Academic literature on the topic 'Semidefinite programming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semidefinite programming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semidefinite programming"
Helmberg, C. "Semidefinite programming." European Journal of Operational Research 137, no. 3 (March 2002): 461–82. http://dx.doi.org/10.1016/s0377-2217(01)00143-6.
Full textVandenberghe, Lieven, and Stephen Boyd. "Semidefinite Programming." SIAM Review 38, no. 1 (March 1996): 49–95. http://dx.doi.org/10.1137/1038003.
Full textOverton, Michael, and Henry Wolkowicz. "Semidefinite programming." Mathematical Programming 77, no. 1 (April 1997): 105–9. http://dx.doi.org/10.1007/bf02614431.
Full textYurtsever, Alp, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. "Scalable Semidefinite Programming." SIAM Journal on Mathematics of Data Science 3, no. 1 (January 2021): 171–200. http://dx.doi.org/10.1137/19m1305045.
Full textVandenberghe, Lieven, and Stephen Boyd. "Applications of semidefinite programming." Applied Numerical Mathematics 29, no. 3 (March 1999): 283–99. http://dx.doi.org/10.1016/s0168-9274(98)00098-1.
Full textGoldfarb, D., and K. Scheinberg. "On parametric semidefinite programming." Applied Numerical Mathematics 29, no. 3 (March 1999): 361–77. http://dx.doi.org/10.1016/s0168-9274(98)00102-0.
Full textKalantari, Bahman. "Semidefinite programming and matrix scaling over the semidefinite cone." Linear Algebra and its Applications 375 (December 2003): 221–43. http://dx.doi.org/10.1016/s0024-3795(03)00664-5.
Full textLidický, Bernard, and Florian Pfender. "Semidefinite Programming and Ramsey Numbers." SIAM Journal on Discrete Mathematics 35, no. 4 (January 2021): 2328–44. http://dx.doi.org/10.1137/18m1169473.
Full textBofill, Walter Gómez, and Juan A. Gómez. "LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING." Pesquisa Operacional 34, no. 3 (December 2014): 495–520. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0495.
Full textZhang, Tianyu, and Liwei Zhang. "Critical Multipliers in Semidefinite Programming." Asia-Pacific Journal of Operational Research 37, no. 04 (May 19, 2020): 2040012. http://dx.doi.org/10.1142/s0217595920400126.
Full textDissertations / Theses on the topic "Semidefinite programming"
Zhu, Yuntao. "Semidefinite programming under uncertainty." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/summer2006/y%5Fzhu%5F073106.pdf.
Full textJibrin, Shafiu. "Redundancy in semidefinite programming." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0010/NQ32337.pdf.
Full textJibrin, Shafiu Carleton University Dissertation Mathematics and Statistics. "Redundancy in semidefinite programming." Ottawa, 1997.
Find full textWei, Hua. "Numerical Stability in Linear Programming and Semidefinite Programming." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2922.
Full textWe start with the error bound analysis of the search directions for the normal equation approach for LP. Our error analysis explains the surprising fact that the ill-conditioning is not a significant problem for the normal equation system. We also explain why most of the popular LP solvers have a default stop tolerance of only 10-8 when the machine precision on a 32-bit computer is approximately 10-16.
We then propose a simple alternative approach for the normal equation based interior-point method. This approach has better numerical stability than the normal equation based method. Although, our approach is not competitive in terms of CPU time for the NETLIB problem set, we do obtain higher accuracy. In addition, we obtain significantly smaller CPU times compared to the normal equation based direct solver, when we solve well-conditioned, huge, and sparse problems by using our iterative based linear solver. Additional techniques discussed are: crossover; purification step; and no backtracking.
Finally, we present an algorithm to construct SDP problem instances with prescribed strict complementarity gaps. We then introduce two measures of strict complementarity gaps. We empirically show that: (i) these measures can be evaluated accurately; (ii) the size of the strict complementarity gaps correlate well with the number of iteration for the SDPT3 solver, as well as with the local asymptotic convergence rate; and (iii) large strict complementarity gaps, coupled with the failure of Slater's condition, correlate well with loss of accuracy in the solutions. In addition, the numerical tests show that there is no correlation between the strict complementarity gaps and the geometrical measure used in [31], or with Renegar's condition number.
Zanjácomo, Paulo Régis. "On weighted paths for nonlinear semidefinite complementarity problems and newton methods for semidefinite programming." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/21680.
Full textYe, Kai. "Applications of semidefinite programming in finance." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508489.
Full textKeuchel, Jens. "Image partitioning based on semidefinite programming." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11513861.
Full textQian, Xun. "Continuous methods for convex programming and convex semidefinite programming." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/422.
Full textShen, Yijiang. "Binary image restoration by positive semidefinite programming and signomial programming." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557431.
Full text沈逸江 and Yijiang Shen. "Binary image restoration by positive semidefinite programming and signomial programming." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557431.
Full textBooks on the topic "Semidefinite programming"
Wolkowicz, Henry, Romesh Saigal, and Lieven Vandenberghe, eds. Handbook of Semidefinite Programming. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4381-7.
Full textde Klerk, Etienne. Aspects of Semidefinite Programming. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b105286.
Full textGärtner, Bernd, and Jiri Matousek. Approximation Algorithms and Semidefinite Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22015-9.
Full textGärtner, Bernd. Approximation algorithms and semidefinite programming. Heidelberg: Springer, 2012.
Find full textPolyhedral and semidefinite programming methods in combinatorial optimization. Providence, R.I: American Mathematical Society, 2010.
Find full textTuncel, Levent. Polyhedral and semidefinite programming methods in combinatorial optimization. Providence, R.I: American Mathematical Society, 2010.
Find full textHenry, Wolkowicz, Saigal Romesh, and Vandenberghe Lieven, eds. Handbook of semidefinite programming: Theory, algorithms, and applications. Boston: Kluwer Academic Publishers, 2000.
Find full textAspects of semidefinite programming: Interior point algorithms and selected applications. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textKlerk, Etienne de. Aspects of semidefinite programming: Interior point algorithms and selected applications. New York: Springer, 2011.
Find full textMatoušek, Jiří. Approximation Algorithms and Semidefinite Programming. Springer, 2012.
Find full textBook chapters on the topic "Semidefinite programming"
Ramana, Motakuri V., and Panos M. Pardalos. "Semidefinite Programming." In Applied Optimization, 369–98. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-3449-1_9.
Full textJansen, Benjamin. "Semidefinite Programming." In Interior Point Techniques in Optimization, 221–39. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-5561-9_10.
Full textDu, Ding-Zhu, Panos M. Pardalos, and Weili Wu. "Semidefinite Programming." In Nonconvex Optimization and Its Applications, 201–13. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8_13.
Full textDu, Ding-Zhu, Ker-I. Ko, and Xiaodong Hu. "Semidefinite Programming." In Design and Analysis of Approximation Algorithms, 339–70. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1701-9_9.
Full textVazirani, Vijay V. "Semidefinite Programming." In Approximation Algorithms, 255–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-04565-7_26.
Full textShen, Chunhua, and Anton van den Hengel. "Semidefinite Programming." In Computer Vision, 717–19. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_688.
Full textShen, Chunhua, and Anton van den Hengel. "Semidefinite Programming." In Computer Vision, 1131–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_688.
Full textGärtner, Bernd, and Jiří Matoušek. "Semidefinite Programming." In Approximation Algorithms and Semidefinite Programming, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22015-9_2.
Full textFloudas, Christodoulos A., Pãnos M. Pardalos, Claire S. Adjiman, William R. Esposito, Zeynep H. Gümüş, Stephen T. Harding, John L. Klepeis, Clifford A. Meyer, and Carl A. Schweiger. "Semidefinite Programming Problems." In Nonconvex Optimization and Its Applications, 251–61. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3040-1_11.
Full textvan Hoeve, Willem-Jan. "Semidefinite Programming and Constraint Programming." In Handbook on Semidefinite, Conic and Polynomial Optimization, 635–68. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0769-0_22.
Full textConference papers on the topic "Semidefinite programming"
Krechetov, Mikhail, Jakub Marecek, Yury Maximov, and Martin Takac. "Entropy-Penalized Semidefinite Programming." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/157.
Full textLe, Tuan Anh, and Mohammad Reza Nakhai. "Coordinated beamforming using semidefinite programming." In ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6364232.
Full textChoi, Hyungjin, Peter J. Seiler, and Sairaj V. Dhople. "Uncertainty propagation with Semidefinite Programming." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403157.
Full textBerta, Mario, Francesco Borderi, Omar Fawzi, and Volkher B. Scholz. "Quantum Coding via Semidefinite Programming." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849325.
Full textBandeira, Afonso S., Moses Charikar, Amit Singer, and Andy Zhu. "Multireference alignment using semidefinite programming." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554839.
Full textLi, Wei, Fangzhou Wang, José M. F. Moura, and R. D. Blanton. "Global Floorplanning via Semidefinite Programming." In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023. http://dx.doi.org/10.1109/dac56929.2023.10247967.
Full textPrimbs, J. A. "Option pricing bounds via semidefinite programming." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1656391.
Full textJensen, Tobias Lindstrom, and Lieven Vandenberghe. "Multi-pitch estimation using semidefinite programming." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952946.
Full textNoureddine, Hadi, Damien Castelain, and Ramesh Pyndiah. "Cooperative network localizability via semidefinite programming." In 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC 2011). IEEE, 2011. http://dx.doi.org/10.1109/pimrc.2011.6139714.
Full textManchester, Zachary R., and Mason A. Peck. "Recursive Inertia Estimation with Semidefinite Programming." In AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1902.
Full textReports on the topic "Semidefinite programming"
Ariyawansa, K. A., and Yuntao Zhu. Chance-Constrained Semidefinite Programming. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada530454.
Full textAriyawansa, K. A. Stochastic Semidefinite Programming: Applications and Algorithms. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada573242.
Full textBenson, S. J., and Y. Ye. DSDP5 user guide - software for semidefinite programming. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/947970.
Full textJin, Shengping, K. A. Ariyawansa, and Yuntao Zhu. Homogeneous Self-Dual Algorithms for Stochastic Semidefinite Programming. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada544763.
Full textOverton, Michael L. Final report, DOE Grant DE-FG02-98ER25352, Computational semidefinite programming. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/806634.
Full textMazziotti, David A. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada617270.
Full text