Academic literature on the topic 'Sensor data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensor data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensor data processing"
., A. Hassini, N. Benabadji ., and A. H. Belbachir . "AVHRR Data Sensor Processing." Journal of Applied Sciences 6, no. 11 (May 15, 2006): 2501–5. http://dx.doi.org/10.3923/jas.2006.2501.2505.
Full textGuo, Yixuan, and Gaoyang Liang. "Perceptual Feedback Mechanism Sensor Technology in e-Commerce IoT Application Research." Journal of Sensors 2021 (September 28, 2021): 1–12. http://dx.doi.org/10.1155/2021/3840103.
Full textYang, Yanning, Andrew May, and Shuang Hua Yang. "Sensor data processing for emergency response." International Journal of Emergency Management 7, no. 3/4 (2010): 233. http://dx.doi.org/10.1504/ijem.2010.037008.
Full textKo, Dong-beom, Tae-young Kim, Jeong-Joon Kim, and Jeong-min Park. "Sensor Data Collecting and Processing System." Asia-pacific Journal of Multimedia services convergent with Art, Humanities, and Sociology 7, no. 9 (September 30, 2017): 259–69. http://dx.doi.org/10.14257/ajmahs.2017.09.28.
Full textOdeberg, Hans. "A tactile sensor data-processing system." Sensors and Actuators A: Physical 49, no. 3 (July 1995): 173–80. http://dx.doi.org/10.1016/0924-4247(95)01030-0.
Full textLiu, Yong, Baohua Liang, and Jiabao Jiang. "Information Processing and Data Management Technology in Wireless Sensor Networks." International Journal of Online Engineering (iJOE) 14, no. 09 (September 30, 2018): 66. http://dx.doi.org/10.3991/ijoe.v14i09.8270.
Full textKammerer, Klaus, Rüdiger Pryss, Burkhard Hoppenstedt, Kevin Sommer, and Manfred Reichert. "Process-Driven and Flow-Based Processing of Industrial Sensor Data." Sensors 20, no. 18 (September 14, 2020): 5245. http://dx.doi.org/10.3390/s20185245.
Full textTejero, S., U. Siart, and J. Detlefsen. "Coherent and non-coherent processing of multiband radar sensor data." Advances in Radio Science 4 (September 4, 2006): 73–78. http://dx.doi.org/10.5194/ars-4-73-2006.
Full textKrishnamurthi, Rajalakshmi, Adarsh Kumar, Dhanalekshmi Gopinathan, Anand Nayyar, and Basit Qureshi. "An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques." Sensors 20, no. 21 (October 26, 2020): 6076. http://dx.doi.org/10.3390/s20216076.
Full textManohar, Nathan, Abhishek Jain, and Amit Sahai. "Self-Processing Private Sensor Data via Garbled Encryption." Proceedings on Privacy Enhancing Technologies 2020, no. 4 (October 1, 2020): 434–60. http://dx.doi.org/10.2478/popets-2020-0081.
Full textDissertations / Theses on the topic "Sensor data processing"
Yelasani, kailash kumar yadav. "ECONOMIZED SENSOR DATA PROCESSING WITH VEHICLE PLATOONING." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2305.
Full textMa, Ding. "Miniature data acquisition system for multi-channel sensor arrays." Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/d_ma_042610.pdf.
Full textTitle from PDF title page (viewed on July 23, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 55-57).
Petersson, Henrik. "Multivariate Exploration and Processing of Sensor Data-applications with multidimensional sensor systems." Doctoral thesis, Linköpings universitet, Tillämpad Fysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14879.
Full textEn sensor är en komponent som överför en fysikalisk, kemisk, eller biologisk storhet eller kvalitet till en utläsbar signal. Sensorer utgör idag en viktig del i flertalet högteknologiska produkter och sensorforskning är ett aktivt område. Komplexiteten på sensorbaserade system ökar och det blir möjligt att registrera allt er olika typer av mätsignaler. Mätsignalerna är inte alltid direkt tydbara, varvid signalbehandling blir ett väsentligt verktyg för att vaska fram den viktiga information som sökes. Signalbehandling av sensorsignaler är dessvärre inte en okomplicerad procedur och det finns många aspekter att beakta. Av denna anledning har signalbehandling och analys av sensorsignaler utvecklats till ett eget forskningsområde. Denna avhandling avhandlar metoder för att analysera komplexa multidimensionella sensorsignaler. En introduktion ges till metoder för att, utifrån mätningar, klassificera och kvantifiera egenskaper hos mätobjekt. En överblick ges av de effekter som kan uppstå på grund av imperfektioner hos sensorerna och en diskussion föres kring metoder för att undvika eller lindra de problem som dessa imperfektioner kan ge uppkomst till. Speciell vikt lägges vid sådana metoder som medför en direkt applicerbarhet och nytta för system av kemiska sensorer. I avhandlingen ingår fyra artiklar, som vart och en belyser hur de metoder som beskrivits kan användas i praktiska situationer.
Sensor,
Yang, Yanning. "Wireless sensor data processing for on-site emergency response." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8501.
Full textWilking, Benjamin [Verfasser]. "Generic sensor data fusion in information space and a new approach to processing dense sensor data / Benjamin Wilking." Ulm : Universität Ulm, 2018. http://d-nb.info/1151938157/34.
Full textKallumadi, Surya Teja. "Data aggregation in sensor networks." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/2387.
Full textMurshed, Md Golam. "Energy efficient data gathering in wireless sensor networks." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=210783.
Full textZhu, Wenyao. "Time-Series Feature Extraction in Embedded Sensor Processing System." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281820.
Full textInbyggda sensorbaserade system monterade med tiotals eller hundratals senso- rer kan samla in enorma tidsseriedata, medan dataanalysen på dessa tidsserier vanligtvis utförs på en fjärrserver. Med utvecklingen av mikroprocessorer har behovet att flytta analysprocessen till de lokala inbäddade systemen ökat. I detta examensarbete är målet att undersöka vilka tidsserie-extraktionsmetoder som är lämpliga för de inbäddade sensorbehandlingssystemen.Som forskningsproblem för målet har vi undersökt traditionella statistik- metoder och maskininlärningsmetoder för tidsserie-data mining. För att be- gränsa forskningsområdet fokuserar examensarbet på likhetssökningsmetoder tillsammans med klusteralgoritmer från tidsserieens feature extraktionsper- spektiv. I projektet har vi valt och implementerat två klusteralgoritmer, K- means och Self-Organizing Map (SOM), i kombination med två likhetssök- ningsmetoder, det euklidiska avståndet och Dynamic Time Warping (DTW). Resultaten utvärderas med fyra offentliga datasätt med märkt data. Randin- dex (RI) används för att utvärdera noggrannheten. Vi har testat prestandan för noggrannhet och tidsförbrukning för de fyra kombinationerna av de valda al- goritmerna på den inbäddade plattformen.Resultaten visar att SOM med DTW i allmänhet kan uppnå bättre nog- grannhet med en relativt längre inferenstid än de andra utvärderade metoder- na. Kvantitativt kan SOM med DTW uföra klustring på ett tidsserieprov med 300 datapunkter för tolv klasser på 40 ms med en ESP32-inbäddad mikropro- cessor, vilket är en 4-procentig förbättring i noggrannhet i RI-poäng jämfört med det snabbaste K-medel klustringen med Euklidiskt avstånd. Vi drar slut- satsen att SOM med DTW algoritmen kan användas för att hantera tidsserie- klusteruppgifter på de inbäddade sensorbehandlingssystemen om tidsbehovet inte är så strängt.
Danna, Nigatu Mitiku, and Esayas Getachew Mekonnen. "Data Processing Algorithms in Wireless Sensor Networks får Structural Health Monitoring." Thesis, KTH, Bro- och stålbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72241.
Full textJardak, Christine [Verfasser]. "The storage and data processing in wireless sensor networks / Christine Jardak." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1024800121/34.
Full textBooks on the topic "Sensor data processing"
Sensor array signal processing. Boca Raton, FL: CRC Press, 2001.
Find full textNaidu, Prabhakar S. Sensor array signal processing. 2nd ed. Boca Raton: CRC Press, 2009.
Find full textMulti-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Find full textData acquisition for sensor systems. London: Chapman & Hall, 1997.
Find full textRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Find full textRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: Taylor & Francis, 2010.
Find full textRaol, J. R. Multi-sensor data fusion with MATLAB. Boca Raton: CRC Press, 2010.
Find full textSensor modelling, design and data processing for autonomous navigation. River Edge, NJ: World Scientific, 1999.
Find full textL, Hall David. Mathematical techniques in multi-sensor data fusion. 2nd ed. Boston: Artech House, 2004.
Find full textClark, James J. Data Fusion for Sensory Information Processing Systems. Boston, MA: Springer US, 1990.
Find full textBook chapters on the topic "Sensor data processing"
Berns, Karsten, Alexander Köpper, and Bernd Schürmann. "Sensor Data Processing." In Lecture Notes in Electrical Engineering, 227–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65157-2_8.
Full textColubri, Andrés. "Reading Sensor Data." In Processing for Android, 143–56. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2719-0_7.
Full textMcGrath, Michael J., and Cliodhna Ní Scanaill. "Processing and Adding Vibrancy to Sensor Data." In Sensor Technologies, 97–113. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-6014-1_5.
Full textKoch, Wolfgang. "On Recursive Batch Processing." In Tracking and Sensor Data Fusion, 89–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39271-9_5.
Full textWang, Fusheng, Chunjie Zhou, and Yanming Nie. "Event Processing in Sensor Streams." In Managing and Mining Sensor Data, 77–102. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-6309-2_4.
Full textAggarwal, Charu C., and Jiawei Han. "A Survey of RFID Data Processing." In Managing and Mining Sensor Data, 349–82. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-6309-2_11.
Full textWang, Lixin, Lei Chen, and Dimitris Papadias. "Query Processing in Wireless Sensor Networks." In Managing and Mining Sensor Data, 51–76. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-6309-2_3.
Full textColubri, Andrés. "Driving Graphics and Sound with Sensor Data." In Processing for Android, 157–80. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2719-0_8.
Full textChang, Marcus, and Andreas Terzis. "Data Gathering, Storage, and Post-Processing." In The Art of Wireless Sensor Networks, 497–534. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40009-4_15.
Full textElhoseny, Mohamed, and Aboul Ella Hassanien. "An Encryption Model for Data Processing in WSN." In Dynamic Wireless Sensor Networks, 145–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92807-4_7.
Full textConference papers on the topic "Sensor data processing"
Cecchi, Daniele, Bartolome Garau, Elena Camossi, Alessandro Berni, and Emanuel Coelho. "Sensor-driven glider data processing." In OCEANS 2015 - Genova. IEEE, 2015. http://dx.doi.org/10.1109/oceans-genova.2015.7271466.
Full textLauer, Johannes, Nicolas Billen, and Alexander Zipf. "Processing crowd sourced sensor data." In the Sixth ACM SIGSPATIAL International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2533828.2533839.
Full textMartinez, David R. "ISR sensor processing and data exploitation." In 2010 IEEE Radar Conference. IEEE, 2010. http://dx.doi.org/10.1109/radar.2010.5494390.
Full textLi, Bingcheng. "Network dynamics based sensor data processing." In Automatic Target Recognition XXX, edited by Timothy L. Overman, Riad I. Hammoud, and Abhijit Mahalanobis. SPIE, 2020. http://dx.doi.org/10.1117/12.2558194.
Full textShafagh, Hossein, Lukas Burkhalter, and Anwar Hithnawi. "Talos a Platform for Processing Encrypted IoT Data." In SenSys '16: The 14th ACM Conference on Embedded Network Sensor Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2994551.2996536.
Full textJit, Biswas, Zhu Yongwei, Zhang Haihong, Jayachandran Maniyeri, Chen Zhihao, and Guan Cuntai. "Information processing of optical sensor data in ambient applications." In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2014. http://dx.doi.org/10.1109/issnip.2014.6827631.
Full textSeo, Seungmin, Sejin Chun, Byungkook Oh, and Kyong-Ho Lee. "SDPA: Sensor Data Processing Architecture for Modeling Semantic Data from Sensor Steams." In 2015 IEEE International Conference on Information Reuse and Integration (IRI). IEEE, 2015. http://dx.doi.org/10.1109/iri.2015.13.
Full textPani, Abhilash, Jinendra Gugaliya, and Mekapati Srinivas. "Data Driven Soft Sensor for Condition Monitoring of Sample Handling System (SHS)." In 9th International Conference on Natural Language Processing (NLP 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101423.
Full textKwon, Soonmok, Jongmin Shin, Dongmin Yang, and Cheeha Kim. "Practical approach to sensor data gathering." In 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2008. http://dx.doi.org/10.1109/issnip.2008.4762046.
Full textYingwen Chen, Hong Va Leong, Ming Xu, Jiannong Cao, K. C. C. Chan, and A. T. S. Chan. "In-Network Data Processing forWireless Sensor Networks." In 7th International Conference on Mobile Data Management (MDM'06). IEEE, 2006. http://dx.doi.org/10.1109/mdm.2006.96.
Full textReports on the topic "Sensor data processing"
Rhodes, William T. Optical Digital Algebraic Processing for Multi-Sensor-Array Data. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada167196.
Full textSpina, John F. Integrated RF Sensor Signal/Data Processing Information Analysis Center (IAC). Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada401075.
Full textThomas, Maikel A., Heidi Anne Smartt, and Robert F. Matthews. Processing large sensor data sets for safeguards : the knowledge generation system. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039393.
Full textDodge, D. Correlation Processing Of Local Seismic Data: Applications for Autonomous Sensor Deployments. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1016983.
Full textWicker, Steven B. Self-Configuring Wireless Transmission and Decentralized Data Processing for Generic Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada425425.
Full textRamchandran, Kannan, and Kristofer Pister. Sensor Webs of SmartDust: Distributed Signal Processing/Data Fusion/Inferencing in Large Microsensor Arrays. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422190.
Full textHamlin, Alexandra, Erik Kobylarz, James Lever, Susan Taylor, and Laura Ray. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42562.
Full textHoward, Kevin. A Proof of Concept for 10x+ Efficiency Gains for Multi-Sensor Data Fusion Utilizing a Howard Cascade Parallel Processing System. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada417911.
Full textFuentes, Anthony, Michelle Michaels, and Sally Shoop. Methodology for the analysis of geospatial and vehicle datasets in the R language. Cold Regions Research and Engineering Laboratory (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42422.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text