agricultural engineering using concepts and technologies of measurement systems. It was developed two on board sensing systems. The first system collected the data of crop reflectance and plant height in sugar cane growing area. The second one controlled the variable rate fertilizer distribution based on reflectance of maize crop. Were used the sensors Crop Circle (reflectance to monitor the status of the plant), Sonar (plant height) and GPS (Global Positioning System), which were applied to detect some possible error sources during field operation. The systems developed fulfilled the role of integrating knowledge, providing practical observations about the needs, failures and successes in developing embedded systems for use in agricultural production
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography