Dissertations / Theses on the topic 'Semiparametric theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Semiparametric theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lee, Sungwook. "Semiparametric regression with random effects /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842547.
Full textNishiyama, Yoshihiko. "Higher order asymptotic theory for semiparametric averaged derivatives." Thesis, London School of Economics and Political Science (University of London), 2001. http://etheses.lse.ac.uk/2003/.
Full textDimitrakopoulos, Stefanos. "Essays on Bayesian semiparametric ordinal-response models." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/66309/.
Full textHe, Xin. "Semiparametric analysis of panel count data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4774.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on November 27, 2007) Vita. Includes bibliographical references.
Bouquiaux, Christel. "Semiparametric estimation for extreme values." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210910.
Full textDoctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Hu, Zonghui. "Semiparametric functional data analysis for longitudinal/clustered data: theory and application." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3088.
Full textHu, Huilin. "Large sample theory for pseudo-maximum likelihood estimates in semiparametric models /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8936.
Full textHenry, Marc. "Long memory in time series : semiparametric estimation and conditional heteroscedasticity." Thesis, London School of Economics and Political Science (University of London), 1999. http://etheses.lse.ac.uk/1581/.
Full textLu, Guanhua. "Asymptotic theory for multiple-sample semiparametric density ratio models and its application to mortality forecasting." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7615.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Van, Bever Germain. "Contributions to nonparametric and semiparametric inference based on statistical depth." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209438.
Full textCelle-ci, originellement introduite afin de généraliser la notion de médiane et de fournir naturellement un ordre (depuis un centre, vers l'extérieur) dans un contexte multivarié, a, depuis son développement, démontré ses nombreuses qualités, tant en termes de robustesse, que d'utilité dans de nombreuses procédures inférentielles.
Les résultats proposés dans ce travail se développent le long de trois axes.
Pour commencer, la thèse s'intéresse à la classification supervisée. La profondeur a, en effet, déjà été utilisée avec succès dans ce contexte. Cependant, jusqu'ici, les outils développés restaient limités aux distributions elliptiques, constituant ainsi une sévère restriction des méthodes utilisant les fonctions de profondeur, qui, pour la plupart, sont par essence nonparamétrique. La première partie de cette thèse propose donc une nouvelle méthode de classification, fondée sur la profondeur, dont on montrera qu'elle est essentiellement universellement convergente. En particulier, la règle de discrimination proposée se fonde sur les idées utilisées dans la classification par plus proches voisins, en introduisant cependant des voisinages fondés sur la profondeur, mieux à même de cerner le comportement des populations sous-jacentes.
Ces voisinages d'un point quelconque, et surtout l'information sur le comportement local de la distribution en ce point qu'ils apportent, ont été réutilisés dans la seconde partie de ce travail. Plusieurs auteurs ont en effet reconnu certaines limitations aux fonctions de profondeur, de par leur caractère global et la difficulté d'étudier par leur biais des distributions multimodales ou à support convexe. Une nouvelle définition de profondeur locale est donc développée et étudiée. Son utilité dans différents problèmes d'inférence est également explorée.
Enfin, la thèse s'intéresse au paramètre de forme pour les distributions elliptiques. Ce paramètre d'importance est utilisé dans de nombreuses procédures statistiques (analyse en composantes principales, analyse en corrélations canoniques, entre autres) et aucune fonction de profondeur pour celui-ci n'existait à ce jour. La profondeur de forme est donc définie et ses propriétés sont étudiées. En particulier, on montrera que le cadre général de la profondeur paramétrique n'est pas suffisant en raison de la présence du paramètre de nuisance (d'influence non nulle) qu'est l'échelle. Une application inférentielle est présentée dans le cadre des tests d'hypothèses.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Chatterjee, Nilanjan. "Semiparametric inference based on estimating equations in regression models for two phase outcome dependent sampling /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8959.
Full textRoemmele, Eric S. "A Flexible Zero-Inflated Poisson Regression Model." UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/38.
Full textHobert, Anne [Verfasser], Axel [Akademischer Betreuer] Munk, Axel [Gutachter] Munk, and Tatyana [Gutachter] Krivobokova. "Semiparametric Estimation of Drift, Rotation and Scaling in Sparse Sequential Dynamic Imaging: Asymptotic theory and an application in nanoscale fluorescence microscopy / Anne Hobert ; Gutachter: Axel Munk, Tatyana Krivobokova ; Betreuer: Axel Munk." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1203875312/34.
Full textZhao, Pan. "Topics in causal inférence and policy learning with applications to precision medicine." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS029.
Full textCausality is a fundamental concept in science and philosophy, and with the increasing complexity of data collection and structure, statistics plays a pivotal role in inferring causes and effects. This thesis delves into advanced causal inference methods, with a focus on policy learning, instrumental variables (IV), and difference-in-differences (DiD) approaches.The IV and DiD methods are critical tools widely used by researchers in fields like epidemiology, medicine, biostatistics, econometrics, and quantitative social sciences. However, these methods often face challenges due to restrictive assumptions, such as the IV's requirement to have no direct effect on the outcome other than through the treatment, and the parallel trends assumption in DiD, which may be violated in the presence of unmeasured confounding.In that context, this thesis introduces an innovative instrumented DiD approach to policy learning, which combines these two natural experiments to relax some of the key assumptions of conventional IV and DiD methods. To the best of our knowledge, the thesis presents the first comprehensive study of policy learning under the DiD setting. The direct policy search approach is proposed to learn optimal policies, based on the conditional average treatment effect estimators using instrumented DiD. Novel identification results for optimal policies under unmeasured confounding are established. Moreover, a range of estimators, including a Wald estimator, inverse probability weighting (IPW) estimators, and semiparametric efficient and multiply robust estimators, are introduced. Theoretical guarantees for these multiply robust policy learning approaches are provided, including the cubic rate of convergence for parametric policies and valid statistical inference with flexible machine learning algorithms for nuisance parameter estimation. These methods are further extended to the panel data setup.The majority of causal inference methods in the literature heavily depend on three standard causal assumptions to identify causal effects and optimal policies. While there has been progress in relaxing the consistency and unconfoundedness assumptions, addressing the violations of the positivity assumption has seen limited advancements.In that context, this thesis presents a novel policy learning framework that does not rely on the positivity assumption, instead focusing on dynamic and stochastic policies that are practical for real-world applications. Incremental propensity score policies, which adjust propensity scores by individualized parameters, are proposed, requiring only the consistency and unconfoundedness assumptions. This approach enhances the concept of incremental intervention effects, adapting it to individualized treatment policy contexts, and employs semiparametric theory to develop efficient influence functions and debiased machine learning estimators. Methods to optimize policy by maximizing the value function under specific constraints are also introduced.Additionally, the optimal individualized treatment regime (ITR) learned from a source population may not generalize well to a target population due to covariate shifts. A transfer learning framework is proposed for ITR estimation in heterogeneous populations with right-censored survival data, which is common in clinical studies and motivated by medical applications. This framework characterizes the efficient influence function (EIF) and proposes a doubly robust estimator for the targeted value function, accommodating a broad class of survival distribution functionals. For a pre-specified class of ITRs, a cubic rate of convergence for the estimated parameter indexing the optimal ITR is established. The use of cross-fitting procedures ensures the consistency and asymptotic normality of the proposed optimal value estimator, even with flexible machine learning methods for nuisance parameter estimation
Zhang, Huiyin. "Essays on semiparametric cox proportional hazard models." 2009. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051930.
Full text"Semiparametric latent variable models with Bayesian p-splines." Thesis, 2010. http://library.cuhk.edu.hk/record=b6074921.
Full textIn the fourth part of the thesis, the methodology developed in the third part is further extended to a varying coefficient model with latent variables. Varying coefficient model is a class of flexible semiparametric models in which the effects of covariates are modeled dynamically by unspecified smooth functions. A transformation varying coefficient model can handle arbitrarily distributed dynamic data. A simulation study shows that our proposed method performs well in the analysis of this complex model.
In the last part of the thesis, we propose a finite mixture of varying coefficient models to analyze dynamic data with heterogeneity. A simulation study demonstrates that our proposed method can explore possible existence of different groups in a dynamic data, where in each group the dynamic influences of covariates on the response variables have different patterns. The proposed method is applied to a longitudinal study concerning the effectiveness of heroin treatment. Distinct patterns of heroin use and treatment effect in different patient groups are identified.
In the second part of the thesis, a latent variable model is proposed to relax the first assumption, in which unknown additive functions of latent variables in the structural equation are modeled by Bayesian P-splines. The estimation of nonparametric functions is based on powerful Markov chain Monte Carlo (MCMC) algorithm with block update scheme. A simulation study shows that the proposed method can handle much wider situation than traditional models. The proposed semiparametric latent variable model is applied to a study on osteoporosis prevention and control. Some interesting functional relations, which may be overlooked by traditional parametric latent variable models, are revealed.
In the third part of the thesis, a transformation model is developed to relax the second assumption, which usually assumes the normality of observed variables and random errors. In our proposed model, the nonnormal response variables are transformed to normal by unknown functions modeled with Bayesian P-splines. This semiparametric transformation model is shown to be applicable to a wide range of statistical analysis. The model is applied to a study on the intervention treatment of polydrug use in which the traditional model assumption is violated because many observed variables exhibit serious departure from normality.
Lu, Zhaohua.
Adviser: Xin-Yuan Song.
Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 119-130).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Jeon, Byung Mok. "Essays in semiparametric and nonparametric estimation with application to growth accounting." Thesis, 2001. http://hdl.handle.net/1911/17979.
Full textTeravainen, Timothy. "Semiparametric Estimation of a Gaptime-Associated Hazard Function." Thesis, 2014. https://doi.org/10.7916/D80R9MDV.
Full textAdams, Robert Matthew. "Essays on semiparametric estimation and structural modeling with applications in the banking industry." Thesis, 1997. http://hdl.handle.net/1911/19124.
Full textLi, Zhuokai. "Multivariate semiparametric regression models for longitudinal data." Thesis, 2014. http://hdl.handle.net/1805/6462.
Full textLiu, Wei. "The theory and methods for measurement errors and missing data problems in semiparametric nonlinear mixed-effects models." Thesis, 2006. http://hdl.handle.net/2429/18520.
Full textScience, Faculty of
Statistics, Department of
Graduate
Hobert, Anne. "Semiparametric Estimation of Drift, Rotation and Scaling in Sparse Sequential Dynamic Imaging: Asymptotic theory and an application in nanoscale fluorescence microscopy." Doctoral thesis, 2019. http://hdl.handle.net/11858/00-1735-0000-002E-E5B3-9.
Full text