Journal articles on the topic 'Semoconductor Nanomaterials - Electrical Properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Semoconductor Nanomaterials - Electrical Properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lapekin, Nikita I., Artem A. Shestakov, Andrey E. Brester, Arina V. Ukhina, and Alexander G. Bannov. "Electrical properties of compacted carbon nanomaterials." MATEC Web of Conferences 340 (2021): 01047. http://dx.doi.org/10.1051/matecconf/202134001047.
Full textWang Xinda, 王欣达, 廖嘉宁 Liao Jianing, 姚煜 Yao Yu, 郭伟 Guo Wei, 康慧 Kang Hui, and 彭鹏 Peng Peng. "Nanojoining and Electrical Properties of Silver Nanomaterials." Chinese Journal of Lasers 48, no. 8 (2021): 0802016. http://dx.doi.org/10.3788/cjl202148.0802016.
Full textKang, Xueya, Tu Minjing, Ming Zhang, and Wang Tiandiao. "Microstructure and Electrical Properties of Doped ZnO Varistor Nanomaterials." Solid State Phenomena 99-100 (July 2004): 127–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.127.
Full textSharma, A. Deepak, and H. Basantakumar Sharma. "Electrical and Magnetic Properties of Mn-Doped BiFeO3 Nanomaterials." Integrated Ferroelectrics 203, no. 1 (November 22, 2019): 81–90. http://dx.doi.org/10.1080/10584587.2019.1674969.
Full textWang, Jingang, Xijiao Mu, and Mengtao Sun. "The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials." Nanomaterials 9, no. 2 (February 6, 2019): 218. http://dx.doi.org/10.3390/nano9020218.
Full textTran Ngoc Lan, Nguyen Tran Thuat, Hoang Ngoc Lam Huong, and Nguyen Van Quynh. "Effects of silver incorporation on electrical and optical properties of CuAlxOy thin films." Journal of Military Science and Technology, FEE (December 23, 2022): 294–302. http://dx.doi.org/10.54939/1859-1043.j.mst.fee.2022.294-302.
Full textDobrovolskaia, Marina A., and Scott E. McNeil. "Immunological properties of engineered nanomaterials." Nature Nanotechnology 2, no. 8 (July 29, 2007): 469–78. http://dx.doi.org/10.1038/nnano.2007.223.
Full textYoo, Doo-Yeol, Ilhwan You, Hyunchul Youn, and Seung-Jung Lee. "Electrical and piezoresistive properties of cement composites with carbon nanomaterials." Journal of Composite Materials 52, no. 24 (March 21, 2018): 3325–40. http://dx.doi.org/10.1177/0021998318764809.
Full textPietrzak, T. K., M. Maciaszek, J. L. Nowiński, W. Ślubowska, S. Ferrari, P. Mustarelli, M. Wasiucionek, M. Wzorek, and J. E. Garbarczyk. "Electrical properties of V2O5 nanomaterials prepared by twin rollers technique." Solid State Ionics 225 (October 2012): 658–62. http://dx.doi.org/10.1016/j.ssi.2011.11.017.
Full textPietrzak, T. K., L. Wewior, J. E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, J. L. Nowinski, and S. Gierlotka. "Electrical properties and thermal stability of FePO4 glasses and nanomaterials." Solid State Ionics 188, no. 1 (April 2011): 99–103. http://dx.doi.org/10.1016/j.ssi.2010.11.006.
Full textIqbal, Muhammad Javed, and Mah Rukh Siddiquah. "Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials." Journal of Alloys and Compounds 453, no. 1-2 (April 2008): 513–18. http://dx.doi.org/10.1016/j.jallcom.2007.06.105.
Full textLin, Huo Yang. "Communication Transmission Device Based on New Nano Material." Advanced Materials Research 722 (July 2013): 9–12. http://dx.doi.org/10.4028/www.scientific.net/amr.722.9.
Full textTripathi, S. K., Jagdish Kaur, R. Ridhi, Kriti Sharma, and Ramneek Kaur. "Radiation Induced Effects on Properties of Semiconducting Nanomaterials." Solid State Phenomena 239 (August 2015): 1–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.239.1.
Full textTripathi, S. K., Ramneek Kaur, and Mamta Rani. "Oxide Nanomaterials and their Applications as a Memristor." Solid State Phenomena 222 (November 2014): 67–97. http://dx.doi.org/10.4028/www.scientific.net/ssp.222.67.
Full textJemima Priyadarshini, S., and D. Jude Hemanth. "Investigation of Nanomaterial Dipoles for SAR Reduction in Human Head." Frequenz 73, no. 5-6 (May 27, 2019): 189–201. http://dx.doi.org/10.1515/freq-2018-0220.
Full textLiu, Mei, Weilin Su, Xiangzheng Qin, Kai Cheng, Wei Ding, Li Ma, Ze Cui, et al. "Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM." Micromachines 12, no. 3 (February 28, 2021): 248. http://dx.doi.org/10.3390/mi12030248.
Full textShimakawa, Koichi. "Electrical properties of nanocrystalline media: Optical conductivity and non-Drude behavior in the terahertz frequency range." Canadian Journal of Physics 92, no. 7/8 (July 2014): 696–99. http://dx.doi.org/10.1139/cjp-2013-0553.
Full textYurkov, G. Yu, A. S. Fionov, Yu A. Koksharov, V. V. Koleso, and S. P. Gubin. "Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles." Inorganic Materials 43, no. 8 (August 2007): 834–44. http://dx.doi.org/10.1134/s0020168507080055.
Full textHossain, A., M. S. I. Sarker, M. K. R. Khan, and M. M. Rahman. "Microstructural, morphological and electrical properties of sol-gel derived CoFe2O4 nanomaterials." Journal of Physics: Conference Series 1086 (September 2018): 012004. http://dx.doi.org/10.1088/1742-6596/1086/1/012004.
Full textKUMAR, R., and MUNISH KUMAR. "SIZE DEPENDENCE OF THERMOELASTIC PROPERTIES OF NANOMATERIALS." International Journal of Nanoscience 09, no. 05 (October 2010): 537–42. http://dx.doi.org/10.1142/s0219581x10007113.
Full textBabu, J. Suresh, H. Bhavani Naga Prasanna, J. Satish Babu, Yamarthi Narasimha Rao, and Surafel Mustefa Beyan. "Environmental Applications of Sorbents, High-Flux Membranes of Carbon-Based Nanomaterials." Adsorption Science & Technology 2022 (February 2, 2022): 1–13. http://dx.doi.org/10.1155/2022/8218476.
Full textQu, Juntian, and Xinyu Liu. "Recent Advances on SEM-Based In Situ Multiphysical Characterization of Nanomaterials." Scanning 2021 (June 9, 2021): 1–16. http://dx.doi.org/10.1155/2021/4426254.
Full textGao, Jing, Yujin Ji, Youyong Li, Jun Zhong, and Xuhui Sun. "The morphological effect on electronic structure and electrical transport properties of one-dimensional carbon nanostructures." RSC Advances 7, no. 34 (2017): 21079–84. http://dx.doi.org/10.1039/c7ra01492a.
Full textZong, Jia-Qi, Shu-Feng Zhang, Wei-Xiao Ji, Chang-Wen Zhang, Ping Li, and Pei-Ji Wang. "Electric structure and optical properties of ReS2 nanomaterials." Superlattices and Microstructures 122 (October 2018): 262–67. http://dx.doi.org/10.1016/j.spmi.2018.07.040.
Full textKardan Moghaddam, Hossein, Mohamad Reza Maraki, and Amir Rajaei. "Application of Carbon Nanotubes(CNT) on The Computer Science and Electrical Engineering:A Review." International Journal of Reconfigurable and Embedded Systems (IJRES) 9, no. 1 (March 1, 2020): 61. http://dx.doi.org/10.11591/ijres.v9.i1.pp61-82.
Full textDu, Mingrui, Hongwen Jing, Yuan Gao, Haijian Su, and Hongyuan Fang. "Carbon nanomaterials enhanced cement-based composites: advances and challenges." Nanotechnology Reviews 9, no. 1 (March 12, 2020): 115–35. http://dx.doi.org/10.1515/ntrev-2020-0011.
Full textCohen-Karni, Tzahi. "(Invited) Multi-Modality Input/Output Interfaces with Tissue and Cells Using Nanocarbons." ECS Meeting Abstracts MA2022-01, no. 8 (July 7, 2022): 705. http://dx.doi.org/10.1149/ma2022-018705mtgabs.
Full textAbbasi, Fateme, Nasibeh Hajilary, and Mashallah Rezakazemi. "Antibacterial properties of MXene-based nanomaterials: A review." Materials Express 12, no. 1 (January 1, 2022): 34–48. http://dx.doi.org/10.1166/mex.2022.2138.
Full textAnsari, Mohammad Omaish, Kalamegam Gauthaman, Abdurahman Essa, Sidi A. Bencherif, and Adnan Memic. "Graphene and Graphene-Based Materials in Biomedical Applications." Current Medicinal Chemistry 26, no. 38 (January 3, 2019): 6834–50. http://dx.doi.org/10.2174/0929867326666190705155854.
Full textHe, Xiaoai, Aijuan Lu, Jin Cheng, Junfang Chen, Qianhui Song, Wenfang Liu, and Chuanpin Chen. "Overview of the Application of Flow Microreactors in the Synthesis of Silver Nanomaterials." Nano 12, no. 11 (November 2017): 1730002. http://dx.doi.org/10.1142/s179329201730002x.
Full textHao, Lu, Changyi Dong, Lifeng Zhang, Kaiming Zhu, and Demei Yu. "Polypyrrole Nanomaterials: Structure, Preparation and Application." Polymers 14, no. 23 (November 25, 2022): 5139. http://dx.doi.org/10.3390/polym14235139.
Full textPanda, Sayak Subhra, Howard E. Katz, and John D. Tovar. "Solid-state electrical applications of protein and peptide based nanomaterials." Chemical Society Reviews 47, no. 10 (2018): 3640–58. http://dx.doi.org/10.1039/c7cs00817a.
Full textJiwanti, Prastika K., Brasstira Y. Wardhana, Laurencia G. Sutanto, Diva Meisya Maulina Dewi, Ilmanda Zalzabhila Danistya Putri, and Ilmi Nur Indira Savitri. "Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review." Molecules 27, no. 21 (November 4, 2022): 7578. http://dx.doi.org/10.3390/molecules27217578.
Full textAbbas, Samer Saad, Raouf Mahmood Raouf, and Harith Hasoon Al-Moameri. "Preparation of Calcium Titanate Nanoparticles with Investigate the Thermal and Electrical Properties by Incorporating Epoxy." Materials Science Forum 1083 (April 6, 2023): 13–22. http://dx.doi.org/10.4028/p-ep913a.
Full textDeng, Yuanxiang. "Electrical Properties of New Carbon-Based Magnetic Nanomaterials and Spintronic Device Design." Integrated Ferroelectrics 226, no. 1 (June 3, 2022): 125–39. http://dx.doi.org/10.1080/10584587.2022.2061201.
Full textBokobza, Liliane. "Mechanical and Electrical Properties of Elastomer Nanocomposites Based on Different Carbon Nanomaterials." C 3, no. 4 (April 12, 2017): 10. http://dx.doi.org/10.3390/c3020010.
Full textDimou, Angeliki-Eirini, Christina-Margarita Charalampidou, Zoi S. Metaxa, Stavros K. Kourkoulis, Ioannis Karatasios, Georgios Asimakopoulos, and Nikolaos D. Alexopoulos. "Mechanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials." Procedia Structural Integrity 28 (2020): 1694–701. http://dx.doi.org/10.1016/j.prostr.2020.10.144.
Full textSaleem, M., and A. Mishra. "On the structural, optical and electrical properties of Cu2+ doped Zn0.94Cd0.06O nanomaterials." Chinese Journal of Physics 61 (October 2019): 166–79. http://dx.doi.org/10.1016/j.cjph.2019.06.017.
Full textLyson-Sypien, B., A. Czapla, M. Lubecka, E. Kusior, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, and H. J. Kleebe. "Gas sensing properties of TiO2–SnO2 nanomaterials." Sensors and Actuators B: Chemical 187 (October 2013): 445–54. http://dx.doi.org/10.1016/j.snb.2013.01.047.
Full textSIRGHIE, Alexandru, Mihai OPROESCU, Gabriel Vasile IANA, and Adriana Gabriela PLAIASU. "Nanostructured materials for CBRNdetection." University of Pitesti. Scientific Bulletin - Automotive Series 30, no. 1 (November 1, 2020): 1–8. http://dx.doi.org/10.26825/bup.ar.2020.009.
Full textFometu, Sandra Senyo, Guohua Wu, Lin Ma, and Joan Shine Davids. "A review on the biological effects of nanomaterials on silkworm (Bombyx mori)." Beilstein Journal of Nanotechnology 12 (February 12, 2021): 190–202. http://dx.doi.org/10.3762/bjnano.12.15.
Full textWang, Ailing, and Ping Wang. "Analysis of Load-Bearing Electrical Properties of Composite Materials Based on Homogenization Theory." Science of Advanced Materials 14, no. 10 (October 1, 2022): 1582–88. http://dx.doi.org/10.1166/sam.2022.4371.
Full textForrest, David R., and U. (Balu) Balachandran. "Carbon Covetic Nanomaterials Show Promise." AM&P Technical Articles 175, no. 6 (September 1, 2017): 30–31. http://dx.doi.org/10.31399/asm.amp.2017-06.p030.
Full textZhang, Jin, and S. A. Meguid. "Piezoelectricity of 2D nanomaterials: characterization, properties, and applications." Semiconductor Science and Technology 32, no. 4 (March 24, 2017): 043006. http://dx.doi.org/10.1088/1361-6641/aa5cfb.
Full textOno, Takahito, Chia-cheng Fan, and Masayoshi Esashi. "Micro instrumentation for characterizing thermoelectric properties of nanomaterials." Journal of Micromechanics and Microengineering 15, no. 1 (September 24, 2004): 1–5. http://dx.doi.org/10.1088/0960-1317/15/1/001.
Full textDang, Chao, Mingyang Liu, Zhiwei Lin, and Wei Yan. "Selenium nanomaterials enabled flexible and wearable electronics." Chemical Synthesis 3, no. 2 (2023): 14. http://dx.doi.org/10.20517/cs.2022.33.
Full textWu, Hong, and Rui Li. "Properties of Bismuth Telluride Nanomaterials: A Computer Simulation Study." Journal of Nanoelectronics and Optoelectronics 12, no. 11 (November 1, 2017): 1199–202. http://dx.doi.org/10.1166/jno.2017.2270.
Full textBayan, E. M., T. G. Lupeiko, L. E. Pustovaya, and M. G. Volkova. "Synthesis and photocatalytic properties of Sn–TiO2 nanomaterials." Journal of Advanced Dielectrics 10, no. 01n02 (February 2020): 2060018. http://dx.doi.org/10.1142/s2010135x20600188.
Full textAbu Owida, Hamza, Nidal M. Turab, and Jamal Al-Nabulsi. "Carbon nanomaterials advancements for biomedical applications." Bulletin of Electrical Engineering and Informatics 12, no. 2 (April 1, 2023): 891–901. http://dx.doi.org/10.11591/eei.v12i2.4310.
Full textGoyal, Monika. "Study of size effect on thermophysical properties of metallic nanosolids." High Temperatures-High Pressures 52, no. 1 (2023): 19–36. http://dx.doi.org/10.32908/hthp.v52.1305.
Full text