Academic literature on the topic 'Sensation and thermal comfort'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensation and thermal comfort.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Sensation and thermal comfort"

1

Kelly, Lisa K. "Thermal comfort on train journeys." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8445.

Full text
Abstract:
This thesis presents a body of work conducted to determine thermal comfort on train journeys. Relatively little research has been conducted on trains in comparison with the vast body of work conducted within building environments. This thesis aimed to expand our knowledge of rail passenger thermal comfort throughout the journey; platform to destination. The train journey was separated into its component parts and analysed by conducting both laboratory and field experiments that either simulated or measured aspects of a train journey. Laboratory experiment 1 examined appropriate methods of data collection during train journeys. Participants (9 males and 9 females) were exposed to a simulated train environment three times and used a different data collection method on each occasion; a paper-based method, a voice recorder or a Personal Digital Assistant (PDA). Results concluded that the three methods can be used interchangeably when recording thermal comfort data. Participants preferred the PDA over the other two methods because they felt it afforded them a level of privacy in addition to blending in with other rail passengers using similar technologies. The second laboratory experiment measured thermal comfort following a change of environment. Participants (12 males and 12 females) were exposed to three environmental conditions (warm, neutral and slightly cool) in a thermal chamber on three separate occasions. The exposure lasted 30 minutes, after which, participants entered a new environment that was the same on each occasion (slightly cool). Results showed that overshoots in sensation (beyond those predicted by the Predicted Mean Vote thermal comfort index PMV) are observed following downward steps (warmer to cooler) in environmental conditions. No overshoots were observed following the upward step (cooler to warmer) in environment, with sensations immediately reflecting the predicted steady-state values. Laboratory experiment 3 (22 males and 26 females) expanded the research conducted in laboratory experiment 2 by exposing participants to greater magnitudes of environmental change. In addition, sensation was measured after this change until steady-state was reached. Participants were exposed to four environmental conditions (cool to warm to neutral to cool or cool to cold to warm to cool) consecutively over a 2 hour period with 30 minutes spent in each location. Results demonstrated similar effects to those observed during laboratory experiment 2 with overshoots observed following downward steps in environmental conditions and none observed in the opposite direction. Sensations demonstrating overshoots gradually increased until steady-state was achieved after approximately 25 minutes. Field experiment 1 (12 males and 32 females) measured thermal comfort while boarding trains. Participants were taken on a short train journey and recorded sensations whilst on the platform and during boarding. Results showed that overshoots may also be observed following step up and step down in environments. It is hypothesised that change in air velocity is influential in this effect. Thermal comfort throughout a train journey was measured in field experiment 2. Participants (16 males and 16 females) reported on thermal comfort on the platform, during boarding and throughout a return train journey from Loughborough to London St Pancras. Results also demonstrated overshoots following upward transients indicating that there are factors in the field that do not occur in laboratory conditions. Subjective parameters reach steady-state after approximately 20 minutes and PMV accurately predicted sensations during the journey. Again, air velocities may have interacted with other variables resulting in the overshoots following upward steps in environmental conditions. Laboratory experiments 2 and 3 resulted in the creation of a model predicting sensation following a change of environment, PMVTRANS. When the model was compared with the field data, it could not accurately predict sensations observed during transients. It also could not predict the sensation overshoots observed following upward transients. A new model is now proposed, NEW PMVTRANS. This model shows greater correlation with actual sensation than PMV; however it does require further validation from field data. Research has shown that PMV is an accurate estimator of sensation within a train carriage and should be used by train designers to optimise the environmental conditions for passengers.
APA, Harvard, Vancouver, ISO, and other styles
2

Streblow, Rita [Verfasser]. "Thermal sensation and comfort model for inhomogeneous indoor environments / Rita Streblow." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018222863/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Žarko, Bojić. "Uticaj parametara mikroklime, buke i osvetljenja na toplotni komfor u radnoj sredini." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107508&source=NDLTD&language=en.

Full text
Abstract:
U radu se proučava uticaj parametara mikroklime, buke i osvetljenjana toplotni osećaj i toplotni komfor u radnoj sredini. Između čovekai njegovog okruženja postoji stalna interakcija, koja može uzrokovatifiziološke poremećaje u organizmu. U okviru rada, prikazane suteorijske osnove parametara mikroklime, buke i osvetljenja, kao injihov teorijski uticaj na generisanje i razmentu toplotne energijeizmeđu čoveka i okoline. Rad obuhvata istraživanje međuzavisnostiproučavanih parametara, toplotnog osećaja i toplotnog komforačoveka na radnom mestu u poziciji stajanja.<br>This paper examines the influence of the parameters of microclimate, noiseand lighting on the thermal sensation and thermal comfort in the workingenvironment. There is a constant interaction between a person and hisenvironment, which can cause physiological disorders in the organism. In theframework of this paper, the theoretical bases of the parameters ofmicroclimate, noise and lighting, as well as their theoretical influence on thegeneration and exchange of heat energy between person and environmentare presented. The paper encompasses research on the interdependence ofthe parameters studied for thermal sensation and the thermal comfort of aperson at the workplace in a standing position.
APA, Harvard, Vancouver, ISO, and other styles
4

Westerlund, T. (Tarja). "Thermal, circulatory, and neuromuscular responses to whole-body cryotherapy." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514290435.

Full text
Abstract:
Abstract The purpose of this study was to examine thermal (body temperature, thermal sensation and comfort ratings), circulatory (blood pressure, heart rate variability) and neuromuscular performance responses to whole-body cryotherapy (WBC, -110 °C). Altogether 66 healthy subjects were exposed to WBC for two minutes. The acute and long-term changes were examined, when the subjects were exposed to WBC three times a week during three months. Skin temperatures decreased very rapidly during WBC, but remained such a high level that there was no risk for frostbites. The effects on rectal temperature were minimal. Repeated exposures to WBC were mostly well tolerated and comfortable and the subjects became habituated at an early stage of trials. WBC increased both systolic (24 mmHg) and diastolic (5 mmHg) blood pressures temporarily. Adaptation of blood pressure was not found during three months. The acute cooling-related increase in high-frequency power of RR-intervals indicated an increase in cardiac parasympathetic modulation, but after repeated WBC the increase was attenuated. The repeated WBC exposure-related increase in resting low frequency power of RR-intervals resembles the response observed related to exercise training. There are signs of neuromuscular adaptation, especially in dynamic performance. A single WBC decreased flight time in drop-jump exercise, but after repeated WBC these changes were almost vanished. This adaptation was confirmed by the change of the activity of the agonist muscle, which increased more and the change of the activity of antagonist muscle, which increased less/did not change after repeated WBC indicating reduced co-contraction and thus, neuromuscular adaptation.
APA, Harvard, Vancouver, ISO, and other styles
5

Montanheiro, Fabiana Padilha [UNESP]. "Percepção térmica de idosos." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138157.

Full text
Abstract:
Submitted by FABIANA PADILHA MONTANHEIRO null (fpmontanheiro@yahoo.com.br) on 2016-04-27T11:37:41Z No. of bitstreams: 1 FABIANA PADILHA MONTANHEIRO_2016.pdf: 1833961 bytes, checksum: d83a3427b3bd4997f83da6c40a0ec6b5 (MD5)<br>Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-29T17:53:23Z (GMT) No. of bitstreams: 1 montanheiro_fp_me_bauru.pdf: 1833961 bytes, checksum: d83a3427b3bd4997f83da6c40a0ec6b5 (MD5)<br>Made available in DSpace on 2016-04-29T17:53:23Z (GMT). No. of bitstreams: 1 montanheiro_fp_me_bauru.pdf: 1833961 bytes, checksum: d83a3427b3bd4997f83da6c40a0ec6b5 (MD5) Previous issue date: 2016-03-03<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)<br>No panorama mundial o número de pessoas com 60 anos ou mais vem aumentando rapidamente. A grande maioria dos idosos que vive de forma independente deseja continuar seu estilo de vida atual, e para isso precisa de apoio extra e orientação para envelhecer com bem-estar e saúde. Essas condições incluem a convivência em ambientes agradáveis, inclusive em relação ao conforto térmico. Neste contexto, este trabalho avaliou a sensação térmica de idosos, comparando-a com os resultados do índice PMV (Voto Médio Estimado: Predicted Mean Vote) de Fanger. Foi realizada uma pesquisa exploratória de abordagem qualitativa (questionários) e quantitativa (medições com termômetros de bulbo seco, bulbo úmido e de globo), conforme a norma ISO 7730:2006; 2011, em três instituições que oferecem serviços de atividades específicas para a faixa populacional na cidade de Bauru (SP): o SESI (Serviço Social da Indústria), o SESC (Serviço Social do Comércio) e a AAPIBR (Associação dos aposentados, pensionistas e idosos de Bauru e Região). Os resultados obtidos demonstraram que as sensações térmicas reais (STR) relatadas pelos idosos (sensações subjetivas) são estatisticamente similares às calculadas pela equação do PMV (sensações analíticas) para três faixas desse índice: -1, 0 e 1.<br>In the global landscape, the number of people aged 60 and over is increasing rapidly. The vast majority of seniors who live independently wish to continue their current lifestyle, and for that they need extra support and guidance to grow old with wellness and health. These conditions include living in pleasant environments, including thermal comfort. In this context, this study evaluated the thermal sensation of the elderly, comparing it with the results from the PMV (Predicted Mean Vote) method (Fanger). An exploratory research with qualitative (questionnaires) and quantitative approach (measured with dry-bulb, wet-bulb and globe thermometers) was performed according to ISO 7730: 2006; 2011, in three institutions that offer specific activities services for the population group in the city of Bauru (São Paulo state): SESI (Industrial Social Services), SESC (Commercial Social Services) and AAPIBR (Association of retirees, pensioners and seniors of Bauru and region). The results showed that the actual thermal sensations (ATS) reported by the elderly (subjective sensations) are statistically similar to those calculated by the PMV equation (analytical sensations) on a threepoint scale: -1, 0 and 1.<br>MCA 162174
APA, Harvard, Vancouver, ISO, and other styles
6

Gerrett, Nicola. "Body mapping of perceptual responses to sweat and warm stimuli and their relation to physiological parameters." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/11000.

Full text
Abstract:
Regional differences in sweat gland output, skin temperature and thermoreceptor distribution can account for variations in regional perceptions of temperature, thermal comfort and wetness sensation. Large cohorts of studies have assessed these perceptual responses during sedentary activity but the findings are typically applied to a multitude of conditions, including exercise. Increases in sweat gland output, redistribution of blood flow and changes in skin and core temperature are basic responses to exercise in most conditions and these ultimately influence our perceptual responses. The primary aim of this thesis is to determine factors that influence regional differences in thermal sensation, thermal comfort and wetness sensation during exercise in moderate to hot conditions. The secondary aim is to develop and understand an additional variable, galvanic skin conductance (GSC) that can be used to predict thermal comfort and wetness sensation. The aim of the first study (Chapter 4) was to determine the influence of exercise on thermal sensitivity and magnitude sensation of warmth to a hot-dry stimulus (thermal probe at 40°C) and assess if any gender-linked differences and/or regional differences exist. From the data, body maps indicating sensitivity were produced for both genders during rest and exercise. Females had more regional differences than males. Overall sensitivity was greatest at the head, then the torso and declined towards the extremities. The data showed that exercise did not cause a significant reduction in thermal sensitivity but magnitude estimation was significantly lower after exercise for males and selected locations in females. The cause of a reduced magnitude sensation is thought to be associated with exercise induced analgesia; a reduction in sensitivity due to exercise related increases in circulating hormones. As the literature suggests that thermal comfort in the heat is influenced by the presence of sweat, the next study and all proceeding studies were concerned with this concept. In Chapter 5, building on earlier studies performed in our laboratories, the influence of local skin wettedness (wlocal) on local thermal comfort and wetness sensation was investigated in a neutral dry condition (20.2 ± 0.5°C and 43.5 ± 4.5% RH) whilst walking (4.5 km∙hr-1). Regional differences in wlocal were manipulated using specialised clothing comprising permeable and impermeable material areas. Strong correlations existed between local thermal comfort and local wetness sensation with the various measured wlocal (r2>0.88, p<0.05 and r2>0.83, p<0.05, respectively). The thermal comfort limit was defined as the wlocal value at which the participants no longer felt comfortable. Regional comfort limits for wlocal were identified (in order of high-low sensitivity); lower back (0.40), upper legs (0.44), lower legs (0.45), abdomen (0.45), chest (0.55), upper back (0.56), upper arms (0.57) and lower arms (0.65). The maximum degree of discomfort and wetness sensation experienced during the investigation was kept deliberately low in an attempt to determine the threshold values. Therefore comfort scores and wetness scores rarely reached a state of uncomfortable or wet so the next step was to assess these relationships when sweat production is high and the sensations worsened. However, pilot testing indicated that a ceiling effect would occur for wlocal at high levels of sweat production whilst thermal discomfort increased indicating wlocal was not the determining parameter in that case. Thus an additional parameter was required. The chosen parameter was galvanic skin conductance (GSC) due to its alleged ability to monitor pre-secretory sweat gland activity, skin hydration and surface sweat. In Chapter 6, the reliability, reproducibility and validity of GSC were confirmed in a series of pilot tests. Moderate to strong correlations were found between GSC and regional sweat rate (RSR) (r2>0.60, p<0.05) and wlocal (r2>0.55, p<0.05). The literature suggests standardising GSC relative to a minimum and maximum GSC value; however uncertainties arise when attempting to achieve maximum GSC. Therefore a change from baseline (∆GSC) was chosen as the proposed method of standardisation for further use. Additional results (from Chapter 9) revealed that ∆GSC also reflects pre-secretory sweat gland activity as it increased prior to sweat being present on the skin surface and prior to an increase in RSR. In Chapter 9, also hydration of the stratum corneum was measured using a moisture meter and the results revealed that it has an upper limit; indicating maximal hydration. From this point of full skin saturation ∆GSC and RSR markedly increase though sensations did not. It was also found that ∆GSC is only influenced by surface sweat that is in direct contact with the electrode and is not influenced by sweat elsewhere on the skin surface between electrodes. Higher levels of thermal discomfort have rarely been explored and neither has its relationship with wlocal. The ability of ∆GSC and wlocal to predict local thermal comfort and wetness sensation were compared in two different conditions to elicit low and high sweat production. Unlike Chapter 5, the body sites were not manipulated to control wlocal but allowed to vary naturally over time. The test was carried out on males (Chapter 7) and females (Chapter 8) to compare any gender linked differences and the results suggest that females are more sensitive than males to the initial presence of sweat. For both genders, wlocal and ∆GSC are strong predictors of thermal comfort and wetness sensation. More importantly, wlocal can only be used to predict local thermal comfort in conditions of low sweat production or low levels of thermal discomfort. However, once sweat production increases and thermal discomfort worsens ΔGSC (and not wlocal) can predict thermal comfort. Due to low sweat production observed in females indicates that this is only relevant for females. It appears that epidermal hydration has an important role on influencing thermal comfort. Receptors influencing our perceptual responses are located in the epidermis and when sweat is produced and released onto the skin surface, this epidermis swells and the sensitivity of receptors are said to increase. wlocal indicates the amount of moisture present on the skin surface, yet ∆GSC indicates presecretory sweat gland activity and epidermal hydration where the receptors are located. This may explain why on numerous occasions thermal comfort had a stronger relationship with ∆GSC than wlocal. Where Chapter 5 indicated the true local comfort limits for each respective zone, Chapter 7 and 8 provided a global picture of how local regions interact and influence local thermal comfort across the body. When wlocal varies naturally, the torso areas naturally produce more sweat than the extremities and it seemed that these areas produce so much more sweat than the extremities that they dominate local thermal comfort across the whole body. This is referred to in this thesis as a model of segmental interaction. As with thermal comfort, wetness sensation had strong relationships with wlocal and ∆GSC. The results also revealed a strong relationship between wetness sensation and thermal comfort. In contrast to the widely supported claim, a drop in skin temperature is not required to stimulate a wetness sensation. The point at which we detect sweat and when it becomes uncomfortable occurs at different wlocal values across the body. Thermal comfort is shown to be influenced by sweat during exercise in moderate-to-hot conditions. As w has an upper limit the findings suggest that it cannot predict thermal comfort during high sweat rates. Galvanic skin conductance monitors the process of sweat production more closely and thus is a better predictor of thermal comfort during all conditions and particularly during high sweat production. The strong relationship between thermal comfort and wetness sensation confirm the role of sweat production on thermal comfort. Gender differences to perceptual responses were observed, with females generally being more sensitive to sweat and a warm thermal stimulus than males. Regional differences to sweat and a warm stimulus generally suggest that the torso area is more sensitive than the extremities. This is important not only for sports clothing design but also protective clothing at the work place.
APA, Harvard, Vancouver, ISO, and other styles
7

Gobo, João Paulo Assis. "Bioclimatologia subtropical e modelização do conforto humano: da escala local à regional." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-23022018-094537/.

Full text
Abstract:
O objeto desta pesquisa consiste em avaliar e propor índices de conforto térmico humano por meio de variáveis ambientais, subjetivas e individuais, em escala climática local e regional. Para tanto, parte-se da hipótese de que o estudo abrangente do conforto térmico humano em escala local, por meio de entrevistas e análise do tempo in-loco, forneceria subsídios para o desenvolvimento de um índice que transite até a escala regional do clima. Parte-se, então, de um método indutivo experimental (levantamento em campo de variáveis climáticas, individuais e subjetivas) onde foram feitas coletas em campo no período de agosto de 2015, janeiro e julho de 2016, com a aplicação de questionários à população simultâneos a coleta de dados meteorológicos. Os resultados do estudo apontaram para a determinação da influência das particularidades climáticas regionais no conforto e na sensação térmica das pessoas entrevistadas, por meio dos efeitos diretos do clima regional. Confirmou-se a existência da influência do sexo dos indivíduos em relação às suas respostas de sensação térmica, bem como a influência dos aspectos fisiológicos tais como o índice de massa corporal e a faixa etária, na preferência térmica dos destes entrevistados. O presente estudo também possibilitou a calibração das faixas interpretativas de conforto térmico de diferentes índices de conforto para a área de estudo. Foram propostos quatro índices de conforto humano com base nas variáveis ambientais, subjetivas e individuais locais, sendo um índice exclusivo para a situação de verão, outro calculado para o inverno, um terceiro índice desenvolvido para ambas as situações sazonais (verão e inverno) e um quarto índice, também para ambas as situações sazonais, porém, tendo como variáveis de partida apenas a temperatura do ar, da umidade relativa do ar e da velocidade do vento. Por fim, foram avaliadas estatisticamente a abrangência espacial e a extrapolação da escala de análise dos resultados para um dos índices desenvolvidos, propondo a validação deste para a escala climática regional. Os resultados apresentados possibilitaram a avaliação do conforto humano, das variáveis ambientais, subjetivas e individuais, bem como o desenvolvimento de um índice adequado tanto para escala local quanto para a escala regional do clima, o que conferiu uma resposta conclusiva à hipótese central apresentada.<br>This research aims to evaluate and propose human thermal comfort indexes using environmental, individual and subjective variables in the local and regional climatic scales. For that, the hypothesis tested is that the comprehensive study of human thermal comfort, by means of interviews and in-situ weather analysis, provides the basis for the development of an index suitable to be applied also in the regional climatic scale. The first step in the research consisted of an experimental inductive method of field data collection of climatic, individual and subjective variables. Data was collected in the periods of August 2015, January and July of 2016, with questionnaires being applied to the population simultaneously to the collection of meteorological data. Results point to the influence of regional climatic characteristics over the thermal comfort of interviewed individuals, through the direct effects of regional climatic conditions. The influence of gender in thermal comfort responses was confirmed, as well as physiological aspects such as Body Mass Index and age group, in the thermal preference of interviewed individuals. This study also made it possible to calibrate different human thermal comfort classes for the different comfort indexes used in the area of study. Four human thermal comfort indexes were proposed based on environmental, subjective and individual local variables. One index was calculated for Summer, another for Winter, and a third index was developed for both seasons. A fourth index was also calculated for both seasons but using only air temperature, relative humidity and wind speed as variables. Lastly, the spatial representativeness and scale extrapolation of the results for one of the developed models were evaluated statistically in order to propose its validation to the regional climatic scale. Results present the evaluation of human thermal comfort and environmental, subjective and individual variables, as well as the development of an index suitable for both local and regional climatic scales, which provided an appropriate answer to the central hypothesis presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Prado, Monica Faria de Almeida. "Conforto térmico nos edifícios das indústrias de calçados de Jaú." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-28022013-104203/.

Full text
Abstract:
Este trabalho aborda o desempenho térmico obtido em edifícios industriais do setor calçadista, perante a importância em obter condições ambientais favoráveis à execução das atividades através de uma arquitetura adequada ao contexto climático. Assim, o objetivo nesta pesquisa é avaliar as condições de conforto térmico oferecidas pelos edifícios das indústrias calçadistas do município de Jaú, um importante pólo industrial do setor no interior de São Paulo. Caracterizam-se as tipologias construtivas dos edifícios quanto à geometria, materiais e sistema de ventilação. As estratégias passivas para obtenção de conforto térmico nos galpões fabris são identificadas e avaliadas utilizando as recomendações presentes na NBR 15220. Para avaliar as condições de conforto térmico, foram medidas as variáveis ambientais, sendo que a temperatura foi analisada sob condições de aceitabilidade térmica, conforme estabelecido pela ASHRAE 55-2010. Para estimar a sensação térmica dos usuários, são utilizados os índices PMV e PPD. Também foi aplicado um questionário para verificar o nível de satisfação dos funcionários com o ambiente de trabalho. Os resultados apontam que a maioria dos edifícios apresenta uma tipologia semelhante, com geometria retangular e ventilação realizada através de esquadrias nas fachadas. A ausência de diversas estratégias passivas resulta em um edifício com baixa inércia térmica e vulnerável às condições climáticas externas, sendo que em períodos quentes a temperatura interna foi superior a 30ºC, e em períodos frios inferior a 15ºC. A sensação térmica dos usuários na maior parte do período do expediente corresponde ao desconforto térmico para o calor, principalmente no período vespertino, sendo que a porcentagem de insatisfeitos ultrapassa 80%. Deste modo, há necessidade de otimizar a adoção de estratégias passivas, para proporcionar melhores condições térmicas de trabalho. Para isto, são indicadas soluções simples, que propiciam melhorias ao desempenho térmico dos edifícios, exemplificando: o uso de sistemas que possibilitem o resfriamento evaporativo e ampliação das áreas de aberturas destinadas à ventilação do edifício.<br>This paper discusses the thermal performance obtained in industrial buildings in the footwear sector, given the importance of obtaining favorable environmental conditions for the execution of activities through an architecture suited to the climate context. Thus, the objective of this research is to evaluate the thermal comfort conditions provided by the buildings of the footwear industries of Jaú city, an important industrial pole. It is characterized the typologies of building\'s construction regarding its geometry, materials and ventilation system. The passive strategies for achieving thermal comfort in the factory sheds are identified and evaluated using the recommendations present in the NBR 15220. To evaluate the thermal comfort conditions it was measured the environmental variables, and the temperature was examined under conditions of thermal acceptability, as established by ASHRAE 55-2010. In order to estimate the thermal sensation of the users, the PMV and PPD indices were used. Also, a questionnaire was applied in order to check the level of employee satisfaction with the working environment. The results show that most of the buildings presents a typology similar with a rectangular geometry and ventilation obtained through frames at the facades. The absence of different passive strategies results in a building with a low thermal inertia and vulnerable to the external weather conditions, and in hot periods, the internal temperature was above 30°C, and during colder periods it was lower than 15°C. The thermal sensation of users in most of the period of the working shift matches the thermal discomfort to the heat, especially in the afternoon, and the percentage of discontentment exceeds 80%. This way, there is a need to optimize the adoption of passive strategies, to provide better thermal conditions of work. For this purpose, simple solutions that provide improvements to the thermal performance of buildings are given, examples: the use of systems which allows evaporative cooling and expansion of openings areas for the ventilation of the building.
APA, Harvard, Vancouver, ISO, and other styles
9

Abboud, Abou Jaoude Rachelle. "Développement d’une nouvelle approche d’évaluation du confort dans le contexte des véhicules électriques connectés." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM059.

Full text
Abstract:
Le confort thermique des conducteurs et des passagers dans les compartiments de la voiture est un sujet qui redevient d’actualité avec l'électrification des véhicules. En fait, les systèmes de climatisation et de chauffage peuvent réduire l'autonomie des véhicules électriques jusqu'à 50% dans certaines conditions. D'autre part, les modèles de représentation des personnes les plus utilisés sont encore ceux qui considèrent une personne moyenne standard. De nombreuses études ont montré les limites de ces modèles dans la prévision du confort thermique de différentes populations dans des environnements complexes. Par conséquent, si un confort thermique personnel correspondant à une consommation minimale d’énergie du véhicule est requis, il convient d’accorder une attention particulière à la compréhension de l’individualisation du modèle thermo-physiologique et à l’identification des paramètres clés ayant le plus d’influence sur le confort thermique. Une procédure d’individualisation a été exposée suivi d’une validation expérimentale du modèle personnalisé. La prise en compte des caractéristiques individuelle améliore la prédiction du modèle de 20% en moyenne<br>Thermal comfort of drivers and passengers inside cars compartments is a subject bouncing back to the spotlight with the electrification of vehicles. In fact, air conditioning and heating systems can reduce the battery autonomy of electric vehicles by up to 50% under certain conditions. On the other hand, the most used thermo-physiological models nowadays are still those that consider a standard average person. Many studies showed the limitations of these models in predicting thermal comfort for different populations in complex environments. Therefore, if a personal thermal comfort at minimum vehicle energy consumption is required, a deep consideration should be given to the understanding of the individualization of the thermo-physiological model and to identifying key parameters that have the most influence on thermal comfort. An individualization procedure followed by an experimental validation of the customized model is presented. Considering individual characteristics was shown to improve the model by 20% on average
APA, Harvard, Vancouver, ISO, and other styles
10

Toma, Róbert. "Metodika pro testování prostředí v kabině osobního vozu s využitím tepelného manekýna a testovacích osob." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241679.

Full text
Abstract:
In this thesis, there is processed design of test procedure for innovative HVAC system. This design was created in consecutive phases with use of thermal manikin Newton and climate chamber. Correlation between data from thermal manikin and tests subjects and possible design changes were evaluated after each phase. There are mentioned basics of human thermoregulation, factors which affect thermal comfort and ways in which is possible to measure and rate it with use of thermal comfort scales and comfort zones diagram. The thesis includes survey for testing thermal comfort and scales which are used to complete it. In the end, we mentioned some results alongside with our approach in evaluation of correlation between thermal manikin and test. There is also final design of test procedure for innovative HVAC system which would be used for its calibration and final functionality testing.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography