Academic literature on the topic 'Sensing element'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensing element.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensing element"
Marle, Olivier, and Jae-Bong Koo. "Programmable Hall Effect Sensing Element." International Journal of Automotive Engineering 7, no. 4 (2016): 153–59. http://dx.doi.org/10.20485/jsaeijae.7.4_153.
Full textCataldo, Andrea, Raissa Schiavoni, Antonio Masciullo, Giuseppe Cannazza, Francesco Micelli, and Egidio De Benedetto. "Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements." Sensors 21, no. 14 (July 16, 2021): 4872. http://dx.doi.org/10.3390/s21144872.
Full textOdoi, Wataru, and Hidetoshi Takahashi. "Pitot tube using flexible sensing element." Proceedings of the Symposium on Micro-Nano Science and Technology 2019.10 (2019): 20pm3PN218. http://dx.doi.org/10.1299/jsmemnm.2019.10.20pm3pn218.
Full textYang, Xing, Zhao-ying Zhou, Ying Wu, Jin Zhang, and Ying-ying Zhang. "A carbon nanotube-based sensing element." Optoelectronics Letters 3, no. 2 (March 2007): 81–84. http://dx.doi.org/10.1007/s11801-007-7023-1.
Full textIgnatov, Anton I., and Alexander M. Merzlikin. "Two optical sensing elements for H2O and NO2 gas sensing based on the single plasmonic – photonic crystal slab." Advanced Optical Technologies 9, no. 4 (September 25, 2020): 203–8. http://dx.doi.org/10.1515/aot-2019-0059.
Full textMishra, Surabhi, Pooja Lohia, Priyanka Chaudhary, B. C. Yadav, D. K. Dwivedi, Hassan Fouad, and M. S. Akhtar. "High-Performance Humidity Sensing of Arsenic Based Chalcogenide Thin Films at Different Frequencies." Science of Advanced Materials 13, no. 10 (October 1, 2021): 2033–42. http://dx.doi.org/10.1166/sam.2021.4153.
Full textKuswanto, Heru, Ichwan Abimanyu, and Wipsar Sunu Brams Dwandaru. "Increasing the Sensitivity of Polymer Optical Fiber Sensing Element in Detecting Humidity: Combination of Macro and Micro Bendings." Trends in Sciences 19, no. 7 (March 12, 2022): 3200. http://dx.doi.org/10.48048/tis.2022.3200.
Full textAbdollahzadeh, Mohammad Amin, Adnan Kefal, and Mehmet Yildiz. "A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements." Sensors 20, no. 14 (July 8, 2020): 3808. http://dx.doi.org/10.3390/s20143808.
Full textSavino, Pierclaudio, Francesco Tondolo, Marco Gherlone, and Alexander Tessler. "Application of Inverse Finite Element Method to Shape Sensing of Curved Beams." Sensors 20, no. 24 (December 8, 2020): 7012. http://dx.doi.org/10.3390/s20247012.
Full textChakarborty, Sekhar, Sudip Suklabaidya, D. Bhattacharjee, and Syed Arshad Hussain. "Polydiacetylene (PDA) Film: A unique sensing element." Materials Today: Proceedings 5, no. 1 (2018): 2367–72. http://dx.doi.org/10.1016/j.matpr.2017.09.243.
Full textDissertations / Theses on the topic "Sensing element"
Miller, Dawn Elizabeth. "Underground cable fault location using multi-element gas sensing." Thesis, University of Manchester, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681492.
Full textCurtis, Andrew W. 1970. "A nonlinearly compliant transmission element for force sensing and control." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/89260.
Full textSt, Quintin Andra. "Electron beam lithography of a diffractive element for surface plasmon resonance sensing." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114573.
Full textLa résonance plasmonique de surface (SPR) est considérée comme une option convenable pour le développement de capteurs biologiques offrant un système de détection portatif, en temps réel et intégré. Certains instruments utilisant cette technique de détection ont déjà été commercialisés; cependant, la tendance se maintient pour le développement de systèmes qui sont encore plus compacts et intégrés. Dans cette même direction, un dispositif SPR à multiples canaux basé sur des lentilles diffractives pour focaliser la lumière vers et depuis les régions de détection a été conçu précédemment. Cette thèse présente la conception d'un procédé de fabrication pour ces lentilles utilisant la lithographie par faisceau d'électrons ainsi que les résultats optiques obtenus avec un prototype. Il est démontré que le procédé de fabrication permet un grand contrôle de l'alignement du motif et de la taille des détails. La méthode conçue est ensuite utilisée pour créer une lentille diffractive et réflective sur un substrat de silicium. L'efficacité de diffraction de la lentille est de 18% environ et la taille du faisceau au foyer est en accord avec les prédictions basées sur le profile de fabrication.
Xu, Zhi-Hui. "Mechanical Characterisation of Coatings and Composites-Depth-Sensing Indentation and Finite Element Modelling." Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3770.
Full textIn the past two decades depth-sensing indentation has becomea widely used technique to measure the mechanical properties ofmaterials. This technique is particularly suitable for thecharacterisation of materials at sub-micro or nano scale thoughthere is a tendency to extend its application to the micro ormacro scale. The load-penetration depth curve of depth-sensingindentation is a characteristic of a material and can be usedfor analysing various mechanical properties in addition tohardness. This thesis deals with the mechanicalcharacterisation of bulk materials, thin films and coatings,gradient materials, and composites using depth-sensingindentation. Finite element method has been resorted to as atool to understand the indentation behaviour of materials.
The piling-up or sinking-in behaviour of materials plays animportant role in the accurate determination of materialsproperties using depth-sensing indentation. Finite elementsimulations show that the piling-up or sinking-in behaviour isdetermined by the material parameters, namelyE/σyratio and strain hardening exponent orexperimental parameterhe/hmaxratio, and the contact friction. Anempirical model has been proposed to relate the contact area ofindentation to theE/σyratio and thehe/hmaxratio and used to predict thepiling-up orsinking-in of materials. The existence of friction is found toenhance the sinking-in tendency of materials. A generalrelationship between the hardness and the indentationrepresentative stress valid for both soft and hard materialshas been obtained. A possible method to estimate the plasticproperties of bulk materials has been suggested.
Measuring the coating-only properties requires theindentation to be done within a critical penetration depthbeyond which substrate effect comes in. The ratio of thecritical penetration depth to the coating thickness determinedby nanoindentation is independent of coating thickness andabout 0.2 for gold / nickel, 0.4 for aluminium / BK7 glass, and0.2 for diamond-like-carbon / M2 steel and alumina / nickel.Finite element simulations show that this ratio is dependent onthe combination of the coating and the substrate and moresensitive to differences in the elastic properties than in theplastic properties of the coating/substrate system. Thedeformation behaviour of coatings, such as, piling-up of thesoft coatings and cracking of the hard coatings, has also beeninvestigated using atomic force microscope.
The constraint factors, 2.24 for WC phase and 2.7 for WC-Cocemented carbides, are determined through nanoindentation andfinite element simulations. A modified hardness model of WC-Cocemented carbides has been proposed, which gives a betterestimation than the Lee and Gurland hardness model. Finiteelement method has also been used to investigate theindentation behaviour of WC-Co gradient coatings.
Keywords:depth-sensing indentation, nanoindentation,finite element method, atomic force microscope, mechanicalproperties, hardness, deformation, dislocations, cracks,piling-up, sinking-in, indentation size effect, thin coatings,composite, gradient materials, WC-Co, diamond-like-carbon,alumina, gold, aluminium, nickel, BK7 glass, M2 steel.
Tu, Minh Hieu. "Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development." Thesis, City University London, 2014. http://openaccess.city.ac.uk/5919/.
Full textНагорний, Сергій Сергійович, Сергей Сергеевич Нагорный, and Serhii Serhiiovych Nahornyi. "Formation of the sensing element of the magnetic field sensor based on Cu and Cu." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46858.
Full textLundman, Sara, and Patrick Parnéus. "Virtual Sensing for Fatigue Assessment of the Rautasjokk Bridge." Thesis, KTH, Bro- och stålbyggnad, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231441.
Full textAnyintuo, Thomas Becket. "Seepage-Coupled Finite Element Analysis of Stress Driven Rock Slope Failures for BothNatural and Induced Failures." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7731.
Full textCraig, Mark. "Advanced condition monitoring to predict rolling element bearing wear using multiple in-line and off-line sensing." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/185079/.
Full textBane, Danielle Nichole. "A Resonant Capacitive Test Structure for Biomolecule Sensing." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1437658452.
Full textBooks on the topic "Sensing element"
Arafeh, L. M. M. Investigations of multi-element gas sensing systems. Manchester: UMIST, 1992.
Find full textOrganisation Internationale de Métrologie Légale. Pressure gauges and vacuum gauges with elastic sensing elements (standard instruments). Paris: OIML, 1993.
Find full textHashim, Zulkifli Mohamed. Sn and Pb containing metal oxides as potential gas sensing elements. Manchester: UMIST, 1997.
Find full textA, Dewitt Bon, ed. Elements of photogrammetry: With applications in GIS. 3rd ed. Boston: McGraw-Hill, 2000.
Find full textOrganisation Internationale de Métrologie Légale. Indicating and recording pressure gauges, vacuum gauges and pressure - vacuum gauges with elastic sensing elements (ordinary instruments). Paris: OIML, 1991.
Find full textEnsuring the climate record from the NPOESS and GOES-R spacecraft: Elements of a strategy to recover measurement capabilities lost in program restructuring. Washington, D.C: National Academies Press, 2008.
Find full textZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Find full textWind, wave, stress, and surface roughness relationships from turbulence measurements made on R/P Flip in the SCOPE experiment: A report for the DoD ASAP program, environmemntal sensing program element (P.ETL.2909). Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Find full textZinn, S., and S. L. Semiatin. Elements of Induction Heating. ASM International, 1988. http://dx.doi.org/10.31399/asm.tb.eihdca.9781627083416.
Full textM, Pieters Carlé, and Englert Peter A. J, eds. Remote geochemical analysis: Elemental and mineralogical composition. Cambridge, England: Press Syndicate of University of Cambridge, 1993.
Find full textBook chapters on the topic "Sensing element"
Atia, Khaled S. R., Souvik Ghosh, Ahmed M. Heikal, Mohamed Farhat O. Hameed, B. M. A. Rahman, and S. S. A. Obayya. "Finite Element Method for Sensing Applications." In Computational Photonic Sensors, 109–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_6.
Full textLebedev, Victor, Elena Laukhina, Vladimir Laukhin, Andrey Somov, Alexander Baranov, Concepcio Rovira, and Jaume Veciana. "Approach to Engineering the Temperature Sensing E-textile: A Lightweight Thermistor as an Active Sensing Element." In Internet of Things. IoT Infrastructures, 223–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47075-7_27.
Full textKübler, Inna, and Daniel Pepper. "Optical Partial Discharge Measurement with Integrated Optical Fibers as Sensing Element." In Lecture Notes in Electrical Engineering, 937–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_88.
Full textDey, Anup, Bijoy Kantha, and Subir Kumar Sarkar. "Study the effects of annealing temperatures on sol-gel derived TiO2 sensing element." In Computational Science and Engineering, 247–50. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press, 2016. http://dx.doi.org/10.1201/9781315375021-49.
Full textDutta, Aradhana, and Partha Pratim Sahu. "Optical Waveguide Sensor as Detection Element for Lab on a Chip Sensing Application." In Planar Waveguide Optical Sensors, 151–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35140-7_6.
Full textOboe, Daniele, Luca Colombo, Claudio Sbarufatti, and Marco Giglio. "Shape Sensing with Inverse Finite Element Method on a Composite Plate Under Compression Buckling." In Lecture Notes in Civil Engineering, 342–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64908-1_32.
Full textAdhikary, Tathagata, Amalesh Nanda, K. Thangapandi, Shantonu Roy, and Saikat Kumar Jana. "Trends in Biosensors and Role of Enzymes as Their Sensing Element for Healthcare Applications." In Microbial Fermentation and Enzyme Technology, 147–64. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429061257-10.
Full textYakovenko, Anastasya, Irina Goryacheva, and Marat Dosaev. "Estimating Characteristics of a Contact Between Sensing Element of Medical Robot and Soft Tissue." In New Trends in Mechanism and Machine Science, 561–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44156-6_57.
Full textOboe, Daniele, Luca Colombo, Claudio Sbarufatti, and Marco Giglio. "Shape Sensing with Inverse Finite Element Method on a Composite Plate Under Compression Buckling." In Lecture Notes in Civil Engineering, 342–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64908-1_32.
Full textYin, Kun. "Pyoverdine as a Biorecognition Element to Develop Biosensor for the Detection of Furazolidone." In Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis, 25–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6488-4_3.
Full textConference papers on the topic "Sensing element"
Castellanos-Ramos, Julián, Rafael Navas-González, and F. Vidal-Verdú. "Tri-axial tactile sensing element." In SPIE Microtechnologies, edited by Angeliki Tserepi, Manuel Delgado-Restituto, and Eleni Makarona. SPIE, 2013. http://dx.doi.org/10.1117/12.2016981.
Full textQian, Dingrong. "Element of a new infrared detector-plasma edge detector." In Aerospace Sensing, edited by Eustace L. Dereniak and Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137802.
Full textHeinickel, Patrik, and Roland Werthschuetzky. "B3.1 - Novel Silicon High Pressure Sensing Element." In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/sensor09/v1/b3.1.
Full textFornaro, Gianfranco, Giorgio Franceschetti, Riccardo Lanari, Damiano Rossi, and Manlio Tesauro. "Finite-element method for interferometric SAR phase unwrapping." In Satellite Remote Sensing III, edited by Giorgio Franceschetti, Christopher J. Oliver, Franco S. Rubertone, and Shahram Tajbakhsh. SPIE, 1996. http://dx.doi.org/10.1117/12.262698.
Full textKress, Bernard, Victorien Raulot, Pierre St. Hilaire, and Patrick Meyrueis. "Low-cost replicable plastic HUD combiner element." In SPIE Defense, Security, and Sensing, edited by Alex A. Kazemi and Bernard C. Kress. SPIE, 2009. http://dx.doi.org/10.1117/12.821372.
Full textNorkus, Volkmar, Guenter Hofmann, Silke Moehling, and Helmut Budzier. "Pyroelectric IR single-element detectors and arrays based on LiNbO3 and LiTaO3." In Aerospace Sensing, edited by Eustace L. Dereniak and Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137791.
Full textSiegel, Alan. "Element quality analysis: estimating the accuracy of ephemeris predictions from orbital elements." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by Oliver E. Drummond. SPIE, 1994. http://dx.doi.org/10.1117/12.179103.
Full textKuznetsov, V. A., A. S. Berdinsky, A. Yu Ledneva, S. B. Artemkina, M. S. Tarasenko, and V. E. Fedorov. "Strain-sensing element based on layered sulfide Mo0.95Re0.05S2." In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015. http://dx.doi.org/10.1109/mipro.2015.7160230.
Full textBencivenni, C., M. V. Ivashina, and R. Maaskant. "Multi-element aperiodic array synthesis by Compressive Sensing." In 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2015. http://dx.doi.org/10.1109/iceaa.2015.7297108.
Full textChoubey, Bhaskar. "Identifying sensing element in a resonant sensor array." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8233918.
Full textReports on the topic "Sensing element"
Arenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6762055.
Full textArenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6294220.
Full textArenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5068581.
Full textArenz, R. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6959355.
Full textKelley-Loughnane, Nancy, Joshua A. Hagen, Jorge L. Chavez, Nathan S. Swami, and Chia-Fu Chou. Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada626954.
Full textRoot, Harrison Duane. Applications of Porphyrinoid Macrocycles in Molecular Sensing and f-Element Coordination. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1635507.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full textBlalock, T., and M. Reed. Uncooled Infrared Detector Arrays With Electrostatically Levitated Sensing Elements. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada431988.
Full text