Journal articles on the topic 'Sensitivity of nematic layers'

To see the other types of publications on this topic, follow the link: Sensitivity of nematic layers.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sensitivity of nematic layers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Trabelsi, Youssef, Walid Belhadj, Naim Ben Ali, and Arafa H. Aly. "Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal." Photonics 8, no. 5 (May 1, 2021): 150. http://dx.doi.org/10.3390/photonics8050150.

Full text
Abstract:
In this work, the transfer matrix method (TMM) is employed to investigate the optical properties of one-dimensional periodic and quasiperiodic photonic crystals containing nematic liquid crystal (NLC) layers. This structure is expressed as (ABC)J(CBA)J and made of alternated layers of isotropic dielectrics SiO2 (A), BGO (B) and nematic liquid crystal (C). The simulation study shows that the proposed ternary configuration exhibits tunable defect mode within the photonic band gap (PBG) that can be manipulated by adjusting the thicknesses of NLC layers in order of the periodic lattice. In addition, the optimized structure permits for strong confinement light giving rise to an optical microcavity. The application of an applied voltage into NLC layers enables improving the sensitivity by guiding the local defect mode. It has been also shown that by applying quasiperiodic inflation according to Rudin Shapiro Sequence (RSS) scheme to main periodic structure, several tunable resonant modes appear within the PBG. The presence of such sharp resonant peaks reflects that the quasiperiodic NLC-based structure behaves like multiple microcavites with strong light-matter coupling.
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Tsung-Keng, Mon-Juan Lee, and Wei Lee. "Quantitative Biosensing Based on a Liquid Crystal Marginally Aligned by the PVA/DMOAP Composite for Optical Signal Amplification." Biosensors 12, no. 4 (April 7, 2022): 218. http://dx.doi.org/10.3390/bios12040218.

Full text
Abstract:
The working principle for a liquid crystal (LC)-based biosensor relies on the disturbance in the orderly aligned LC molecules induced by analytes at the LC-aqueous or LC-solid interface to produce optical signals that can be typically observed under a polarizing optical microscope (POM). Our previous studies demonstrate that such optical response can be enhanced by imposing a weak electric field on LCs so that they are readily tilted from the homeotropic alignment in response to lower concentrations of analytes at the LC-glass interface. In this study, an alternative approach toward signal amplification is proposed by taking advantage of the marginally tilted alignment configuration without applying an electric field. The surface of glass substrates was modified with a binary aligning agent of poly(vinyl alcohol) (PVA) and dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP), in which the amount of PVA was fine-tuned so that the interfacing LC molecules were slightly tilted but remained virtually homeotropically aligned to yield no light leakage under the POM in the absence of an analyte. Two nematic LCs, E7 and 5CB, were each sandwiched between two parallel glass substrates coated with the PVA/DMOAP composite for the detection of bovine serum albumin (BSA), a model protein, and cortisol, a small-molecule steroid hormone. Through image analysis of the optical appearance of E7 observed under the POM, a limit of detection (LOD) of 2.5 × 10−8 μg/mL for BSA and that of 3 × 10−6 μg/mL for cortisol were deduced. Both values are significantly lower than that obtained with only DMOAP as the alignment layers, which correspond to signal amplification of more than six orders of magnitude. The new approach for signal amplification reported in this work enables analytes of a wide range of molecular weights to be detected with high sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
3

Schell, K. T., and R. S. Porter. "Wave Structures in Nematic Layers." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 174, no. 1 (September 1989): 141–51. http://dx.doi.org/10.1080/00268948908042700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mirantsev, L. V. "Oscillations in thin nematic layers." Liquid Crystals 11, no. 3 (March 1992): 421–30. http://dx.doi.org/10.1080/02678299208029000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hotra, Z., Z. Mykytyuk, O. Hotra, A. Fechan, O. Syshynskyy, O. Yasynovska, and V. Kotsun. "The Cholesteric-Nematic Transition in Thin Layers of Nematic-Cholesteric Mixtures." Molecular Crystals and Liquid Crystals 534, no. 1 (January 13, 2011): 32–40. http://dx.doi.org/10.1080/15421406.2010.526565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leenhouts, F., and M. Schadt. "Optics of Twisted Nematic Liquid Crystal Layers." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 158, no. 2 (May 1988): 241–53. http://dx.doi.org/10.1080/00268948808076144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wagner, Wilfred L. "Chiral-Nematic Layers With Asymmetric Boundary Coupling." Molecular Crystals and Liquid Crystals 209, no. 1 (December 1991): 85–92. http://dx.doi.org/10.1080/00268949108036181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sparavigna, A., L. Komitov, P. Palffy-Muhoray, and A. Strigazzi. "Bend-stripes in hybrid aligned nematic layers." Liquid Crystals 14, no. 6 (January 1993): 1945–52. http://dx.doi.org/10.1080/02678299308027730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schiller, P. "Perturbation theory for planar nematic twisted layers." Liquid Crystals 4, no. 1 (January 1989): 69–78. http://dx.doi.org/10.1080/02678298908028959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoogboom, Johan, Theo Rasing, Alan E. Rowan, and Roeland J. M. Nolte. "LCD alignment layers. Controlling nematic domain properties." J. Mater. Chem. 16, no. 14 (2006): 1305–14. http://dx.doi.org/10.1039/b510579j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stark, Holger, Jun-ichi Fukuda, and Hiroshi Yokoyama. "Nematic wetting layers in liquid crystal colloids." Journal of Physics: Condensed Matter 16, no. 19 (April 29, 2004): S1911—S1919. http://dx.doi.org/10.1088/0953-8984/16/19/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kelly, G., N. J. Mottram, and A. Ramage. "Electric Field Effects on Nematic Wetting Layers." Molecular Crystals and Liquid Crystals 438, no. 1 (June 1, 2005): 271/[1835]—282/[1846]. http://dx.doi.org/10.1080/15421400590955541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hertrich, A., W. Decker, W. Pesch, and L. Kramer. "The electrohydrodynamic instability in homeotropic nematic layers." Journal de Physique II 2, no. 11 (November 1992): 1915–30. http://dx.doi.org/10.1051/jp2:1992243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sergan, Tatiana, Tod Schneider, Jack Kelly, and O. D. Lavrentovich. "Polarizing-alignment layers for twisted nematic cells." Liquid Crystals 27, no. 5 (May 2000): 567–72. http://dx.doi.org/10.1080/026782900202390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Derfel, Grzegorz, and Mariola Felczak. "Polarized states of hybrid aligned nematic layers." Liquid Crystals 29, no. 7 (July 2002): 889–97. http://dx.doi.org/10.1080/02678290210143915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

FELCZAK, MARIOLA, and GRZEGORZ DERFEL. "Threshold flexoelectric deformations in homeotropic nematic layers." Liquid Crystals 30, no. 6 (June 2003): 739–46. http://dx.doi.org/10.1080/0267829031000115014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

GILLI, J. M., S. THIBERGE, A. VIERHEILIG, and F. FRIED. "Inversion walls in homeotropic nematic and cholesteric layers." Liquid Crystals 23, no. 5 (November 1997): 619–28. http://dx.doi.org/10.1080/026782997207894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lavrentovich, O. D., and V. M. Pergamenshchik. "Periodic Domain Structures in Thin Hybrid Nematic Layers." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 179, no. 1 (February 1990): 125–32. http://dx.doi.org/10.1080/00268949008055362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Derfel, Grzegorz. "Stationary states of hybrid aligned flexoelectric nematic layers." Liquid Crystals 34, no. 10 (October 2007): 1201–14. http://dx.doi.org/10.1080/02678290701640256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sullivan, Donald E., and Reinhard Lipowsky. "On the free energy of nematic wetting layers." Canadian Journal of Chemistry 66, no. 4 (April 1, 1988): 553–56. http://dx.doi.org/10.1139/v88-094.

Full text
Abstract:
The contributions to the free energy of a nematic wetting layer as a function of its thickness l are analyzed. The longest-range contribution is due to distortion of the nematic director across the film, resulting from different preferred molecular orientations at the two interfaces bounding the film. Van der Waals forces as well as the decaying tails of the interfacial order-parameter profiles yield contributions to the free energy of successively shorter range. These effects lead to crossovers between different scaling régimes for variation of the mean wetting-layer thickness with temperature. Experimental implications of the results are described.
APA, Harvard, Vancouver, ISO, and other styles
21

Mottram, N. J., and S. J. Hogan. "Multiple solutions in twisted nematic liquid crystal layers." Continuum Mechanics and Thermodynamics 9, no. 4 (August 1, 1997): 213–28. http://dx.doi.org/10.1007/s001610050067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Caputo, R., A. V. Sukhov, C. Umeton, and R. F. Ushakov. "Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures." Journal of Experimental and Theoretical Physics 91, no. 6 (December 2000): 1190–97. http://dx.doi.org/10.1134/1.1342885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alaverdyan, R. B., A. M. Grigoryan, and Yu S. Chilingaryan. "Convection in relatively thin layers of nematic liquid crystals." Journal of Contemporary Physics (Armenian Academy of Sciences) 43, no. 1 (February 2008): 19–22. http://dx.doi.org/10.3103/s1068337208010040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

FRUNZA, S., L. FRUNZA, M. PETROV, and G. BARBERO. "Elastic model for twisted nematic textures in OOBA layers." Liquid Crystals 24, no. 2 (February 1998): 215–18. http://dx.doi.org/10.1080/026782998207389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Krishnamurthy, K. S., and R. Balakrishnan. "Electroconvective Instabilities in Freely Suspended and Bound Nematic Layers." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 303, no. 1 (September 1997): 349–54. http://dx.doi.org/10.1080/10587259708039445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Derfel, G., and M. Buczkowska. "Electric field induced deformations of twisted flexoelectric nematic layers." Liquid Crystals 42, no. 9 (June 18, 2015): 1213–20. http://dx.doi.org/10.1080/02678292.2015.1033770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Derfel, G. "Stability of the periodic deformations in planar nematic layers." Liquid Crystals 11, no. 3 (March 1992): 431–38. http://dx.doi.org/10.1080/02678299208029001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Derfel, G., and M. Buczkowska. "Electro-optical effects in hybrid aligned flexoelectric nematic layers." Journal of Applied Physics 114, no. 17 (November 7, 2013): 173510. http://dx.doi.org/10.1063/1.4829007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Krzyżański, D., and G. Derfel. "Magnetic-field-induced periodic deformations in planar nematic layers." Physical Review E 61, no. 6 (June 1, 2000): 6663–68. http://dx.doi.org/10.1103/physreve.61.6663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lavrentovich, O., V. Pergamenshchik, and V. Sergan. "Surface Polarization and Domain Structures in Thin Nematic Layers." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 192, no. 1 (January 1, 1990): 239–43. http://dx.doi.org/10.1080/00268949008035635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chuvyrov, A. N., A. P. Krekhov, Yu A. Lebedev, and Yu I. Timirov. "Soliton-like defects in nematic liquid crystal thin layers." Journal of Experimental and Theoretical Physics 123, no. 5 (November 2016): 899–907. http://dx.doi.org/10.1134/s1063776116110054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Becker, M. E., J. Nehring, and T. J. Scheffer. "Theory of twisted nematic layers with weak boundary coupling." Journal of Applied Physics 57, no. 10 (May 15, 1985): 4539–42. http://dx.doi.org/10.1063/1.335355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Novoseletski, Nikolai V., Galina N. Dorozhkina, Sofia I. Torgova, and Boris A. Umanski. "Alignment of Nematic Liquid Crystals by Photo-oriented Layers." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 352, no. 1 (November 2000): 27–35. http://dx.doi.org/10.1080/10587250008023158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schiller, P., G. Pelzl, and D. Demus. "Analytical theory for flexo-electric domains in nematic layers." Crystal Research and Technology 25, no. 1 (January 1990): 111–16. http://dx.doi.org/10.1002/crat.2170250121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wagner, W. L. "Asymmetric Tilt and Twist Coupling for Chiral-Nematic Layers." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 257, no. 1 (December 1994): 113–24. http://dx.doi.org/10.1080/10587259408033768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Walton, H. G., and M. J. Towler. "Nematic director configurations in high pretilt, parallel aligned layers." Liquid Crystals 27, no. 2 (February 2000): 157–61. http://dx.doi.org/10.1080/026782900202912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Buczkowska, M., and G. Derfel. "Backflow in flexoelectric nematic layers deformed by electric field." Liquid Crystals 41, no. 2 (October 24, 2013): 169–75. http://dx.doi.org/10.1080/02678292.2013.846423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shmeliova, D. V., S. V. Pasechnik, S. S. Kharlamov, A. Sh Saidgaziev, and V. A. Podolsky. "Electrokinetic Phenomena in Homeotropic Layers of Nematic Liquid Crystal." Liquid Crystals and their Application 21, no. 3 (September 30, 2021): 39–44. http://dx.doi.org/10.18083/lcappl.2021.3.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

LUKISHOVA, SVETLANA G., ROBERT W. BOYD, NICK LEPESHKIN, and KENNETH L. MARSHALL. "CUMULATIVE BIREFRINGENCE EFFECTS OF NANOSECOND LASER PULSES IN DYE-DOPED PLANAR NEMATIC LIQUID CRYSTAL LAYERS." Journal of Nonlinear Optical Physics & Materials 11, no. 04 (December 2002): 341–50. http://dx.doi.org/10.1142/s0218863502001097.

Full text
Abstract:
New cumulative effects in laser-induced birefringence have been observed under 10-Hz-pulse-repetition-rate, nanosecond-duration laser irradiation of azo-dye-doped planar-nematic liquid crystal layers at incident intensities I ~ 1–10 MW/cm2. An irradiation geometry with the incident polarization parallel to the nematic director was used. his geometry does not permit a first-order electric field induced reorientation of the nematic molecules, allowing us to exclude its contribution to the nonlinear response. New laser-induced birefringence effects with a buildup time of several seconds to minutes manifest themselves in: • the appearance of a polarization component perpendicular to the nematic director; • two different modes of spatial pattern formation with different patterns for parallel and perpendicular polarization: (1) At I ~ 1–5 MW/cm2, the perpendicular polarization component forms a four-leaf-clover (a Maltese-like cross) spatial pattern in the far-field from the initial Gaussian spatial intensity distribution. The incident, parallel polarization component forms a round spot with a single ring spatial pattern. (2) At higher incident intensities (I ~ 5–10 MW/cm2), a second regime of pattern formation is observed in the form of high definition patterns and only for the polarization component parallel to the nematic director.
APA, Harvard, Vancouver, ISO, and other styles
40

Baimakova, O. A., O. A. Scaldin, and A. N. Chuvyrov. "The Orientational Instability of Nematic Homeostropic Layers under Osciliatory Shear." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 265, no. 1 (June 1995): 299–314. http://dx.doi.org/10.1080/10587259508041701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

El-Rabiaey, Mahmoud A., Nihal F. F. Areed, and Salah S. A. Obayya. "Novel Plasmonic Data Storage Based on Nematic Liquid Crystal Layers." Journal of Lightwave Technology 34, no. 16 (August 15, 2016): 3726–32. http://dx.doi.org/10.1109/jlt.2016.2582838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Derfel, G. "Electric field effects in nematic layers with weak boundary anchoring." Liquid Crystals 10, no. 1 (July 1991): 29–34. http://dx.doi.org/10.1080/02678299108028226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Derfel, Grzegorz. "Development of the Shear Flow Induced Deformation in Nematic Layers." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 191, no. 1 (November 1990): 377–81. http://dx.doi.org/10.1080/00268949008038621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

D'Elia, S., C. Versace, N. Scaramuzza, Y. Marinov, and A. G. Petrov. "Pretilted Nematic Layers of 5CB on PTFE Treated Glass Supports." Molecular Crystals and Liquid Crystals 465, no. 1 (March 26, 2007): 301–8. http://dx.doi.org/10.1080/15421400701206154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ito, R., T. Kumagai, H. Yoshida, K. Takeya, M. Ozaki, M. Tonouch, and T. Nose. "THz Nematic Liquid Crystal Devices Using Stacked Membrane Film Layers." Molecular Crystals and Liquid Crystals 543, no. 1 (June 30, 2011): 77/[843]—84/[850]. http://dx.doi.org/10.1080/15421406.2011.568334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Virga, Epifanio G., and Martin Schadt. "Corrugations on the Free Surface of Nematic Liquid Crystal Layers." Japanese Journal of Applied Physics 39, Part 1, No. 12A (December 15, 2000): 6637–42. http://dx.doi.org/10.1143/jjap.39.6637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kowerdziej, Rafał, Janusz Parka, Piotr Nyga, and Bartłomiej Salski. "Simulation of a tunable metamaterial with nematic liquid crystal layers." Liquid Crystals 38, no. 3 (March 22, 2011): 377–79. http://dx.doi.org/10.1080/02678292.2010.549614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Derfel, G., and M. Buczkowska. "Dynamics of electric field induced deformations in flexoelectric nematic layers." Liquid Crystals 40, no. 2 (October 31, 2012): 272–80. http://dx.doi.org/10.1080/02678292.2012.740507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Van de Witte, Peter, Martin Brehmer, and Johan Lub. "LCD components obtained by patterning of chiral nematic polymer layers." Journal of Materials Chemistry 9, no. 9 (1999): 2087–94. http://dx.doi.org/10.1039/a902593f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Schiller, P., and D. Demus. "Analytical theory for the Freedericksz transition in twisted nematic layers." Displays 10, no. 2 (April 1989): 67–70. http://dx.doi.org/10.1016/0141-9382(89)90111-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography