Academic literature on the topic 'Sensor Fusion and Tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensor Fusion and Tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensor Fusion and Tracking"
Et. al., M. Hyndhavi,. "DEVELOPMENT OF VEHICLE TRACKING USING SENSOR FUSION." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (April 1, 2021): 731–39. http://dx.doi.org/10.17762/itii.v9i2.406.
Full textLiu, Yan Ju, Chun Xiang Xie, and Jian Hui Song. "Research on Fusion Tracking Technology in Heterogeneous Multi-Sensor." Advanced Materials Research 1056 (October 2014): 158–61. http://dx.doi.org/10.4028/www.scientific.net/amr.1056.158.
Full textQin, Y., Xue Hui Wang, Ming Jun Feng, Zhen Zhou, and L. J. Wang. "Research of Asynchronous Multi-Type Sensors Data Fusion." Advanced Materials Research 142 (October 2010): 16–20. http://dx.doi.org/10.4028/www.scientific.net/amr.142.16.
Full textLi, Xin Yu, and Dong Yi Chen. "Sensor Fusion Based on Strong Tracking Filter for Augmented Reality Registration." Key Engineering Materials 467-469 (February 2011): 108–13. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.108.
Full textYi, Chunlei, Kunfan Zhang, and Nengling Peng. "A multi-sensor fusion and object tracking algorithm for self-driving vehicles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 9 (August 2019): 2293–300. http://dx.doi.org/10.1177/0954407019867492.
Full textChen, Bin, Xiaofei Pei, and Zhenfu Chen. "Research on Target Detection Based on Distributed Track Fusion for Intelligent Vehicles." Sensors 20, no. 1 (December 20, 2019): 56. http://dx.doi.org/10.3390/s20010056.
Full textShi, Yifang, Jee Woong Choi, Lei Xu, Hyung June Kim, Ihsan Ullah, and Uzair Khan. "Distributed Target Tracking in Challenging Environments Using Multiple Asynchronous Bearing-Only Sensors." Sensors 20, no. 9 (May 7, 2020): 2671. http://dx.doi.org/10.3390/s20092671.
Full textDeo, Ankur, Vasile Palade, and Md Nazmul Huda. "Centralised and Decentralised Sensor Fusion-Based Emergency Brake Assist." Sensors 21, no. 16 (August 11, 2021): 5422. http://dx.doi.org/10.3390/s21165422.
Full textWöhle, Lukas, and Marion Gebhard. "SteadEye-Head—Improving MARG-Sensor Based Head Orientation Measurements Through Eye Tracking Data." Sensors 20, no. 10 (May 12, 2020): 2759. http://dx.doi.org/10.3390/s20102759.
Full textGuo, Xiaoxiao, Yuansheng Liu, Qixue Zhong, and Mengna Chai. "Research on Moving Target Tracking Algorithm Based on Lidar and Visual Fusion." Journal of Advanced Computational Intelligence and Intelligent Informatics 22, no. 5 (September 20, 2018): 593–601. http://dx.doi.org/10.20965/jaciii.2018.p0593.
Full textDissertations / Theses on the topic "Sensor Fusion and Tracking"
Mathew, Vineet. "Radar and Vision Sensor Fusion for Vehicle Tracking." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574441839857988.
Full textSikdar, Ankita. "Depth based Sensor Fusion in Object Detection and Tracking." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1515075130647622.
Full textMoemeni, Armaghan. "Hybrid marker-less camera pose tracking with integrated sensor fusion." Thesis, De Montfort University, 2014. http://hdl.handle.net/2086/11093.
Full textLundquist, Christian. "Sensor Fusion for Automotive Applications." Doctoral thesis, Linköpings universitet, Reglerteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71594.
Full textSEFS -- IVSS
VR - ETT
Romine, Jay Brent. "Fusion of radar and imaging sensor data for target tracking." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13324.
Full textMoody, Leigh. "Sensors, measurement fusion and missile trajectory optimisation." Thesis, Cranfield University; College of Defence Technology; Department of Aerospace, Power and Sensors, 2003. http://hdl.handle.net/1826/778.
Full textAndersson, Naesseth Christian. "Vision and Radar Sensor Fusion for Advanced Driver Assistance Systems." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94222.
Full textAttalla, Daniela, and Alexandra Tang. "Drones in Arctic Environments: Snow Change Tracking Aid using Sensor Fusion." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235928.
Full textArktis är ett område som är utsatt för stora klimatförändringar, vilka kan vara svåra att spåra. Målet med arbetet är att föreslå, utveckla och utvärdera ett koncept där forskare i arktiska områden gagnas av att använda drönar- och sensorteknik i deras arbete gällande snöablation. Arbetet presenterar ett alternativ till att mäta utplacerade referensstavar med hjälp av ett integrerat sensorsystem monterat på en drönare. Dessa referensstavar borras ned, under snö- och isytan, över ett rutnät på glaciärerna i Arktis under vintern för att sedan mätas under sommaren med avsikt att studera mängden snö som smälter under året. Varje mätning görs således genom att fysiskt gå till varje enskild referensstav. Det framtagna konceptet uppskattar höjden på referensstavarna med hjälp av en framåtriktad LiDAR monterad på en servomotor och en nedåriktad ultraljudssensor. Höjden är uttytt som det högsta ultraljudsavståndet då det framåtriktade sensorsystemet detekterar ett föremål inom 3 m avstånd. Resultaten tyder på att det föreslagna konceptets höjduppskattning av referensstavar är en potentiell lösning inom problemområdet om systemets roll- och pitchvinklar kompenseras för.
Andersson, Anton. "Offline Sensor Fusion for Multitarget Tracking using Radar and Camera Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208344.
Full textMycket resurser läggs på utveckling av självkörande bilsystem. Dessa kan komma att förändra samhället under det kommande decenniet. En viktig del av dessa system är behandling och tolkning av sensordata och skapande av banor för objekt i omgivningen. I detta examensarbete studeras en energiminimeringsmetod tillsammans med radar- och kameramätningar. En energi beräknas för banorna. Denna tar mätningarna, objektets dynamik och fler faktorer i beaktande. Banorna väljs för att minimera denna energi med hjälp av gradientmetoden. Ju lägre energi, desto bättre förväntas banorna att matcha verkligheten. Bearbetning sker offline i motsats till i realtid; offline-bearbetning kan användas då prestandan för sensorer och realtidsbehandlingen utvärderas. Detta möjliggör användning av mer datorkraft och ger möjlighet att använda data som samlats in efter den aktuella tidpunkten. En studie av de ingående parametrarna i den använda energiminimeringsmetoden presenteras, tillsammans med justeringar av den ursprungliga metoden. Metoden ger ett förbättrat resultat jämfört med de enskilda sensormätningarna, och även jämfört med den realtidsmetod som används i bilarna för närvarande. I parameterstudien visas vilka komponenter i energifunktionen som förbättrar metodens prestanda.
Manyika, James. "An information-theoretic approach to data fusion and sensor management." Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:6e6dd2a8-1ec0-4d39-8f8b-083289756a70.
Full textBooks on the topic "Sensor Fusion and Tracking"
Koch, Wolfgang. Tracking and Sensor Data Fusion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39271-9.
Full textKim, Kyungsu. A comparison of nonlinear filters and multi-sensor fusion for tracking boost-phase ballistic missiles. Monterey, California: Naval Postgraduate School, 2009.
Find full textInternational Conference on Information Fusion (7th 2005 Philadelphia, Pa.). 2005 7th International Conference on Information Fusion (FUSION): Philadelphia, PA, 25-28 July, 2005. Piscataway, NJ: IEEE, 2005.
Find full textKadar, Ivan. Signal processing, sensor fusion, and target recognition XIX: 5-7 April 2010, Orlando, Florida, United States. Bellingham, Wash: SPIE, 2010.
Find full textHucks, John A. Fusion of ground-based sensors for optimal tracking of military targets. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textKadar, Ivan. Signal processing, sensor fusion, and target recognition XX: 25-27 April 2011, Orlando, Florida, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.
Find full textItaly) International Conference on Information Fusion (9th 2006 Florence. 2006 9th International Conference on Information Fusion: Florence, Italy, 10-13 July 2006. Piscataway, NJ: IEEE Service Center, 2006.
Find full textFeraille, Olivier. Optimal sensor fusion for changedetection. Manchester: UMIST, 1994.
Find full textRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Find full textRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Find full textBook chapters on the topic "Sensor Fusion and Tracking"
Koch, Wolfgang. "Integration of Advanced Sensor Properties." In Tracking and Sensor Data Fusion, 127–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_7.
Full textNimier, V. "Soft Sensor Management for Multisensor Tracking Algorithm." In Multisensor Fusion, 365–79. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0556-2_15.
Full textKoch, Wolfgang. "Feed-Back to Acquisition: Sensor Management." In Tracking and Sensor Data Fusion, 211–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_10.
Full textKoch, Wolfgang. "Characterizing Objects and Sensors." In Tracking and Sensor Data Fusion, 31–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_2.
Full textKoch, Wolfgang. "Bayesian Knowledge Propagation." In Tracking and Sensor Data Fusion, 53–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_3.
Full textKoch, Wolfgang. "Sequential Track Extraction." In Tracking and Sensor Data Fusion, 83–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_4.
Full textKoch, Wolfgang. "On Recursive Batch Processing." In Tracking and Sensor Data Fusion, 89–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_5.
Full textKoch, Wolfgang. "Aspects of Track-to-Track Fusion." In Tracking and Sensor Data Fusion, 107–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_6.
Full textKoch, Wolfgang. "Integration of Advanced Object Properties." In Tracking and Sensor Data Fusion, 157–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_8.
Full textKoch, Wolfgang. "Integration of Topographical Information." In Tracking and Sensor Data Fusion, 187–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_9.
Full textConference papers on the topic "Sensor Fusion and Tracking"
Wang, Xuezhi, Branko Ristic, Braham Himed, and Bill Moran. "Joint passive sensor scheduling for target tracking." In 2017 20th International Conference on Information Fusion (Fusion). IEEE, 2017. http://dx.doi.org/10.23919/icif.2017.8009854.
Full textGao, Lin, Giorgio Battistelli, Luigi Chisci, and Ping Wei. "Consensus-based joint target tracking and sensor localization." In 2017 20th International Conference on Information Fusion (Fusion). IEEE, 2017. http://dx.doi.org/10.23919/icif.2017.8009847.
Full textNoonan, C. A. "Entropy measures of multi-sensor fusion performance." In IEE Colloquium on Target Tracking and Data Fusion. IEE, 1996. http://dx.doi.org/10.1049/ic:19961362.
Full textNygards, Jonas, Viktor Deleskog, and Gustaf Hendeby. "Decentralized Tracking in Sensor Networks with Varying Coverage." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455669.
Full textWelford, J. "Multi-sensor debris tracking." In IET Seminar on Target Tracking and Data Fusion: Algorithms and Applications. IEE, 2008. http://dx.doi.org/10.1049/ic:20080052.
Full textWilliams, Elmer F. "IR sensor data fusion for target detection, identification, and tracking." In Acquisition, Tracking, and POinting IV. SPIE, 1990. http://dx.doi.org/10.1117/12.2322205.
Full textCoraluppi, Stefano, Craig Carthel, and Andy Coon. "An MHT Approach to Multi-Sensor Passive Sonar Tracking." In 2018 21st International Conference on Information Fusion (FUSION 2018). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455402.
Full textLai, Hoe Chee, Rong Yang, Gee Wah Ng, Felix Govaers, Martin Ulmke, and Wolfgang Koch. "Bearings-only tracking and Doppler-bearing tracking with inequality constraint." In 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF). IEEE, 2017. http://dx.doi.org/10.1109/sdf.2017.8126387.
Full textHarris, C. J. "Multi sensor data fusion for real time aircraft collision." In IEE Colloquium on Target Tracking and Data Fusion. IEE, 1996. http://dx.doi.org/10.1049/ic:19961359.
Full textJudge, I. "RADIX - a solution to multiple sensor data fusion." In IEE International Seminar Target Tracking: Algorithms and Applications. IEE, 2001. http://dx.doi.org/10.1049/ic:20010231.
Full textReports on the topic "Sensor Fusion and Tracking"
Norcross, Richard J. HiCASS target tracking sensor study. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7220.
Full textGarg, Devendra P., and Manish Kumar. Sensor Modeling and Multi-Sensor Data Fusion. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada440553.
Full textAkita, Richard, Robert Pap, and Joel Davis. Biologically Inspired Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada389747.
Full textBaim, Paul. Dynamic Database for Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada363915.
Full textHero, III, Raich Alfred O., and Raviv. Performance-driven Multimodality Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada565491.
Full textROCKWELL INTERNATIONAL ANAHEIM CA. Multi-Sensor Feature Level Fusion. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237106.
Full textMeyer, David, and Jeffrey Remmel. Distributed Algorithms for Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada415039.
Full textCarlson, J. J., A. M. Bouchard, G. C. Osbourn, R. F. Martinez, J. W. Bartholomew, J. B. Jordan, G. M. Flachs, Z. Bao, and L. Zhu. Sensor-fusion-based biometric identity verification. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/573302.
Full textConnors, John J., Kevin Hill, David Hanekamp, William F. Haley, Robert J. Gallagher, Craig Gowin, Arthur R. Farrar, et al. Sensor fusion for intelligent process control. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/919114.
Full textHunn, Bruce P. The Human Factors of Sensor Fusion. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada481551.
Full text