Dissertations / Theses on the topic 'Sensation et confort thermique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sensation et confort thermique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pellerin, Nicolas. "Températures corporelles et sensations thermiques : approche psychophysiologique du confort thermique dans le cas de l'habitacle automobile." Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13245.
Full textThis work emphasizes a better understanding of the origin of human thermal discomfort under heterogeneous but steady environments, for subjects exposed at the vicinity of physiological and sensory thermoneutrality. The knowledge of skin temperatures allows a psychophysiological study aiming at linking the body thermal state (local and total) to the thermal feelings (perceptive and affective judgments). By using 2 driving simulators, 345 subjects were exposed to different thermal environments, modulated by factors such as the air distribution in the automotive cockpit, the clothing insulation or the activity level (driver or passenger). This work shows that considering the local thermal states is essential for the evaluation of thermal comfort in the case of non-uniform environments. The study of the local data shows however that it is possible to predict local unpleasantness depend on the total body thermal state, which can be evaluated on the basis of mean skin temperature and global thermal vote. Our experimental conditions point out that the determinism of discomfort is both quantitative, the local unpleasantness being felt on a certain number of body surfaces, and qualitative, certain body segments having a more important impact than others. A local origin is suggested for cold discomfort, in opposition to the global characteristic of warm discomfort. This work led to the development of an index of thermal discomfort risk. This index is based upon the assumption that it would exist at the central level, a controlling system which could compare the skin temperature distribution to a referenced cartography
El, Kadri Mohamad. "Modèle thermo-neurophysiologique du corps humain pour l'étude du confort thermique en conditions climatiques hétérogènes et instationnaires." Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS006.
Full textIn this thesis, we have developed a new thermoregulation model of the human body based on neurophysiology called Neuro Human Thermal Model (NHTM). It is dedicated to predict physiological variables in asymmetric transient environments. In addition, it is coupled with Zhang’s thermal comfort model to predict the sensation and the thermal comfort of the occupants in indoor spaces.The passive system of the NHTM model is based on that of the Wissler model. This passive system is coupled to an active system based on the signals of thermoreceptors. The passive system is segmented into 21 cylinders which represent the segments of the human body. Each element is divided into 21 layers, in which 15 for tissues and 6 for clothing. Then, each layer is divided into 12 angular sectors. The NHTM model simulates the heat production by metabolism, heat transfer by conduction within the tissues and heat exchange by convection and radiation between the body and the surrounding. The active system simulates physiological mechanisms thanks to signals of central and peripheral thermoreceptors. These signals are calculated by the model of Mekjavic and Morrisson who also developed the shivering model. The skin blood flow is calculated by the Kingma model. We could not develop a sweating model based on the signals of thermoreceptors since experimental data are not available. A comparison was made between the sweating model of Wissler and that of Fiala et al. and the last one was chosen.The NHTM model is able to simulate several types of population. This was done by a sensitivity analysis carried out, using the Morris method, on the parameters of the passive and active systems to find the most influential parameters. Then, an optimization of the NHTM model was done to determine the vector of the parameters which corresponds to the subjects of the experiments of Munir et al. using a genetic algorithm. The obtained results were compared to the models developed by several authors and showed that the NHTM model is the most efficient in most cases.The NHTM model has been coupled to the Zhang model to assess the sensation and thermal comfort. Zhang's model was chosen for its ability to assess local sensations and thermal comfort levels in non-uniform transient environments. Zhang’s model performs the calculation using the NHTM model outputs, namely the skin and esophagus temperatures
Guergova, Slava. "Effets du vieillissement sur la sensibilité et le confort thermiques." Strasbourg, 2011. http://www.theses.fr/2011STRA6268.
Full textThermal comfort is an integrated cognitive process that relies on thermal sensitivity. Aging is associated with progressive decrease in thermal perception but previous studies provide no consistent results as to age effects on thermal comfort. The aim of this work was to confirm age-associated decline in thermal sensitivity by exploring dynamic aspects of thermal sensations, and to determine whether this decline influences thermal comfort in the elderly. To investigate dynamic aspects of thermal sensations in the elderly, we compared adaptation times to local thermal stimuli and the consequent brain potentials in groups of young and elderly subjects. Our results showed increased adaptation times to warm stimuli in the elderly and lower amplitude of cortical responses to thermal stimulation of the C-fibres when old subjects were exposed to slightly warm vs. Thermoneutral environment. Those results were interpreted in terms of functional impairment of C-type afferents. Furthermore, we studied age effects on thermal comfort by comparing scores on visual analogues scales in groups of young and elderly subjects when exposed to thermal stress induced by cold and warmth. Our resulted showed that, both in warm and cold environments, lower thermal stress is related to age as revealed by decreased scores of perceived thermal sensation and thermal discomfort in the elderly compared to young subjects. Functional impairment of neural fibres transmitting thermal afferent signals is thought to be underlying age-related differences in expression of thermal comfort
Weiss, Laurent. "Caloducs souples et confort thermique : Conception, réalisation, validation." Paris, ENMP, 2001. http://www.theses.fr/2001ENMP1007.
Full textAbboud, Abou Jaoude Rachelle. "Développement d’une nouvelle approche d’évaluation du confort dans le contexte des véhicules électriques connectés." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM059.
Full textThermal comfort of drivers and passengers inside cars compartments is a subject bouncing back to the spotlight with the electrification of vehicles. In fact, air conditioning and heating systems can reduce the battery autonomy of electric vehicles by up to 50% under certain conditions. On the other hand, the most used thermo-physiological models nowadays are still those that consider a standard average person. Many studies showed the limitations of these models in predicting thermal comfort for different populations in complex environments. Therefore, if a personal thermal comfort at minimum vehicle energy consumption is required, a deep consideration should be given to the understanding of the individualization of the thermo-physiological model and to identifying key parameters that have the most influence on thermal comfort. An individualization procedure followed by an experimental validation of the customized model is presented. Considering individual characteristics was shown to improve the model by 20% on average
Célestine, Christian. "Ventilation naturelle et confort thermique dans l'habitat en climat tropical humide." Lyon, INSA, 1985. http://www.theses.fr/1985ISAL0035.
Full textThe influence of natural ventilation in hot humid climates is shown by the study of thermal comfort indices. An experimental approach on site and in a wind tunnel has been developed. This study allows us to propose a characterisation of indoor natural ventilation by mean velocity coefficients. Various openings, upwind and downwind permeabilities have been studied and a good agreement between real scale models and wind tunnel ones is shown. Here and now, this work gives quantitative data about orientation and openings distribution for the creole dwelling, traditionnal habitat of the Caribbean islands
Pépin, Alexandre. "Performance énergétique et confort thermique : effet de la masse thermique, de la résistance et des matériaux de l'enveloppe." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/28242.
Full textIn the province of Québec, massive wood buildings of three floors and more are becoming more and more popular. This material being ecological and renewable is interesting for commercial buildings. However, its use is fairly low in this type of buildings and this raises many questions related to the thermal behavior. In this study, the influence of thermal mass has been studied using numerical simulations. The variables analyzed are the dynamic thermal variables, the energy intensity and the comfort. Two programs have been used to perform the simulations. Since the simulations done using e-QUEST have not demonstrated their relevance for thermal mass analyses [1], EnergyPlus software was used to perform the simulations during this study. The results have demonstrated that the type of thermal mass change and the presence of thermal mass can reduce the mean daily temperature swing of the internal surfaces of the walls. This reduction is up to 27.8% (2.33°C) when the building type passes from a lightweight wood construction to a heavyweight concrete one with a 4 W/m2-K RSI. Another major notice is that the energy intensity principally varies in function of the thermal mass type. Coupled with the thermal resistance, this adds a certain reduction of the energy intensity. The thermal mass thickness is the parameter having the smallest effect on the energy intensity. Gains observed are around 2.5% when the modifications of the type of thermal mass and its thickness are combined. This behavior can be explained by the fact that the energy that is stocked in the envelope and returned to the building after a certain time lag reduces heating demand during winter, but generates cooling demand during summer. The size of the studied building and the ventilation system type could be an explanation of the weak gains obtained regarding the energy intensity.
Paiva, FlÃvia Ingrid Bezerra. "Vulnerabilità social et Ãcologique dans fortaleza: une enquete par le confort thermique." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12949.
Full textCette recherche liÃs classes de vulnÃrabilità environnementale Ãtablies à Fortaleza avec les conditions de confort thermique interne et externe de foyers reprÃsentant les principaux types d'habitation trouvÃs dans cette ville. Pour les deux, il a Ãtà proposà d'analyser le confort thermique, composante climatique urbain comme un paramÃtre de la vulnÃrabilità de l'environnement pour la ville de Fortaleza / Cearà et vÃrifier que, selon ce paramÃtre, les pistes fermÃes comme plus vulnÃrables socialement et Ãcologiquement (par l'Ãtude menÃe par le Centre de mÃtropoles) est placà comme l'inconfort thermique plus. Le confort thermique a Ãtà analysà du point de vue du systÃme urbain climatique Monteiro (1976, 2003), thermo-dynamique sous-systÃme et mesurÃe selon trois indices de confort thermique. Les mesures de composantes climatiques (tempÃrature, humidità et vent velociadade) ont Ãtà recueillis à l'intÃrieur et à l'extÃrieur de dix maisons diffÃrentes, reprÃsentant les dix premiers types rÃsidentiels municÃcio vÃrifià ce dans les dix jours de conditions climatiques gÃnÃrales considÃrÃs comme des ÃlÃments standard (7, 8 9, 10, 11, 12, 13, 14, 15 et 17 DÃcembre 2012) en quinze heures profils de sept à vingt-deux heures. Les rÃsultats ont montrà de forts contrastes entre les conditions climatiques de composants entre les diffÃrents niveaux et les points de contraste entre les conditions internes et externes des dix rÃsidences. Enfin il a Ãtà constatà que, contrairement à la prÃrogative des conditions thermiques initiales de confort n'a montrà aucune linÃairement descrescentes plus la vulnÃrabilitÃ, mais sont dÃlimitÃes en trois groupes, avec la premiÃre (plus faible vulnÃrabilitÃ) les meilleures conditions de confort, la seconde (la plus haute vulnÃrabilitÃ) mÃdianes des conditions de confort et les tiers (vulnÃrabilitÃs moyennes) les pires conditions de confort.
A presente pesquisa relacionou as Classes de Vulnerabilidade Socioambiental estabelecidas para Fortaleza com as condiÃÃes de conforto tÃrmico internas e externas de residÃncias representativas dos principais tipos residenciais encontrados nesta cidade. Para tanto, se propÃs analisar o conforto tÃrmico, componente do clima urbano, como um parÃmetro de vulnerabilidade socioambiental para a cidade de Fortaleza/Cearà e verificar se, segundo este parÃmetro, as faixas delimitadas como mais vulnerÃveis socioambientalmente (pelo estudo realizado pelo ObservatÃrio das MetrÃpoles) se colocaram como as de maior desconforto tÃrmico. O conforto tÃrmico foi analisado segundo a perspectiva do Sistema Clima Urbano de Monteiro (1976, 2003), subsistema termo-dinÃmico e mensurado segundo trÃs Ãndices de Conforto TÃrmico. As mediÃÃes das componentes climÃticas (temperatura, umidade e velociadade do vento) foram coletadas no interior e exterior de dez diferentes residÃncias, representativas dos dez principais tipos residenciais verificados neste municÃcio, em dez dias de condiÃÃes gerais das componentes climÃticas consideradas padrÃo (7, 8, 9, 10, 11, 12, 13, 14, 15 e 17 de Dezembro de 2012), em perfis de quinze horas, das sete Ãs vinte e duas horas. Os resultados encontrados demostraram fortes constrastes entre as condiÃÃes das componentes climÃticas entre os pontos e diferentes nÃveis de contraste entre as condiÃÃes internas e externas das dez residÃncias. Por fim verificou-se que diferentemente da prorrogativa inicial as condiÃÃes de conforto tÃrmico nÃo mostraram-se linearmente descrescentes quanto mais alta a vulnerabilidade, mas delimitaram-se em trÃs agrupamentos, apresentando o primeiro (de mais baixa vulnerabilidade) as melhores condiÃÃes de conforto, o segundo (de mais alta vulnerabilidade) condiÃÃes medianas de conforto e o terceiro (de mÃdias vulnerabilidades) as piores condiÃÃes de conforto.
Le, Bohec Mickaël. "Contribution du rayonnement au confort thermique et aux économies d'énergie dans l'habitat." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2017. http://www.theses.fr/2017ESMA0029/document.
Full textIn order to reduce building's energy consumption, radiant heater seems particularly attractives because they didn't require to heat the air of the room to be perceived (less energy spent and less losses), and because they provide a better reactivity to users life rythmes. Moreover, experiences of the MIT showed that we prefer a fresh ai with warm wall rather than the opposite. The goal of the work is to develop a tool to study the link between the radiant energy exchange by an occupant with his environment and the thermal comfort express under some hypothesis, radiative beat transfers can be idealized by the radiosity equation. This one needs the evaluation of geometrics couplings between the elements of the scene called form factors or view factors. It's generally hard to get them, especially when there are obstructions. A comparison of existing numerical methods is proposed. beyond the evaluation of those factors, the algebraic system is heavy to solve because each surface interact, usually, with all the others and because the number of nodes required for the description of a complexe scene is important. We present a resolution method which refine the mesh of the scene while constructing a multi scale representation of form factors between its elements, in order to don't have to compute all the transfers at the finest resolution. This drastically reduce the computation time and allow to use this method in a industrial development process.When the radiative transfers between the occupant, heaters and differents elements of the environment are known, the thermal comfort model of fanger is used to determine if the considered env!ronments are confortable or not, according to international standards. This way, we could find which type of heaters are the most subject to provide thermal comfort without increasing energy consumption
Bezian, Jean-Jacques. "Thermique des enceintes habitables et énergies solaires." Habilitation à diriger des recherches, INSA de Lyon, 2007. http://tel.archives-ouvertes.fr/tel-00158153.
Full textLa thermique des enceintes habitables (habitacles automobiles, bâtiments ...) a pour principales caractéristiques des grands volumes aux formes parfois complexes, un couplage fort des trois modes de transfert de chaleur et des conditions aux limites en constante évolution. Nous présentons ici une méthode numérique originale pour construire des simulateurs performants du comportement thermique des telles enceintes soumises à un environnement météorologique réel. Les équations sont écrites sous une forme algébro différentielle, en se basant sur une méthode nodale de découpage des volumes et des surfaces. La résolution est effectuée par un solveur commercial. Quelques exemples d'application, avec des validations expérimentales, illustrent les bons résultats obtenus par cette méthodologie. Cette méthodologie a été aussi appliquée au domaine des piles à combustible, et à d'autres applications industrielles où la thermique tient un rôle important. Les actions menées dans le cadre des recherches sur les applications solaires thermiques couvrent tous les niveaux de température. À basse température, nous présentons les travaux concernant la prise en compte des apports solaires dans les bâtiments, ainsi que la problématique du chauffage des locaux et de l'eau sanitaire. À haute température, obtenue par concentration du rayonnement solaire, nous faisons un résumé des résultats obtenus au cours de l'évaluation scientifique de la Centrale THEMIS, et décrivons les travaux de recherche en cours menés pour l'amélioration des performances des procédés solaires à concentration.
During, Hubert. "Consommations énergétiques et confort thermique des locaux chauffés : approche par les modèles zonaux." Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0051.
Full textThis work was carried out in the frame of the research group on heating systems. The aim of this research group was to characterize energy efficiency of different heating systems in real conditions. In we have developed a zonal model which allows us to predict the transient thermal behaviour of various buildings coupled with different heating systems. The heating systems we consider here are : hot water radiator, electric convector, radiant panel, heating ceiling, heating floor. For each s y stem, we built a dynamic model. Concerning the floor. For each s y stem, we built a dynamic model. Concerning difference method for conduction, the radiosity method using shape factors for radiative exchanges and the zonal model concept for the therme-convective behaviour. After a comparison of the results given by the model with steady state and transient experiments we performed some buildings. The analysis of the results allowed us to give some advices
Bedek, Gauthier. "Elaboration et conception d’une structure textile auto-rafraichissante." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10191/document.
Full textThe objective of this study is to design a self-refreshing textile structure. The first objective is to define the specifications of the product. After a state of the art on all existing technologies, it was revealed that none can correspond to the definition of a self-refreshing smart textile. It is proposed to develop an energy-absorbing material of the body at the onset of cutaneous evaporative phenomena.After a study of all materials which can store energy, it is studied the physico-chemical properties of materials absorbing the energy by dissolution with water. Among these polyols, especially xylitol is selected to be integrated within a fabric. From the properties of xylitol, it is developed a process of encapsulation by interfacial polymerization to form a network of poly (urea-urethane). Thus, it is proposed to protect xylitol by a microporous shell that ensures the transfer of moisture. The influence of synthesis parameters shows that it is possible to alter both the morphology, chemical structure, and the rate of encapsulated xylitol. He is chosen a synthesis of microcapsules having an enthalpy of dissolution at 35 ° C of 124.5 J.g-1. From the mode of transfer of particular microparticles against their environment, the microparticles are grafted onto different knitting fabrics. The measurement of the enthalpy of mixing with water revealed the action of dissolution. Furthermore, physiological modelling has led to give us precise data on the behaviour of the material against thermophysioloy reactions. All these results are intended to demonstrate the effectiveness of cooling on thermal sensation in hot environment or during intensive activity
Esqueda, Merino Donovan Manuel. "Contrôle/Commande avancé pour l'optimisation du confort thermique d'un véhicule électrifié." Phd thesis, Supélec, 2013. http://tel.archives-ouvertes.fr/tel-00969132.
Full textThellier, Françoise. "Modélisation du comportement thermique de l'homme et de son habitat. Une approche de l'étude du confort." Phd thesis, Université Paul Sabatier - Toulouse III, 1989. http://tel.archives-ouvertes.fr/tel-00993580.
Full textRouleau, Jean. "Exploration in-situ et numérique de la consommation énergétique et du confort thermique des bâtiments résidentiels en bois." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34439.
Full textOver a third of energy use and greenhouse gas emissions are related to the building sector. As part of global efforts to combat climate change, it is essential to ensure high energy efficiency of buildings. Doing so requires a deep understanding of the thermal behavior of buildings. Building performance simulation is very useful in this regard, but it is frequent to observe discrepancies between the predicted and real energy consumption levels. Occupant behavior is very influential on the energy performance of a building, so it is essential for it to be accurately represented during building simulations. The objective of this thesis is to analyze and explain the consumption of energy in high-performance wood residential buildings by focusing on the importance of occupant behavior. This thesis relies on the monitoring of a social housing building. Potential solutions are proposed to further improve the performance of low energy consumption buildings. First, the energy consumption of the monitored building is studied in order to understand why the building requires energy. This analysis exhibits the great dwelling-to-dwelling variability of energy consumption and thermal comfort. This variability is not explainable by the various orientations and positions of the dwellings or by the different household sizes. This shows the great impact that actions taken by people at home can have on the performance of their dwelling. Linear regression models are created from the collected data to quantify the influence of multiple variables on the heating demand in winter and on the indoor temperature in summer. Indoor temperature represents an important issue since overheating is present in the building during the summer. The high insulation and air tightness of the building envelope contributes to overheating by preventing heat transfer between the indoor and outdoor environments. The energy performance gap of the building is also covered. It is demonstrated that for the case study building, the gap is mainly due to an inaccurate representation of occupant behavior during building simulations. A stochastic model that simulates occupant behavior in residential buildings is developed from already existing models. This tool simultaneously simulates occupancy, hot water and electricity consumption and window control behavior. Generated profiles are coherent with each other (there cannot be hot water consumption when no one is present at home) and consider the dwelling-to-dwelling variability of occupant behavior. The window control part of the model is built from the data coming from the monitored building whereas the data is instead use to validate the other parts of the model. The validation shows the benefits of the modifications brought to the original occupant behavior models. Building simulations are then performed to assess the impact of occupants on the energy consumption and thermal comfort of residential buildings. These simulations are based on the stochastic occupant behavior tool develop in this thesis. Results display that the heating demand of a dwelling, its total energy use and its thermal comfort are all highly sensitive to occupant behavior. A linear regression model is also built from simulated data to evaluate the influence of various parameters. The energy performance of large housing stocks is more robust with respect to occupant behavior, but the results suggest that it remains difficult to forecast with great accuracy the performance of a multiresidential building if stochastic aspects of occupant behavior are neglected. Use of more accurate occupant behavior profiles can also improve the sizing of HVAC systems, particularly of hot water systems.
Brun, Adrien. "Amélioration du confort d'été dans des bâtiments à ossature par ventilation de l'enveloppe et stockage thermique." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00652449.
Full textThellier, Françoise. "Modelisation du comportement thermique de l'homme et de son habitat : une approche de l'etude du confort." Toulouse 3, 1989. https://tel.archives-ouvertes.fr/tel-00993580.
Full textBenalia, Atallah. "Contribution à la modélisation et la commande robuste du confort thermique au sein d'un habitacle automobile." Paris 11, 2004. http://www.theses.fr/2004PA112016.
Full textThe study which we present, here, is within the framework of a project launched within Valeo and which Concern the modelling and the control of the thermal comfort of the passengers of a car cockpit. The problems in witch we are interested are described folows : -The modelling: for the conception of advanced controls asssuring the task of tracking the trajectory, we need, on the one hand, simple models to have a simple control and, on the other hand, good models to have a good estimation of the thermal control. -The control: from the models developed in the first part, we develop controls who insure the trajectory tracking in the présence of parametric errors. The first part of this thesis concerns the modelization of the thermal comfort inside the car cockpit. To achieve the comfort estimation only from the measurements, we have associated to the comfort model an aerothermic models of the HVAC and a dynamic thermal model of the car cockpit. The second part is at the same time a contribution to the control of nonlinear systems subject to inputs saturation and an application of modern controls to achieve a robust trajectory tracking of the thermal comfort. At first, we developed a new method to generate and track trajectories of nonlinear systems subject to inputs constraints. The basic idea is to change the time parametrization. We show, in this case, that the generation of the trajectory is equivalent to solving a linear systems subject to input constraints. In a second time, we developed three kinds of controls in order to achieve the comfort trajectory tracking : input to state linearization, backstepping and sliding mode. We observes in this study that the input to state linearization method is not robust to parameter variations. The two other type of control presented very good robustness properties. However, the sliding mode has the advantage to be more simple and more adapted for real time implementation
GALEOU, MARIA. "La sensation thermique de l'homme dans son habitat : des grandeurs physiques et physiologiques aux sensations." Toulouse 3, 1991. http://www.theses.fr/1991TOU30158.
Full textAllab, Yacine. "Evaluation expérimentale des performances des systèmes de ventilation dans le bâtiment : efficacité de ventilation et confort thermique." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0046/document.
Full textThe performance of a system must be well defined, attainable and above all measurable. This is not the case today for ventilation. On the one hand ventilation performance is usually declined on energy efficiency considerations or simply on a rough estimation of ventilation rates. The performance related to thermal comfort and IAQ are addressed separately through dedicated evaluation tools. On the other hand, the existing evaluation tools today are nowadays limited in their practical applications for in situ measurements, in particular in the case of natural and mixed ventilation. The aim of the present thesis is to examine the existing experimental technics, at full scale building in order to propose improvements on evaluation methods and commissioning protocols. The present thesis deals with ventilation performance taking into account ventilation efficiency as intrinsic performance and thermal comfort as overall performance.The first part is devoted to the in situ assessment of intrinsic ventilation performance (ventilation rates, mean age of air, and air exchange efficiency), based on decay tracer gas techniques. After a theorical analysis of the various performance indexes and their corresponding measurement techniques, an experimental study was carried out in a classroom under different ventilation strategies (mechanical, natural & mixed mode). The analysis proved the importance of the application of the tracer gas decay on ventilation rates accuracy with in particular a strong influence of measurement times and used tracer gas concentration. A methodology has been adapted and tested for the measurement of the air exchange efficiency in natural and mixed mode ventilation, by avoiding measurements in exhaust vents (a technique usually used and advocated by current standards).The second part is devoted to in situ assessment of thermal comfort under different ventilation strategies. Different methods, standards and evaluation techniques were tested and compared with occupants’ perception. The results demonstrated the presence of several inadequacies during the implementation of existing methods and standards. Mainly, it concerns the inadequacy of static methods (PMV PPD) for thermal comfort assessment in the presence of fluctuating thermal conditions, even with mechanical ventilation. Uncertainty analysis related to measurement errors has demonstrated the incoherence of current standards in the classification of comfort categories
TALMATAMAR, TAHAR. "Contribution a l'etude du confort thermique : etude theorique et experimentale des protections solaires interieures a lames verticales." Evry-Val d'Essonne, 1993. http://www.theses.fr/1993EVRY0008.
Full textRaffenel, Yoann. "Optimisation du contrôle thermique dans une habitation multi sources." Ecully, Ecole centrale de Lyon, 2008. http://bibli.ec-lyon.fr/exl-doc/TH_T2174_yraffenel.pdf.
Full textIn France, the building sector is responsible for a fifth of the national energy consumption. A serial of successive official thermal rules are adopted every five years in order to achieve in 2020 the reduction by 40% of the consumption level of 1990. Research has already started working on the reduction of energy consumption in buildings for a long time and many solutions have already been designed. These solutions can be separated in two categories. The first one regroups the solutions based on the improvement of the architecture, the structure, the insulation or the materials in the building. The goal of these solutions is to reduce the energy need of the building. The second category regroups the design and improvement of renewable energies. These systems allow the local production of a part of the energy needed by the building without greenhouse gases emissions. The goal of this work is to design new solutions based on automatic control, especially when buildings are getting even more complex integrating the mentioned solutions. With the final goal of designing a global artificial intelligence able to control and optimize each energy flux in a building, the study focused on the regulation of the space heating process. This energy consumption remains indeed the main consumption in most of the French residential buildings. We designed a space heating controller using model based automatic control methods, which differs from the usual commercialized controllers. The first step of the work consists in choosing the right model for the building and its energy systems among the numerous modelling method designed by the thermal science community. The model will be a trade-off between accuracy and using easiness. A modelling of several electric appliances was realized for the occasion. The second step is the design of the controller itself. Its objective is to ensure the thermal comfort while minimizing the energy consumption. Once we had more exactly defined the comfort concept and the way it is taken into account by the controller, this one was designed in four stages. First, an ideal temperature set point trajectory is calculated using optimal control in order to minimize the energy consumption when the building is unoccupied. Second, an integral control structure is calculated also with optimal control techniques. Third, the uncontrolled contributions to the building (solar radiations, external temperature…) are estimated with the introduction of a deconvolution problem solved by stochastic methods. Finally, an anti windup compensator is added in order to take into account the specifications of space heating actuators. The last step of this work was the testing of the controller in simulation. It was tested in four buildings, all different in their architecture, their inertia and the energy system they were using. The results were very interesting since in comparison with usual methods providing the same comfort level, the energy saving obtained is at least 10%
Bourlart, Rémi. "Optimisation aéraulique, thermique et acoustique des systèmes aéronautiques de distribution d’air basse pression : amélioration du confort des passagers et réduction d’encombrement." Orléans, 2006. http://www.theses.fr/2006ORLE2053.
Full textLaforgue, Pierre. "Modélisation visuelle et thermique des sollicitations solaires et de leurs effets dans le bâtiment. Application à l'étude et au contrôle du confort radiatif." Chambéry, 1997. http://www.theses.fr/1997CHAMS002.
Full textAhmed, Ouameur Fouad. "Morphologie urbaine et confort thermique dans les espaces publics. Étude comparative entre trois tissus urbains de la ville de Québec." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24931/24931.pdf.
Full textBatier, Cécile. "Confort thermique et énergie dans l’habitat social en milieu méditerranéen : d'un modèle comportemental de l’occupant vers des stratégies architecturales." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS019/document.
Full textThe current design of energy-efficient buildings used to be performed by dynamic thermal simulations using conventional hypotheses like those of the 2012 French thermal regulations (weather reports, occupancy, temperature set, operations of windows and shutters by occupants, etc...). However, feedback highlights a great difference in energy consumption between forecasts on the one hand and in situ measurements in winter as well as overheating in summer on the other hand. According to the scientific community, even if many factors can account for this gap, the inhabitants seem to play a major role in it as well. Indeed, by acting on their windows and shutters, they modify the renewal rate of fresh air and the management of solar contributions. As the matter of fact, the use and the type of windows and shutters affect the energy consumptions and the comfort. The aim of this study is to analyse the thermal evolution of occupied apartments in order to establish a behavioral model of the occupants. This will allow us to quantify the impact of architectural modifications on the thermal comfort and the energy performances of buildings.Two residential buildings are investigated in Vauvert (a city in southern of France). Both of them were built in 1969 using the same constructive techniques and have lately been renovated in a similar way (CMV, boilers, windows). The only difference is that on the facade of one of them an external thermal insulation has recently been installed. The analysis of the real thermal conditions, of the actual human behavior and of the amount of energy consumed is built on surveys and on an extensive year-round in situ instrumentation in the living rooms of 13 apartments. It allows us to define a behavioral model of occupants based on 32 different combinations in the operations of windows and shutters. We can divide them into three occupants' profiles (the “expert” occupant, the “active” occupant and the “counterproductive” occupant). Digital Pléiades+COMFIE simulations are made in order to validate this model. The refined modeling of the dynamic thermal simulation parameters helps to understand the impact on the thermal comfort and the energy consumption of different architectural strategies in the Mediterranean area.In winter the thermal analysis of the two residential buildings (insulated and non insulated) shows similar levels of consumption, but a lower level of thermal comfort in the non insulated case. However during temperature peaks in summer, overheating appears in the insulated dwellings, but human behavior is the key to limit occupants’ discomfort. The analysis of in situ measurements shows that strategies to cool down the apartments are not always implemented by occupants. Architectural solutions mitigating “counterproductive” occupants’ behavior are finally examined
Jnat, Khadija. "Bâtiment intelligent : Analyse et optimisation des dépenses d’énergie dans le logement social." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I060/document.
Full textThis work concerns the optimization of heating energy consumption in social housing.It is a part of a global approach to reduce energy consumption in social housing. It was realized within a collaboration between Lille University and Lille Métropole Habitat. The research is based on monitoring occupied dwellings to explore the possibilities of reducing energy consumption through control of the heating system and the implication of tenants. This thesis is composed of four parts. The first part includes a literature review concerning energy precarity in social housing and thermal regulations. The second part presents the social housing residence used in this research. It presents in details the monitoring system and the experimental protocol used to follow the comfort conditions in the residence. The third part presents analysis of temperature and relative humidity recorded in three apartments. Analysis shows an overheating during the heating period, which leads to important increase in the heating expenses. The last part presents thermal simulation using the software “Archiwizard”. It shows the calibration of the numerical model as well as an estimation in heating energy savings
Choquart, François. "Etude et modélisation d'un véhicule doté d'un système de chauffage par parois rayonnantes pour l'étude du confort thermique des passagers." Paris, ENMP, 2004. http://www.theses.fr/2004ENMP1243.
Full textFouad, Ahmed Ouameur. "Morphologie urbaine et confort thermique dans les espaces publics : étude comparative entre trois tissus urbains de la ville de Québec." Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19770.
Full textBragança, Pierre. "Ventilation par mélange utilisant des dispositifs de diffusion munis d’inserts lobés : analyse des écoulements moteurs et du confort thermique induit." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS018/document.
Full textThis thesis deals with high-induction mixing ventilation for buildings using innovative air diffusers equipped with vortex promoters. These are lobed inserts, introduced into commercial air diffusers, without modifying the manufacturing process. The innovation was born from previous work and has recently been the subject of an European patent. The first objective of the present work is to conduct full scale experiments under typical heating and air conditioning conditions. By an experimental approach, the impact of the lobed inserts on the airflow and jet pattern, on the thermal comfort induced in the occupied zone of a thermally guarded climate chamber, and on the pressure drop and the noise generation. Airflow pattern is analyzed by large scale PIV 2D2C, and thermal comfort is evaluated in the occupied zone using a set of temperature and speed sensors and Fanger's PMV / PPD model. The results show that the lobed inserts introduced into the diffusers enhance the mixing between the jet and ambient air whose to be treated. The thermal comfort in the occupied zone is significantly improved, compared to the reference case of the same diffuser without inserts. The impact of the inserts on the acoustics and the pressure drop is not significant, which validates the innovation for its immediate application in buildings. Finally, we compared the performance of innovative diffusers with lobed inserts to the vortex diffuser, presented in the air diffusion market as a high mixing diffuser, because of the rotation generated by profiled fins. The results showed that when the diffuser is flush mounted to the ceiling, which is recommended by the manufacturer, the immediate attachment of the jet due to the Coanda effect inhibits the expected rotational movement. Its performance under these conditions is lower to that of the diffuser with lobed inserts. It follows from this finding that the installation of the vortex diffuser on a free pipe is necessary for its best performance ; this can be performed for high ceiling commercial buildings or industrial buildings. Ceiling flush mounted diffusers with lobed inserts, which we have demonstrated their performance, are perfectly suited for office spaces or homes with low ceiling heights, and therefore meet the real need for high induction in this type of buildings
Wang, Xi. "Prédiction et analyse numérique d’écoulements turbulents avec transfert thermique dans des cavités ventilées à l’aide d’un modèle à relaxation elliptique." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10075/document.
Full textThe aim of this work is to predict numerically turbulent airflow with heat transfer in indoor environment using an elliptic relaxation model. This approach named v² -f has been proposed for modelling near-wall turbulence. In this study, numerical investigations have been carried out in three configurations and validated on available experimental data and numerical results from the models considered, k -[epsilon]RNG model of Yakhot & Orszag, k -[omega] SST model of Menter and Reynolds stress model. The analysis and comparison of results obtained shows that the v² -f model provides a better prediction for the velocity fields and temperature fields with a reasonable computational time. All comparisons of thermal comfort indices suggest that
Julien, Bruno. "Contribution à l’amélioration du confort thermique dans une automobile : modélisation et caractérisation expérimentale des échanges aérauliques et thermiques dans un habitacle de voiture." Lyon, INSA, 1989. http://www.theses.fr/1989ISAL0007.
Full textCordahi, Khoury Marlène. "Evaluation technique et économique de différentes solutions pour le confort thermique et la réduction de la consommation énergétique dans le bâtiment au Liban." Paris, ENMP, 2005. http://www.theses.fr/2005ENMP1334.
Full textEnergy use intensity in lebanon is comparably high with other contries in the middle east, and its primary supply is almost totally dependent on imported combustibles. Excessive use of energy constitutes an economic burden on both the government and the end consumers. In the field of energy, the government is recently taking an initiative to co-ordinate the various concerned parties' efforts and to establish bodies to enable integrated resources planning. In addition, this form of energy use is a cause of environnemental degradation originating from thermal energy plants and transportation sector mainly, which emit green house gases (ghg), basic causative agents of global warming. Lebanon consumes around 5000 ktoe as a primary energy. 97% of this is imported, mainly as polluting oil products. The remaining 3% of the energy consumption only is renewable energy. In addition, the energy intensity in the country is over 0,62 toe/1000usd, which is 2,2 times higher than in developing countries despite the low consumption per capita and a structure of an economic sector based on light industries. All this is due to a lack of a national politic for a rational use of energy and especially in transport. This project aims to evaluate solutions to minimize the annual consumption of energy and the improvement of comfort in a residential apartment on the lebanese coast. An existing apartment in a current floor will be chosen in a well defined environment. Different kind of passive insulation will be introduced and their impact on the energy consumption will be studied. Additional equipments on the heating system will be also evaluated
Mercier, Sylvestre Jeronimo Celis. "La température agréable : manipulation des fenêtres et dynamique du confort environnemental dans une salle de classe climatisée naturellement." Master's thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/20768.
Full textViallon, Maud. "Réalisation et caractérisation de membranes polymères microstructurées capables de moduler leurs propriétés de réflexion dans le domaine du moyen infrarouge : application aux textiles pour le confort thermique." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10105.
Full textThe goal of this thesis is the manufacturing of polymer membranes that can be complexed to a textile to improve the thermal comfort felt. They must be able to dynamically modulate their optical properties in the mid-infrared (MIR) according to the environmental conditions.The first part of this work presents the theoretical notions related to thermal comfort and both physical mechanisms hydric and thermal transfers through the textile membranes. A state of the art makes it possible to identify the existing technologies. The concept of photonic crystals and their application in the field of infrared medium are presented. This part ends with the establishment of specifications for the design of a structured polymer membrane using the principle of photonic crystals to modulate the interaction of human thermal radiation.The second part of this work describes the method of finite differences in time domain simulation (FDTD) used to predict the optical properties of micro-structured membranes as function of their geometric characteristics. A first realization in polycrystalline silicon authorizes the validation of the numerical model calibration as well as the protocol of the infrared characterization. The manufacturing process uses cleanroom technologies from microelectronics and microsystems.The last part of this work is devoted to the study by FDTD of microstructured polymer membranes from the previously calibrated 'in-silico' model. This study makes it possible to define geometrical parameters able to modulate the reflection of the infrared having a wavelength between 5 and 15 microns. A manufacturing process is developed which makes it possible to realize self-supporting structured membranes to the appropriate dimensions
Koufi, Lounes. "Simulation thermo-aéraulique de la ventilation et du transport de polluants dans des cavités : application à la qualité de l'air intérieur et au confort thermique." Thesis, Artois, 2015. http://www.theses.fr/2015ARTO0210/document.
Full textThis thesis deals with the numerical prediction of heat and mass transfer impact on the air quality and thermal comfort within either ventilated or not cavities filled with pollutants. Indeed, ventilated areas are first modeled to be as ventilated cavities in a first approximation.To carry out this study, we adopt a numerical model based on solving equations governing momentum, heat and mass transfer. The first part of this thesis is dedicated to some generalities on ventilation, air quality and thermal comfort and the bibliographic review of previous works. The adopted approach is described in Chapter 2. It is based on the Boussinesq approximation. The RNG k-ε model is used to handle turbulence. The finite-volume method (FVM) is used to discretize of the set of equations, and the pressure-velocity coupling is achieved via the SIMPLEC algorithm. In the second part, we consider the thermal convection and thermosolutal convection in closed cavities. The main aim is a) to validate the considered model by comparing our results with those of literature, and b) to investigate influence of the thermal Rayleigh number and the buoyancy ratio. Our findings indicate that the model accurately predicts heat and mass transfer.Then, we apply this approach to the case of two-dimensional ventilated cavities subjected to temperature and concentration gradients. The indices of air quality and ventilation efficiency are calculated and discussed. We end this work by analyzing the influence of ventilation on the quality of indoor air in a three-dimensional room in transient regime. This investigation covers different scenarios from the simple flow mechanical ventilation which aims to find the best configuration in terms of efficiency and quality of indoor air
Denguir, Afef. "Modèle de performance agrégée et raisonnement approché pour l’optimisation de la consommation énergétique et du confort dans les bâtiments." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20026/document.
Full textThe present work is part of the FUI RIDER project (Research for IT Driven Energy efficiency). It aims to develop an energy management system that has to be weakly dependent on building's specificities in order to be easily deployed in different kinds of buildings. This work proposes a new approach based on the thermal comfort concept in order to reduce energy costs. This approach takes advantage of the thermal comfort concept in order to compute new optimized setpoints for the building energy control system. It relies on the idea that thermal comfort is a subjective multidimensional concept that can be used to reduce energy consumption. The literature provides statistical thermal comfort models but their complexity and non-linearity make them not useful for the control and optimization purposes. Our new thermal comfort model is based on the multi attributes utility theory and Choquet integrals. The advantages of our model are: its interpretability in term of preference relationships, its linearity in simplex regions which simplifies optimization problems' solving, and its compact form which is more tractable than a rule based control formalism. In the second part of this work, the THermal Process Enhancement (THPE) proposes a control system approach to efficiently reach the optimized setpoints provided by the comfort model. The THPE proposes an efficient and simple thermal control approach based on imprecise knowledge of buildings' special features. Its weak data-dependency ensures the scalability and simplicity of our approach. For this, an extended thermal qualitative model (EQM) is proposed. It is based on a qualitative description of influences that actions' parameters may have on buildings' thermal performances. This description results from the mathematical and qualitative analysis of dynamical thermal behaviors. Our thermal qualitative model is then enriched by online collecting and assessing previous thermal control performances. The online learning provides the necessary quantitative information to infer quantified control recommendations from the qualitative tendencies displayed by the EQM. Thus, an approximate reasoning based on the EQM and an online learning coupled with a penalty function provides smart thermal control functionalities. The EQM based approximate reasoning guarantees our control system weak dependency with regard to the building special features as well as its multi-scale applicability and its relevancy even for RIDER's first start when the learning database lacks of information. The performances of our THPE are assessed on various types of control and optimization issues. An optimal control is generally achieved in a few iterations which allows providing an adaptive and individual control of building's rooms
Endravadan, Mala. "Régulation des systèmes de chauffage et de climatisation basée sur la sensation thermique humaine : impact sur la consommation d'énergie dans les bâtiments." Toulouse 3, 2006. http://www.theses.fr/2006TOU30003.
Full textThe thermal comfort of an individual depends on indoor conditions that can be controlled. However, changes in activity or clothing adjustments are difficult to control and measure in the field experiments. Behavioural actions undertaken by the occupant to overcome the discomfort could be varying and may have diverse consequences. Sometimes these actions are beneficial to the occupant, although often they lead to disastrous amounts of energy consumption. Hence, it becomes crucial to consider the human behaviour and the thermal inertia of the building. The creation of numerical models is useful to study the coupling between these two components and to evaluate the effects of behaviour on comfort and energy consumption. The simulations of the whole system were conducted using TRNSYS software
Nahon, Raphaël. "Modélisation des échanges radiatifs à l'échelle urbaine pour un urbanisme bioclimatique." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10130/document.
Full textThe main objective of this work is to evaluate the bioclimatism of an urban project at its early stages: its capacity to harness daylight, the energy efficiency of the projected building and the thermal comfort of the outdoor environment. A first proposal for the exterior geometry is made in the mass plan. At this stage, buildings are commonly represented as mass blocks. Architectural details, such as windows shapes, interior coatings or wall composition are not defined, and daylighting inside the buildings or thermal behavior of their envelope are impossible to model. Nevertheless, we show that it is possible to evaluate as soon as in the mass plan the impact of the exterior radiative sources on the bioclimatism of the project. The concepts of sufficient and useful luminances and radiant temperatures are introduced. The first two criteria traduce the percentage of the year in which an outside luminous source induces a convenient illuminance inside the buildings; the third one traduces the impact of an outside radiative source on the heating and cooling of the outside surfaces and the outdoor thermal comfort. We analyze their distribution on the sky vault and highlight its variability under different climates. The final objective of this thesis is to propose a software likely to lead the urban planners in their search of bioclimatic urban forms: ensuring daylight access inside the buildings, energy efficiency and outdoor thermal comfort
Grosdemouge, Virginie. "Proposition d'indicateurs de confort thermique et estimation de la température radiante moyenne en milieu urbain tropical. Contribution à la méthode nationale d'évaluation des ÉcoQuartiers." Thesis, La Réunion, 2020. http://www.theses.fr/2020LARE0033.
Full textFeedback from the post-occupancy evaluation carried out in the eco-neighbourhood (EQ) of Ravine Blanche, in Reunion Island, shows that some indicators proposed by the French eco-neighbourhood evaluation model are not suitable for specific application in tropical climate. This thesis demonstrates that a building performance indicator based on a level of thermal comfort seems more appropriate in a tropical urban environment. A literature review of the main existing outdoor thermal comfort indices has been carried out. Two relevant indices for application in a tropical climate have been chosen: the PET and the UTCI indices. In addition, this research study mainly focuses on the definition and estimation of the mean radiant temperature (Tmrt), which is one of the most important factors that influence human thermal comfort in outdoor spaces. However, Tmrt is particularly difficult to determine, whether in terms of in-situ measurements or numerical modelling. An experimentation based on an existing methodology has been set up so as to estimate Tmrt. This thesis also proposes a methodology relating to how to conduct field surveys in outdoor environments with micrometeorological measurements. People’s subjective thermal perception in a coastal outdoor urban environment of the EQ of Ravine Blanche has been investigated during summer. Furthermore, two popular radiation measurement techniques in determining Tmrt (black globe & grey globe) have been studied. The choice of the method has an impact on the thermal comfort indices values. Finally, the PET and UTCI indices have been calibrated and their respective comfort zones have been defined for the climate of Saint-Pierre
Nguyen, Dieu Linh. "La maison tube des nouveaux quartiers d'Hanoï : Effets de paramètres architecturaux sur l'ambiance thermique." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27525/27525.pdf.
Full textMitogo, Eseng Jesus Nvé. "Qualification expérimentale des performances d'un dispositif de bardage avec lame d'air tampon et parement en bois." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14495/document.
Full textToday many studies on thermal building to reduce energy consumption while maintaining user comfort are proposed. The work presented here highlights the performance of an active isolation technique by means of exterior cladding thus subjected to solar radiation.The experimental study has been used to characterize the heat transfers inside the vertical cavity (air circulating or not), which are the key to this type of device, depending on various parameter staken as relevant. The driving factor is of course the solar irradiance. The thickness of the air gap induces an aspect ratio and thus affects the speed of the air flowing or the buffer volume and therefore the heat exchanges. Finally, the thermal characteristics of the cladding here maritime pine or chipboard, impact quite strongly on the temporal evolution of the different temperatures.The cladding and the vertical cavity act as a solar chimney, a global modeling of its behavior and some numerical simulations have strengthened the experimental results. We note that in summer, the optimal solution is a device of cladding with little thermal mass an drapid air flow while in winter, a device with large thermal mass and without flow helps to ensure a good thermal flywheel
Morel, Aude. "Gestion des transferts thermiques et hydriques au sein d’une structure multicouche textile : développement d’une membrane pour application EPI." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10124/document.
Full textThis study aims at developing a thermosensitive membrane allowing the water vapor to cross with a function of the temperature to enhance the comfort and the safety of firefighters. Membranes with different chemical structure were synthesized from segmented polyurethane. The influence of the polyol type and its length, and the hard segment content was studied. Two kinds of mechanisms were identified depending on the chemical structure as a bulk modification and a surface modification, that change moisture management properties. Afterwards, membranes were pressed on a textile for higher mechanical properties. The purpose of the final product is to be made inside the firefighter’s personal protective equipment, between the underwear and the jacket. The systems membrane-textile keep the properties of the membrane and present controlled water vapor permeability with the function of the temperature
Bonte, Mathieu. "Influence du comportement de l'occupant sur la performance énergétique du bâtiment : modélisation par intelligence artificielle et mesures in situ." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2495/.
Full textBuilding sector plays a major role in global warming. In France, it is responsible of about 40% of energy consumption et about 33% of carbon emissions. In this context, building designers try to improve building energy performance. To do so, they often use building energy modeling (BEM) software to predict future energy use. For several years now, researchers have observed a difference between actual and predicted energy performance. Some reasons are pointed out such as uncertainties on physical properties of building materials and lack of precision of fluid dynamics models. One of the main causes could come from bad assessments in the modeling of occupant behavior. Occupant is often considered as passive in building simulation hypothesis. However, numerous of papers show that he act on the building he is in, and on personal characteristics. The work presented here intend to characterize occupant behavior and its influence on energy use. In the first part of the manuscript we assess the individual impact of several actions using design of experiments (DOE) methodology. Actions like operations on windows, blind or thermostat are investigated separately. We show that two opposite extreme behaviors (economic and wasteful) could lead to significant difference in building energy use. Moreover, a factor two-to-one in total energy use is observed between passive and active behaviors. In the second part we focused on an experimental approach. Thermal and visual environment of 4 offices have been monitored during a year and online questionnaires about comfort and behavior have been submitted to office occupants. Tank to a statistical analysis we estimates probabilities of acting on windows, blinds and clothing insulation against physical variables or thermal sensation. Final part of the thesis deals with the development of an occupant behavior model called OASys (Occupant Actions System) and running under TRNSys software. The model is based on an artificial intelligence algorithm and is intended to predict occupant interactions with thermostat, clothing insulation, windows, blinds and lighting system based on thermal and visual sensation. Results from OASys are compared to results from literature through various case studies for partial validation. They also confirm the significant impact of occupant behavior on building energy performance
Mandrara, Zaratiana. "Impact thermique des revêtements en bois sur l'ambiance intérieure des bâtiments : application dans l'habitat traditionnel en France et à Madagascar." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00690806.
Full textBahrar, Myriam. "Contribution au développement et à l’analyse d’une enveloppe de bâtiment multifonctionnelle dans le cadre de l’optimisation du confort dans l’habitat." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEE001/document.
Full textThe building sector has a great potential to improve energy efficiency and reduce the greenhouse gas emissions. Improvements to the building envelope and Innovations in building materials have the potential to achieve sustainability within the built environment. This PhD thesis focuses on the development of multifunctional façade elements in order to optimize the building energy consumption while maintaining an optimal indoor human thermal comfort. The proposed solution consist of using passive storage by means of phase change materials associated with alternative construction materials such as textile reinforced concrete (TRC). The aim of the study is to characterize mechanical and thermal properties of TRC composites and to evaluate the effect of PCMs on indoor thermal comfort. To meet these objectives, experimental devices have been set up for the characterization (at the component scale and in situ) of the mechanical and thermal behaviour of different TRC panels. In parallel, we have developed a numerical model for the prediction of wall temperature profiles. Finally, a multi-objective optimization of the façade elements is carried out using genetic algorithms to determine the better combinations able to combine the energy performance with the mechanical performance
Kindangen, Jefrey Ignatius. "Contribution à l'étude des coefficients de vitesse à l'aide des réseaux de neurones : application à l'écoulement de l'air dans les bâtiments pour le confort thermique en climat tropical humide." Lyon, INSA, 1997. http://www.theses.fr/1997ISAL0108.
Full textFrom library studies, it is shown that the dominant climatic factors in tropical humid regions and their effect on a human being are primordial and must be considered in the thermal comfort evaluation. We propose a comfort index the most adapted with this climate. Natural ventilation is one of two strategies to provide a satisfactory level of comfort in buildings which is reliable and economical in tropical conditions. The present study on the influence of the architectural elements allowing to improve the interior air speed, and then the thermal comfort, was realized using CFD codes. The study carried on a model so-called behavioural to predict interior air velocity coefficients in buildings using artificial neural networks. Due the difficulty to evaluate the interior airflow, it was therefore decided to look at how artificial intelligence techniques might facilitate the solution of the problem involved. The utilization of neural networks as a universal predictor is an interesting subject for investigation, given their ability to provide reliable results in situations where a large number of parameters have to be taken into account simultaneously. We established a thermal comfort assessment code in humid tropical regions in the modular structure: TRNSYS. This code's computer is based on a simplified model of transfers phenomena and the integration of the interior velocity coefficient prediction using artificial neural networks. Effects of architectural parameters on thermal comfort were also presented
Hassan, Cyril. "Simulations, conception et réalisation d'un plafond chauffant et rafraîchissant pour des pièces à usage de bureau." Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1189.
Full textStudies on thermal comfort in office spaces are encouraged by economic and environmental considerations. Radiant air-conditioning ceiling systems are efficient on thermal comfort because they do not create any discomfort and the air temperature is higher than with a all-air system. Their use is cheaper than with a conventional system and so, it provides energy saving. However, their cooling capacity is limited for an office use. After a sizing performed with the software COMFIE®, heat soft pipes are integrated in a radiant air-conditioning ceiling system. With this technology, uniform surface temperatures are observed and high heat transfer rates are achieved. During the tests, effects on the thermal comfort are noticed : operative temperature is higher to 2 or 3 K in heating mode, and lower 3 or 4 K in cooling mode. An advanced numerical simulation of this room is carried out : air velocity field is predicted with the CFD software FLUENT® and the thermal field is calculated with THERMETTE®. These simulations are used to improve the system design : by increasing the radiant ceiling area and the thermal convection coefficient or by a thermal preconditioning on air, the radiant air-conditioning ceiling system would be able to transfer more easily all thermal fluxes
De, Munck Cécile. "Modélisation de la végétation urbaine et des stratégies d'adaptation au changement climatique pour l'amélioration du confort climatique et de la demande énergétique en ville." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0098/document.
Full textClimate projections predict an amplification of global warming, potentially exacerbated in urban areas by the urban heat island effect. More frequent extreme events such as heat waves may have severe public health, ecological, and economic consequences as cities concentrate population. Among the measures aiming at improving thermal comfort or energy demand, air conditioning and urban greening are measures that may have antagonistic effects. This PhD work is undertaken within the framework of three research projects, CLIM2, MUSCADE and VegDUD. Its objective is to evaluate the respective effects of air conditioning and urban greening based on urban climate simulations across the Paris area. The modelling relies on the Town Energy Balance (TEB) model, which simulates the exchange of heat, water and momentum between the urban surface and the atmosphere. It has been recently improved to simulate building energetics, as well as indoor and outdoor thermal comfort indices. To improve the description of urban vegetation within TEB, a green roof model has been developed and evaluated. In addition, watering practices have been implemented to model the watering of urban vegetation at ground or roof level. Within CLIM2, the air conditioning scenarios tested for adapting Paris city to the extreme temperatures of the 2003 heatwave have been evaluated based on simulations using TEB coupled with an atmospheric model. Results shows that all forms of conditioning that release waste heat (dry or wet) into the atmosphere generate a temperature increase in the streets. This warming is proportional to the power of the sensible heat releases in the atmosphere and is on average 0.5 to 2_C, depending on the level of deployment of the air conditioning. Then, the greening of Paris city has been evaluated based on simulations carried out with the general configuration of the MUSCADE project, i.e. with climate forcings and a dynamic urban heat island generator. The scenarios tested consisted in an increase in ground-base vegetation or an implementation of green roofs on compatible buildings, or the two combined, with the option of watering green roofs or not in summer. Results show that increasing the ground cover has a stronger cooling effect than implementing green roofs, and even more so when the greening rate and the proportion of trees are important. The green roofs are however the most effective way to reduce energy consumption, not only in summer but also on an annual basis, mainly due to their insulating properties
Vinet, Jérôme. "Contribution à la modélisation thermo-aéraulique du microclimat urbain. Caractérisation de l'impact de l'eau et de la végétation sur les conditions de confort en espaces extérieurs." Phd thesis, Université de Nantes, 2000. http://tel.archives-ouvertes.fr/tel-00490049.
Full text