Academic literature on the topic 'Semistable points'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semistable points.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Semistable points"

1

Luks, Tomasz, and Yimin Xiao. "Multiple Points of Operator Semistable Lévy Processes." Journal of Theoretical Probability 33, no. 1 (September 14, 2018): 153–79. http://dx.doi.org/10.1007/s10959-018-0859-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heinzner, Peter, and Henrik Stötzel. "Semistable points with respect to real forms." Mathematische Annalen 338, no. 1 (December 23, 2006): 1–9. http://dx.doi.org/10.1007/s00208-006-0063-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pattanayak, S. K. "Minimal Schubert Varieties Admitting Semistable Points for Exceptional Cases." Communications in Algebra 42, no. 9 (April 23, 2014): 3811–22. http://dx.doi.org/10.1080/00927872.2013.795578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lai, K. F. "C2 building and projective space." Journal of the Australian Mathematical Society 76, no. 3 (June 2004): 383–402. http://dx.doi.org/10.1017/s1446788700009939.

Full text
Abstract:
AbstractWe study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the building of Sp2 over a local field and construct a pure affinoid covering of the space of stable points.
APA, Harvard, Vancouver, ISO, and other styles
5

Vyugin, Il'ya Vladimirovich, and Lada Andreevna Dudnikova. "Stable vector bundles and the Riemann-Hilbert problem on a Riemann surface." Sbornik: Mathematics 215, no. 2 (2024): 141–56. http://dx.doi.org/10.4213/sm9781e.

Full text
Abstract:
The paper is devoted to holomorphic vector bundles with logarithmic connections on a compact Riemann surface and the applications of the results obtained to the question of solvability of the Riemann-Hilbert problem on a Riemann surface. We give an example of a representation of the fundamental group of a Riemann surface with four punctured points which cannot be realized as the monodromy representation of a logarithmic connection with four singular points on a semistable bundle. For an arbitrary pair of a bundle and a logarithmic connection on it we prove an estimate for the slopes of the associated Harder-Narasimhan filtration quotients. In addition, we present results on the realizability of a representation as a direct summand in the monodromy representation of a logarithmic connection on a semistable bundle of degree zero. Bibliography: 9 titles.
APA, Harvard, Vancouver, ISO, and other styles
6

Castella, Francesc. "ON THE EXCEPTIONAL SPECIALIZATIONS OF BIG HEEGNER POINTS." Journal of the Institute of Mathematics of Jussieu 17, no. 1 (February 4, 2016): 207–40. http://dx.doi.org/10.1017/s1474748015000444.

Full text
Abstract:
We extend the $p$-adic Gross–Zagier formula of Bertolini et al. [Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Math. J.162(6) (2013), 1033–1148] to the semistable non-crystalline setting, and combine it with our previous work [Castella, On the $p$-adic variation of Heegner points, Preprint, 2014, arXiv:1410.6591] to obtain a derivative formula for the specializations of Howard’s big Heegner points [Howard, Variation of Heegner points in Hida families, Invent. Math.167(1) (2007), 91–128] at exceptional primes in the Hida family.
APA, Harvard, Vancouver, ISO, and other styles
7

Abramovich, Dan, and Anthony Várilly-Alvarado. "Campana points, Vojta’s conjecture, and level structures on semistable abelian varieties." Journal de Théorie des Nombres de Bordeaux 30, no. 2 (2018): 525–32. http://dx.doi.org/10.5802/jtnb.1037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tamagawa, Akio. "Ramification of torsion points on curves with ordinary semistable Jacobian varieties." Duke Mathematical Journal 106, no. 2 (February 2001): 281–319. http://dx.doi.org/10.1215/s0012-7094-01-10623-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalabušić, S., M. R. S. Kulenović, and E. Pilav. "Multiple Attractors for a Competitive System of Rational Difference Equations in the Plane." Abstract and Applied Analysis 2011 (2011): 1–35. http://dx.doi.org/10.1155/2011/295308.

Full text
Abstract:
We investigate global dynamics of the following systems of difference equationsxn+1=β1xn/(B1xn+yn),yn+1=(α2+γ2yn)/(A2+xn),n=0,1,2,…, where the parametersβ1,B1,β2,α2,γ2,A2are positive numbers, and initial conditionsx0andy0are arbitrary nonnegative numbers such thatx0+y0>0. We show that this system has up to three equilibrium points with various dynamics which depends on the part of parametric space. We show that the basins of attractions of different locally asymptotically stable equilibrium points or nonhyperbolic equilibrium points are separated by the global stable manifolds of either saddle points or of nonhyperbolic equilibrium points. We give an example of globally attractive nonhyperbolic equilibrium point and semistable non-hyperbolic equilibrium point.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Huachen. "O’Grady’s birational maps and strange duality via wall-hitting." International Journal of Mathematics 30, no. 09 (August 2019): 1950044. http://dx.doi.org/10.1142/s0129167x19500447.

Full text
Abstract:
We prove that O’Grady’s birational maps [K. G O’Grady, The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, J. Algebr. Geom. 6(4) (1997) 599–644] between moduli of sheaves on an elliptic K3 surface can be interpreted as intermediate wall-crossing (wall-hitting) transformations at so-called totally semistable walls, studied by Bayer and Macrì [A. Bayer and E. Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Inventiones Mathematicae 198(3) (2014) 505–590]. As a key ingredient, we describe the first totally semistable wall for ideal sheaves of [Formula: see text] points on the elliptic [Formula: see text]. As an application, we give new examples of strange duality isomorphisms, based on a result of Marian and Oprea [A. Marian and D. Oprea, Generic strange duality for K3 surfaces, with an appendix by Kota Yoshioka, Duke Math. J. 162(8) (2013) 1463–1501].
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Semistable points"

1

Francqueville, Martin. "Fonctions L p-adiques de Rankin-Selberg aux points semistables." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0225.

Full text
Abstract:
A un couple de formes modulaires, on peut associer une fonction L complexe. Pour étudier cette fonction L complexe, on peut construire une fonction L p-adique interpolant les valeurs de la fonction L complexe, à un facteur près. Il peut cependant arriver que ce facteur s’annule. Dans ce cas, la fonction L p-adique s’annule, et on perd l’information sur la valeur de la fonction L complexe : c’est le phénomène des zéros triviaux. Conjecturalement, il devrait être possible de retrouver l’information sur la valeur de la fonction L complexe en considérant la dérivée cyclotomique de la fonction L p-adique. Dans cette thèse, on se placera dans le cas o`u une forme modulaire est semistable, tandis que l’autre est cristalline. On donnera la formule d’interpolation entre la fonction L complexe et la fonction L p-adique, et on mettra en évidence les conditions pour qu’un zéro trivial apparaisse. Enfin, on montrera une formule donnant la dérivée cyclotomique de la fonction L p-adique en fonction de l’invariant L et de la fonction L complexe
We can associate a complex L-function to a couple of modular forms. To study this complex L-function, we can construct a p-adic L function which interpolates the values of the complex L-function, up to a multiplicative factor. It can happen that this factor vanishes. in this case, the p-adic L function vanishes, and we lose the information on the complex L-function’s value : this is the trivial zero phenomenon. Conjecturally, it should be possible to recover the information on the complex L-function’s value through the p-adic L-functions’s cyclotomic derivative. In this thesis, we consider the case where one modular form is semistable, while the other one is cristalline. We give the interpolation formula between the complex L-function and the p-adic L-function, and we highlight the conditions needed for a trivial zero to appear. finally, we show a formula giving the p-adic L-function’s cyclotomic derivative as a function of the L invariant and the complex L-function
APA, Harvard, Vancouver, ISO, and other styles
2

Scarponi, Danny. "Formes effectives de la conjecture de Manin-Mumford et réalisations du polylogarithme abélien." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30100/document.

Full text
Abstract:
Dans cette thèse nous étudions deux problèmes dans le domaine de la géométrie arithmétique, concernant respectivement les points de torsion des variétés abéliennes et le polylogarithme motivique sur les schémas abéliens. La conjecture de Manin-Mumford (démontrée par Raynaud en 1983) affirme que si A est une variété abélienne et X est une sous-variété de A ne contenant aucune translatée d'une sous-variété abélienne de A, alors X ne contient qu'un nombre fini de points de torsion de A. En 1996, Buium présenta une forme effective de la conjecture dans le cas des courbes. Dans cette thèse, nous montrons que l'argument de Buium peut être utilisé aussi en dimension supérieure pour prouver une version quantitative de la conjecture pour une classe de sous-variétés avec fibré cotangent ample étudiée par Debarre. Nous généralisons aussi à toute dimension un résultat sur la dispersion des relèvements p-divisibles non ramifiés obtenu par Raynaud dans le cas des courbes. En 2014, Kings and Roessler ont montré que la réalisation en cohomologie de Deligne analytique de la part de degré zéro du polylogarithme motivique sur les schémas abéliens peut être reliée aux formes de torsion analytique de Bismut-Koehler du fibré de Poincaré. Dans cette thèse, nous utilisons la théorie de l'intersection arithmétique dans la version de Burgos pour raffiner ce résultat dans le cas où la base du schéma abélien est propre
In this thesis we approach two independent problems in the field of arithmetic geometry, one regarding the torsion points of abelian varieties and the other the motivic polylogarithm on abelian schemes. The Manin-Mumford conjecture (proved by Raynaud in 1983) states that if A is an abelian variety and X is a subvariety of A not containing any translate of an abelian subvariety of A, then X can only have a finite number of points that are of finite order in A. In 1996, Buium presented an effective form of the conjecture in the case of curves. In this thesis, we show that Buium's argument can be made applicable in higher dimensions to prove a quantitative version of the conjecture for a class of subvarieties with ample cotangent studied by Debarre. Our proof also generalizes to any dimension a result on the sparsity of p-divisible unramified liftings obtained by Raynaud in the case of curves. In 2014, Kings and Roessler showed that the realisation in analytic Deligne cohomology of the degree zero part of the motivic polylogarithm on abelian schemes can be described in terms of the Bismut-Koehler higher analytic torsion form of the Poincaré bundle. In this thesis, using the arithmetic intersection theory in the sense of Burgos, we give a refinement of Kings and Roessler's result in the case in which the base of the abelian scheme is proper
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Semistable points"

1

Bini, Gilberto, Fabio Felici, Margarida Melo, and Filippo Viviani. "Semistable, Polystable and Stable Points (Part I)." In Lecture Notes in Mathematics, 131–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11337-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bini, Gilberto, Fabio Felici, Margarida Melo, and Filippo Viviani. "Semistable, Polystable and Stable Points (Part II)." In Lecture Notes in Mathematics, 149–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11337-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography