Academic literature on the topic 'Semisimple algebraic groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semisimple algebraic groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semisimple algebraic groups"
Nahlus, Nazih. "Homomorphisms of Lie Algebras of Algebraic Groups and Analytic Groups." Canadian Mathematical Bulletin 38, no. 3 (September 1, 1995): 352–59. http://dx.doi.org/10.4153/cmb-1995-051-7.
Full textDe Clercq, Charles. "Équivalence motivique des groupes algébriques semisimples." Compositio Mathematica 153, no. 10 (July 27, 2017): 2195–213. http://dx.doi.org/10.1112/s0010437x17007369.
Full textDe Clercq, Charles, and Skip Garibaldi. "Tits p-indexes of semisimple algebraic groups." Journal of the London Mathematical Society 95, no. 2 (January 16, 2017): 567–85. http://dx.doi.org/10.1112/jlms.12025.
Full textGordeev, Nikolai, Boris Kunyavskiĭ, and Eugene Plotkin. "Word maps on perfect algebraic groups." International Journal of Algebra and Computation 28, no. 08 (December 2018): 1487–515. http://dx.doi.org/10.1142/s0218196718400052.
Full textCassidy, Phyllis Joan. "The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras." Journal of Algebra 121, no. 1 (February 1989): 169–238. http://dx.doi.org/10.1016/0021-8693(89)90092-6.
Full textAvdeev, R. S. "On solvable spherical subgroups of semisimple algebraic groups." Transactions of the Moscow Mathematical Society 72 (2011): 1–44. http://dx.doi.org/10.1090/s0077-1554-2012-00192-7.
Full textProcesi, Claudio. "Book Review: Conjugacy classes in semisimple algebraic groups." Bulletin of the American Mathematical Society 34, no. 01 (January 1, 1997): 55–57. http://dx.doi.org/10.1090/s0273-0979-97-00689-7.
Full textVoskresenskii, V. E. "Maximal tori without effect in semisimple algebraic groups." Mathematical Notes of the Academy of Sciences of the USSR 44, no. 3 (September 1988): 651–55. http://dx.doi.org/10.1007/bf01159125.
Full textMohrdieck, S. "Conjugacy classes of non-connected semisimple algebraic groups." Transformation Groups 8, no. 4 (December 2003): 377–95. http://dx.doi.org/10.1007/s00031-003-0429-3.
Full textBreuillard, Emmanuel, Ben Green, Robert Guralnick, and Terence Tao. "Strongly dense free subgroups of semisimple algebraic groups." Israel Journal of Mathematics 192, no. 1 (March 15, 2012): 347–79. http://dx.doi.org/10.1007/s11856-012-0030-3.
Full textDissertations / Theses on the topic "Semisimple algebraic groups"
Mohrdieck, Stephan. "Conjugacy classes of non-connected semisimple algebraic groups." [S.l. : s.n.], 2000. http://www.sub.uni-hamburg.de/disse/172/diss.pdf.
Full textHazi, Amit. "Semisimple filtrations of tilting modules for algebraic groups." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271774.
Full textKenneally, Darren John. "On eigenvectors for semisimple elements in actions of algebraic groups." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/224782.
Full textGandhi, Raj. "Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Full textMaccan, Matilde. "Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéristiques." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/2e27fe72-c9e0-4d56-8e49-14fc84686d6c.
Full textThis thesis brings to an end the classification of parabolic subgroup schemes of semisimple groups over an algebraically closed field, focusing on characteristic two and three. First, we present the classification under the assumption that the reduced part of these subgroups is maximal; then we proceed to the general case. We arrive at an almost uniform description: with the exception of a group of type G₂ in characteristic two, any parabolic subgroup scheme is obtained by multiplying reduced parabolic subgroups by kernels of purely inseparable isogenies, then taking the intersection. In conclusion, we discuss some geometric implications of this classification
Oriente, Francesco. "Classifying semisimple orbits of theta-groups." Doctoral thesis, Università degli studi di Trento, 2012. https://hdl.handle.net/11572/368303.
Full textOriente, Francesco. "Classifying semisimple orbits of theta-groups." Doctoral thesis, University of Trento, 2012. http://eprints-phd.biblio.unitn.it/731/1/tesi.pdf.
Full textLampetti, Enrico. "Nilpotent orbits in semisimple Lie algebras." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23595/.
Full textNishiyama, Kyo. "Representations of Weyl groups and their Hecke algebras on virtual character modules of a semisimple Lie group." 京都大学 (Kyoto University), 1986. http://hdl.handle.net/2433/86366.
Full textAthapattu, Mudiyanselage Chathurika Umayangani Manike Athapattu. "Chevalley Groups." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1986.
Full textBooks on the topic "Semisimple algebraic groups"
Humphreys, James E. Conjugacy classes in semisimple algebraic groups. Providence, R.I: American Mathematical Society, 1995.
Find full textHiss, G. Imprimitive irreducible modules for finite quasisimple groups. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textKapovich, Michael. The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. Providence, R.I: American Mathematical Society, 2008.
Find full text1959-, McGovern William M., ed. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.
Find full textDoran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation, and Nollet, Scott, 1962- editor of compilation, eds. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.
Find full text1938-, Griffiths Phillip, and Kerr Matthew D. 1975-, eds. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Find full textBenkart, Georgia. Stability in modules for classical lie algebras: A constructive approach. Providence, R.I., USA: American Mathematical Society, 1990.
Find full textStrade, Helmut, Thomas Weigel, Marina Avitabile, and Jörg Feldvoss. Lie algebras and related topics: Workshop in honor of Helmut Strade's 70th birthday : lie algebras, May 22-24, 2013, Università degli studi di Milano-Bicocca, Milano, Italy. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textHumphreys, James E. Conjugacy Classes in Semisimple Algebraic Groups. American Mathematical Society, 1995.
Find full textGille, Philippe. Groupes algébriques semi-simples en dimension cohomologique ≤2: Semisimple algebraic groups in cohomological dimension ≤2. Springer, 2019.
Find full textBook chapters on the topic "Semisimple algebraic groups"
Onishchik, Arkadij L., and Ernest B. Vinberg. "Complex Semisimple Lie Groups." In Lie Groups and Algebraic Groups, 136–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_4.
Full textOnishchik, Arkadij L., and Ernest B. Vinberg. "Real Semisimple Lie Groups." In Lie Groups and Algebraic Groups, 221–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_5.
Full textBrown, Ken A., and Ken R. Goodearl. "Primer on Semisimple Lie Algebras." In Lectures on Algebraic Quantum Groups, 39–44. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_5.
Full textLakshmibai, V., and Justin Brown. "Representation Theory of Semisimple Algebraic Groups." In Texts and Readings in Mathematics, 153–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1393-6_11.
Full textLakshmibai, V., and Justin Brown. "Representation Theory of Semisimple Algebraic Groups." In Texts and Readings in Mathematics, 183–96. Gurgaon: Hindustan Book Agency, 2009. http://dx.doi.org/10.1007/978-93-86279-41-5_11.
Full textBrown, Ken A., and Ken R. Goodearl. "Generic Quantized Coordinate Rings of Semisimple Groups." In Lectures on Algebraic Quantum Groups, 59–67. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_7.
Full textMargulis, Gregori Aleksandrovitch. "Normal Subgroups and “Abstract” Homomorphisms of Semisimple Algebraic Groups Over Global Fields." In Discrete Subgroups of Semisimple Lie Groups, 258–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-51445-6_9.
Full textLanglands, R. "On the classification of irreducible representations of real algebraic groups." In Representation Theory and Harmonic Analysis on Semisimple Lie Groups, 101–70. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/surv/031/03.
Full textGuivarc’h, Yves, Lizhen Ji, and J. C. Taylor. "Extension to Semisimple Algebraic Groups Defined Over a Local Field." In Compactification of Symmetric Spaces, 231–36. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2452-5_15.
Full textAlperin, J. L., and Rowen B. Bell. "Semisimple Algebras." In Groups and Representations, 107–36. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0799-3_5.
Full textConference papers on the topic "Semisimple algebraic groups"
Gupta, Shalini, and Jasbir Kaur. "Structure of some finite semisimple group algebras." In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080606.
Full text