Journal articles on the topic 'Semiconductors II-VI'

To see the other types of publications on this topic, follow the link: Semiconductors II-VI.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Semiconductors II-VI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dietl, Tomasz, and Hideo Ohno. "Ferromagnetic III–V and II–VI Semiconductors." MRS Bulletin 28, no. 10 (October 2003): 714–19. http://dx.doi.org/10.1557/mrs2003.211.

Full text
Abstract:
AbstractRecent years have witnessed extensive research aimed at developing functional, tetrahedrally coordinated ferromagnetic semiconductors that could combine the resources of semiconductor quantum structures and ferromagnetic materials systems and thus lay the foundation for semiconductor spintronics. Spin-injection capabilities and tunability of magnetization by light and electric field in Mn-based III–V and II–VI diluted magnetic semiconductors are examples of noteworthy accomplishments. This article reviews the present understanding of carrier-controlled ferromagnetism in these compounds with a focus on mechanisms determining Curie temperatures and accounting for magnetic anisotropy and spin stiffness as a function of carrier density, strain, and confinement. Materials issues encountered in the search for semiconductors with a Curie point above room temperature are addressed, emphasizing the question of solubility limits and self-compensation that can lead to precipitates and point defects. Prospects associated with compounds containing magnetic ions other than Mn are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Gunshor, Robert L., and Arto V. Nurmikko. "II-VI Blue-Green Laser Diodes: A Frontier of Materials Research." MRS Bulletin 20, no. 7 (July 1995): 15–19. http://dx.doi.org/10.1557/s088376940003712x.

Full text
Abstract:
The current interest in the wide bandgap II-VI semiconductor compounds can be traced back to the initial developments in semiconductor optoelectronic device physics that occurred in the early 1960s. The II-VI semiconductors were the object of intense research in both industrial and university laboratories for many years. The motivation for their exploration was the expectation that, possessing direct bandgaps from infrared to ultraviolet, the wide bandgap II-VI compound semiconductors could be the basis for a variety of efficient light-emitting devices spanning the entire range of the visible spectrum.During the past thirty years or so, development of the narrower gap III-V compound semiconductors, such as gallium arsenide and related III-V alloys, has progressed quite rapidly. A striking example of the current maturity reached by the III-V semiconductor materials is the infrared semiconductor laser that provides the optical source for fiber communication links and compact-disk players. Despite the fact that the direct bandgap II-VI semiconductors offered the most promise for realizing diode lasers and efficient light-emitting-diode (LED) displays over the green and blue portions of the visible spectrum, major obstacles soon emerged with these materials, broadly defined in terms of the structural and electronic quality of the material. As a result of these persistent problems, by the late 1970s the II-VI semiconductors were largely relegated to academic research among a small community of workers, primarily in university research laboratories.
APA, Harvard, Vancouver, ISO, and other styles
3

Miles, R. H., J. O. McCaldin, and T. C. McGill. "Superlattices of II–VI semiconductors." Journal of Crystal Growth 85, no. 1-2 (November 1987): 188–93. http://dx.doi.org/10.1016/0022-0248(87)90221-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Akimoto, K., H. Okuyama, M. Ikeda, and Y. Mori. "Isoelectronic oxygen in II‐VI semiconductors." Applied Physics Letters 60, no. 1 (January 6, 1992): 91–93. http://dx.doi.org/10.1063/1.107385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Twardowski, A. "Cr-Based II-VI Semimagnetic Semiconductors." Acta Physica Polonica A 87, no. 1 (January 1995): 85–93. http://dx.doi.org/10.12693/aphyspola.87.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kalt, H., S. Wachter, D. Lüerssen, and J. Hoffmann. "Ultrafast Phenomena in II-VI Semiconductors." Acta Physica Polonica A 94, no. 2 (August 1998): 139–46. http://dx.doi.org/10.12693/aphyspola.94.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gunshor, Robert L., Masakazu Kobayashi, and Arto V. Nurmikko. "II – VI semiconductors come of age." Physics World 5, no. 3 (March 1992): 46–49. http://dx.doi.org/10.1088/2058-7058/5/3/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mycielski, A., L. Kowalczyk, R. R. Gałązka, Roman Sobolewski, D. Wang, A. Burger, M. Sowińska, et al. "Applications of II–VI semimagnetic semiconductors." Journal of Alloys and Compounds 423, no. 1-2 (October 2006): 163–68. http://dx.doi.org/10.1016/j.jallcom.2005.12.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Razbirin, B. S., D. K. Nel'son, J. Erland, K. H. Pantke, V. G. Lyssenko, and J. M. Hvan. "Bound biexcitons in II–VI semiconductors." Solid State Communications 93, no. 1 (January 1995): 65–70. http://dx.doi.org/10.1016/0038-1098(94)00543-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sohn, S. H., D. G. Hyun, M. Noma, S. Hosomi, and Y. Hamakawa. "Effective charges in II–VI semiconductors." Journal of Crystal Growth 117, no. 1-4 (February 1992): 907–12. http://dx.doi.org/10.1016/0022-0248(92)90882-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Watkins, G. D. "Intrinsic defects in II–VI semiconductors." Journal of Crystal Growth 159, no. 1-4 (February 1996): 338–44. http://dx.doi.org/10.1016/0022-0248(95)00680-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Batstone, Joanna L. "TEM and cathodoluminescence of precipitates in II-VI semiconductors." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 488–89. http://dx.doi.org/10.1017/s0424820100104509.

Full text
Abstract:
Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.
APA, Harvard, Vancouver, ISO, and other styles
13

Isshiki, Minoru. "Recent investigation on II-VI compound semiconductors." Bulletin of the Japan Institute of Metals 29, no. 4 (1990): 191–98. http://dx.doi.org/10.2320/materia1962.29.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pileni, M. P. "II–VI semiconductors made by soft chemistry." Catalysis Today 58, no. 2-3 (May 2000): 151–66. http://dx.doi.org/10.1016/s0920-5861(00)00250-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tedenac, J. C., J. Jun, S. Krukowski, M. Bockowski, S. Porowski, M. C. Record, R. M. Ayral-Marin, and G. Brun. "Phase diagram determination of II-VI semiconductors." Thermochimica Acta 245 (October 1994): 207–17. http://dx.doi.org/10.1016/0040-6031(94)85080-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Houtepen, A. J., J. M. Gil, J. S. Lord, P. Liljeroth, D. Vanmaekelbergh, H. V. Alberto, R. C. Vilão, et al. "Muonium in nano-crystalline II–VI semiconductors." Physica B: Condensed Matter 404, no. 5-7 (April 2009): 837–40. http://dx.doi.org/10.1016/j.physb.2008.11.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wei, S. H., and Alex Zunger. "Role of metaldstates in II-VI semiconductors." Physical Review B 37, no. 15 (May 15, 1988): 8958–81. http://dx.doi.org/10.1103/physrevb.37.8958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Berding, M. A., A. Sher, and A. ‐B Chen. "Vacancy formation energies in II–VI semiconductors." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 5 (September 1987): 3009–13. http://dx.doi.org/10.1116/1.574248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Irvine, S. J. C., and J. B. Mullin. "Epitaxial photochemical deposition of II–VI semiconductors." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (July 1987): 2100–2105. http://dx.doi.org/10.1116/1.574929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ahr, M., M. Biehl, and T. Volkmann. "Modeling (001) surfaces of II–VI semiconductors." Computer Physics Communications 147, no. 1-2 (August 2002): 107–10. http://dx.doi.org/10.1016/s0010-4655(02)00226-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bhargara, Rameshwar. "Properties of Wide Bandgap II—VI Semiconductors." Crystal Research and Technology 33, no. 5 (1998): 706. http://dx.doi.org/10.1002/(sici)1521-4079(1998)33:5<706::aid-crat706>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fleszar, A., and W. Hanke. "Dynamical density response of II-VI semiconductors." Physical Review B 56, no. 19 (November 15, 1997): 12285–89. http://dx.doi.org/10.1103/physrevb.56.12285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sigmon, T. W. "Ion implantation in II–VI compound semiconductors." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 7-8 (March 1985): 402–8. http://dx.doi.org/10.1016/0168-583x(85)90588-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Szweda, Roy. "Properties of wide bandgap II-VI semiconductors." III-Vs Review 10, no. 4 (July 1997): 54. http://dx.doi.org/10.1016/0961-1290(97)90251-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Benoit ála Guillaume, C. "Optical properties of II–VI semimagnetic semiconductors." Journal of Crystal Growth 86, no. 1-4 (January 1988): 522–27. http://dx.doi.org/10.1016/0022-0248(90)90770-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dietl, Tomasz. "Transport properties of II–VI semimagnetic semiconductors." Journal of Crystal Growth 101, no. 1-4 (April 1990): 808–17. http://dx.doi.org/10.1016/0022-0248(90)91085-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Davies, J. J., L. C. Smith, D. Wolverson, V. P. Kochereshko, J. Cibert, H. Mariette, H. Boukari, et al. "Excitons in motion in II-VI semiconductors." physica status solidi (b) 247, no. 6 (April 1, 2010): 1521–27. http://dx.doi.org/10.1002/pssb.200983167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Le Traon, Jean-Yves. "II-VI — Semiconductors: Particular features and applications." Annales des Télécommunications 43, no. 7-8 (July 1988): 378–91. http://dx.doi.org/10.1007/bf02999708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

SAPRA, SAMEER, RANJANI VISWANATHA, and D. D. SARMA. "ELECTRONIC STRUCTURE OF SEMICONDUCTOR NANOCRYSTALS: AN ACCURATE TIGHT-BINDING DESCRIPTION." International Journal of Nanoscience 04, no. 05n06 (October 2005): 893–99. http://dx.doi.org/10.1142/s0219581x05003851.

Full text
Abstract:
We report a quantitatively accurate description of the electronic structure of semiconductor nanocrystals using the sp3d5 orbital basis with the nearest neighbor and the next nearest neighbor interactions. The use of this model for II–VI and III–V semiconductors is reviewed in article. The excellent agreement of the theoretical predictions with the experimental results establishes the feasibility of using this model for semiconductor nanocrystals.
APA, Harvard, Vancouver, ISO, and other styles
30

SHARMA, ASHUTOSH, SWETALI NIMJE, AKSHAYKUMAR SALIMATH, and BAHNIMAN GHOSH. "MONTE CARLO SIMULATION OF SPIN RELAXATION IN NANOWIRES AND 2-D CHANNELS OF II–VI SEMICONDUCTORS." SPIN 02, no. 02 (June 2012): 1250007. http://dx.doi.org/10.1142/s2010324712500075.

Full text
Abstract:
We have analyzed spin relaxation behavior of various II–VI semiconductors for nanowire structure and 2-D channel by simulating spin polarized transport through a semiclassical approach. Monte Carlo simulation method has been applied to simulate our model. D'yakonov–Perel mechanism and Elliot–Yafet mechanism are dominant for spin relaxation in II–VI semiconductors. Variation in spin relaxation length with external field has been analyzed and comparison is drawn between nanowire and 2-D channels. Spin relaxation lengths of various II–VI semiconductors are compared at an external field of 1 kV/cm to understand the predominant factors affecting spin dephasing in them. Among the many results obtained, most noticeable one is that spin relaxation length in nanowires is many times greater than that in 2-D channel.
APA, Harvard, Vancouver, ISO, and other styles
31

Lashkarev, G. V., V. I. Sichkovskiyi, M. V. Radchenko, V. A. Karpina, P. E. Butorin, O. I. Dmitriev, V. I. Lazorenko, et al. "Diluted magnetic semiconductors based on II–VI, III–VI, and IV–VI compounds." Low Temperature Physics 35, no. 1 (January 2009): 62–70. http://dx.doi.org/10.1063/1.3064911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vilão, R. C., H. V. Alberto, J. Piroto Duarte, J. M. Gil, N. Ayres de Campos, A. Weidinger, R. L. Lichti, K. H. Chow, S. P. Cottrell, and S. F. J. Cox. "Muonium states in II–VI zinc chalcogenide semiconductors." Physica B: Condensed Matter 374-375 (March 2006): 383–86. http://dx.doi.org/10.1016/j.physb.2005.11.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hatanaka, Y., M. Niraula, A. Nakamura, and T. Aoki. "Excimer laser doping techniques for II–VI semiconductors." Applied Surface Science 175-176 (May 2001): 462–67. http://dx.doi.org/10.1016/s0169-4332(01)00117-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chadi, D. J. "Predictor ofp-type doping in II-VI semiconductors." Physical Review B 59, no. 23 (June 15, 1999): 15181–83. http://dx.doi.org/10.1103/physrevb.59.15181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pong, C., N. M. Johnson, R. A. Street, J. Walker, R. S. Feigelson, and R. C. De Mattei. "Hydrogenation of wide‐band‐gap II‐VI semiconductors." Applied Physics Letters 61, no. 25 (December 21, 1992): 3026–28. http://dx.doi.org/10.1063/1.107998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Söllner, J. "Production scale MOCVD growth of II-VI semiconductors." Journal of Crystal Growth 184-185, no. 1-2 (February 1998): 158–62. http://dx.doi.org/10.1016/s0022-0248(97)00713-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Söllner, J., M. Deschler, H. Jürgensen, H. Kalisch, W. Taudt, H. Hamadeh, M. Heuken, et al. "Production scale MOCVD growth of II–VI semiconductors." Journal of Crystal Growth 184-185 (February 1998): 158–62. http://dx.doi.org/10.1016/s0022-0248(98)80314-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lucca, D. A., and C. J. Maggiore. "Subsurface Lattice Disorder in Polished II-VI Semiconductors." CIRP Annals 46, no. 1 (1997): 485–88. http://dx.doi.org/10.1016/s0007-8506(07)60871-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chadi, D. J. "The Problem of Doping in II-VI Semiconductors." Annual Review of Materials Science 24, no. 1 (August 1994): 45–62. http://dx.doi.org/10.1146/annurev.ms.24.080194.000401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Langa, S., I. M. Tiginyanu, E. Monaico, and H. Föll. "Porous II-VI vs. porous III-V semiconductors." physica status solidi (c) 8, no. 6 (December 2, 2010): 1792–96. http://dx.doi.org/10.1002/pssc.201000102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Klingshirn, C. "Laser processes in wide gap II-VI semiconductors." Advanced Materials for Optics and Electronics 3, no. 1-6 (January 1994): 103–9. http://dx.doi.org/10.1002/amo.860030115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ma, Christopher, Daniel Moore, Yong Ding, Jing Li, and Zhong Lin Wang. "Nanobelt and nanosaw structures of II-VI semiconductors." International Journal of Nanotechnology 1, no. 4 (2004): 431. http://dx.doi.org/10.1504/ijnt.2004.005978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Van de Walle, Chris G. "Strained-layer interfaces between II–VI compound semiconductors." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 6, no. 4 (July 1988): 1350. http://dx.doi.org/10.1116/1.584263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ren, Shang Yuan, John D. Dow, and Stefan Klemm. "Strain‐assistedp‐type doping of II‐VI semiconductors." Journal of Applied Physics 66, no. 5 (September 1989): 2065–68. http://dx.doi.org/10.1063/1.344297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Larson, B. E., and H. Ehrenreich. "Exchange in II‐VI‐based magnetic semiconductors (invited)." Journal of Applied Physics 67, no. 9 (May 1990): 5084–89. http://dx.doi.org/10.1063/1.344681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Plazaola, F., A. P. Seitsonen, and M. J. Puska. "Positron annihilation in II-VI compound semiconductors: theory." Journal of Physics: Condensed Matter 6, no. 42 (October 17, 1994): 8809–27. http://dx.doi.org/10.1088/0953-8984/6/42/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jones, A. C. "New precursors for wide-gap II-VI semiconductors." Semiconductor Science and Technology 6, no. 9A (September 1, 1991): A36—A40. http://dx.doi.org/10.1088/0268-1242/6/9a/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jones, Tony C. "Precursors for wide band gap II–VI semiconductors." Euro III-Vs Review 3, no. 3 (June 1990): 32–33. http://dx.doi.org/10.1016/0959-3527(90)90220-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Thio, Tineke, J. W. Bennett, D. J. Chadi, R. A. Linke, and M. C. Tamargo. "DX centers in II-VI semiconductors and heterojunctions." Journal of Electronic Materials 25, no. 2 (February 1996): 229–33. http://dx.doi.org/10.1007/bf02666249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gurary, A., G. S. Tompa, S. Liang, R. A. Stall, Y. Lu, C. Y. Hwang, and W. E. Mayo. "Elemental vapor transport epitaxy of II-VI semiconductors." Journal of Electronic Materials 22, no. 5 (May 1993): 457–61. http://dx.doi.org/10.1007/bf02661613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography