Journal articles on the topic 'Semiconductor Nanostructures - Growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Semiconductor Nanostructures - Growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.
Full textWitt, Elena, Jürgen Parisi, and Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles." Zeitschrift für Naturforschung A 68, no. 5 (May 1, 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.
Full textGnawali, Guna Nidha, Shankar P. Shrestha, Khem N. Poudyal, Indra B. Karki, and Ishwar Koirala. "Study on the effect of growth-time and seed-layers of Zinc Oxide nanostructured thin film prepared by the hydrothermal method for liquefied petroleum gas sensor application." BIBECHANA 16 (November 22, 2018): 145–53. http://dx.doi.org/10.3126/bibechana.v16i0.21557.
Full textZhang, Li-De, and Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials." Journal of Nanoscience and Nanotechnology 8, no. 1 (January 1, 2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.
Full textLópez-López, Máximo, Esteban Cruz-Hernández, Isaac Martínez-Velis, Juan Salvador Rojas-Ramírez, Manolo Ramirez-Lopez, and Álvaro Orlando Pulzara-Mora. "Self Assembly of semiconductor nanostructures." Respuestas 12, no. 2 (May 16, 2016): 47–51. http://dx.doi.org/10.22463/0122820x.570.
Full textTan, Che, Chu Qin, and Bryce Sadtler. "Light-directed growth of metal and semiconductor nanostructures." Journal of Materials Chemistry C 5, no. 23 (2017): 5628–42. http://dx.doi.org/10.1039/c7tc00379j.
Full textWen, Zhuoqun, Yiping Wang, Zhizhong Chen, and Jian Shi. "Chemical Vapor Growth of Silicon Phosphide Nanostructures." MRS Advances 5, no. 31-32 (November 25, 2019): 1653–60. http://dx.doi.org/10.1557/adv.2019.437.
Full textGyanwali, Gunanidhi. "Studying the Effect of Seed-layers of Zinc Oxide Nanostructured Thin Film for Liquefied Petroleum Gas Sensor Application." Molung Educational Frontier 10 (December 31, 2020): 41–49. http://dx.doi.org/10.3126/mef.v10i0.34056.
Full textKohno, H., T. Iwasaki, and S. Takeda. "Metal-mediated growth of alternate semiconductor–insulator nanostructures." Solid State Communications 116, no. 11 (October 2000): 591–94. http://dx.doi.org/10.1016/s0038-1098(00)00389-6.
Full textSuwito, Galih R., Vladimir G. Dubrovskii, Zixiao Zhang, Weizhen Wang, Sofiane Haffouz, Dan Dalacu, Philip J. Poole, Peter Grutter, and Nathaniel J. Quitoriano. "Tuning the Liquid–Vapour Interface of VLS Epitaxy for Creating Novel Semiconductor Nanostructures." Nanomaterials 13, no. 5 (February 27, 2023): 894. http://dx.doi.org/10.3390/nano13050894.
Full textKamarozaman, Nur Syahirah, Mohd Nor Asiah, Z. Aznilinda, Raudah Abu Bakar, Sukreen Hana Herman, and M. Rusop. "Effect of TiO2 Seed Layer Thickness to the Growth of TiO2 Nanostructures by Immersion Method for Memristive Device Application." Applied Mechanics and Materials 393 (September 2013): 63–67. http://dx.doi.org/10.4028/www.scientific.net/amm.393.63.
Full textPinion, Christopher W., Joseph D. Christesen, and James F. Cahoon. "Understanding the vapor–liquid–solid mechanism of Si nanowire growth and doping to synthetically encode precise nanoscale morphology." Journal of Materials Chemistry C 4, no. 18 (2016): 3890–97. http://dx.doi.org/10.1039/c5tc03898g.
Full textTseng, Tseung Yuen. "ZnO Nanostructures for Sensor Applications." Solid State Phenomena 185 (February 2012): 1–4. http://dx.doi.org/10.4028/www.scientific.net/ssp.185.1.
Full textChowdhury, Sisir, Nripendra N. Halder, and P. Banerji. "Growth and Characterization of MOCVD Grown Gallium Phosphide Nanostructures on Silicon Substrates." Advanced Materials Research 716 (July 2013): 281–85. http://dx.doi.org/10.4028/www.scientific.net/amr.716.281.
Full textLeach, Gary W., Sasan V. Grayli, Finlay MacNab, Xin Zhang, and Saeid Kamal. "Hot Electron Extraction Enabled By Single-Crystal Metal Films and Nanostructures." ECS Meeting Abstracts MA2022-01, no. 13 (July 7, 2022): 925. http://dx.doi.org/10.1149/ma2022-0113925mtgabs.
Full textWang, Jyh-Liang, Po-Yu Yang, Tsang-Yen Hsieh, Chuan-Chou Hwang, and Miin-Horng Juang. "pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures." Journal of Nanomaterials 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/152079.
Full textShvets, V. A. "Accuracy of ellipsometric monitoring during growth of semiconductor nanostructures." Optics and Spectroscopy 107, no. 5 (November 2009): 780–83. http://dx.doi.org/10.1134/s0030400x09110150.
Full textDenault, L., R. Klinger, ST Taylor, A. Alizadeh, C. Keimel, D. Hays, K. Krishnan, et al. "Templated Growth of Semiconductor Nanostructures through Block Copolymer Lithography." Microscopy and Microanalysis 12, S02 (July 31, 2006): 604–5. http://dx.doi.org/10.1017/s1431927606066086.
Full textMathur, Sanjay, and Sven Barth. "One-Dimensional Semiconductor Nanostructures: Growth, Characterization and Device Applications." Zeitschrift für Physikalische Chemie 222, no. 2-3 (February 2008): 307–17. http://dx.doi.org/10.1524/zpch.2008.222.2-3.307.
Full textSchallenberg, T., C. Schumacher, and L. W. Molenkamp. "Projective techniques for the growth of compound semiconductor nanostructures." physica status solidi (a) 195, no. 1 (January 2003): 232–37. http://dx.doi.org/10.1002/pssa.200306291.
Full textSINGH, TRILOK, D. K. PANDYA, and R. SINGH. "GROWTH OF CdO AND ZnCdO-BASED NOVEL NANOSTRUCTURES USING ELECTROCHEMICAL DEPOSITION." International Journal of Nanoscience 10, no. 04n05 (August 2011): 827–31. http://dx.doi.org/10.1142/s0219581x11009258.
Full textBai, Hua, Fang Ye, Qing Lv, Guangcheng Xi, Junfang Li, Haifeng Yang, and Chongqing Wan. "An in situ and general preparation strategy for hybrid metal/semiconductor nanostructures with enhanced solar energy utilization efficiency." Journal of Materials Chemistry A 3, no. 28 (2015): 14550–55. http://dx.doi.org/10.1039/c5ta03612g.
Full textOh, Hongseok. "Heteroepitaxially grown semiconductors on large-scale 2D nanomaterials for optoelectronics devices." Ceramist 25, no. 4 (December 31, 2022): 412–26. http://dx.doi.org/10.31613/ceramist.2022.25.4.04.
Full textYang, Peidong. "The Chemistry and Physics of Semiconductor Nanowires." MRS Bulletin 30, no. 2 (February 2005): 85–91. http://dx.doi.org/10.1557/mrs2005.26.
Full textKanitkar, Prajakta, Manmeet Kaur, Shashwati Sen, Aditee Joshi, Vivek Kumar, S. K. Gupta, and J. V. Yakhmi. "Growth and gas-sensing studies of metal oxide semiconductor nanostructures." International Journal of Nanotechnology 7, no. 9/10/11/12 (2010): 883. http://dx.doi.org/10.1504/ijnt.2010.034696.
Full textBimberg, D., F. Heinrichsdorff, N. N. Ledentsov, and V. A. Shchukin. "Self-organized growth of semiconductor nanostructures for novel light emitters." Applied Surface Science 159-160 (June 2000): 1–7. http://dx.doi.org/10.1016/s0169-4332(00)00152-5.
Full textWeng, X., W. Ye, S. J. Clarke, R. S. Goldman, V. Rotberg, A. Daniel, and R. Clarke. "Matrix-seeded growth of nitride semiconductor nanostructures using ion beams." Journal of Applied Physics 97, no. 6 (March 15, 2005): 064301. http://dx.doi.org/10.1063/1.1847726.
Full textTan, Chaoliang, Zhiyuan Zeng, Xiao Huang, Xianhong Rui, Xue-Jun Wu, Bing Li, Zhimin Luo, et al. "Liquid-Phase Epitaxial Growth of Two-Dimensional Semiconductor Hetero-nanostructures." Angewandte Chemie International Edition 54, no. 6 (December 21, 2014): 1841–45. http://dx.doi.org/10.1002/anie.201410890.
Full textTan, Chaoliang, Zhiyuan Zeng, Xiao Huang, Xianhong Rui, Xue-Jun Wu, Bing Li, Zhimin Luo, et al. "Liquid-Phase Epitaxial Growth of Two-Dimensional Semiconductor Hetero-nanostructures." Angewandte Chemie 127, no. 6 (December 21, 2014): 1861–65. http://dx.doi.org/10.1002/ange.201410890.
Full textLong, Gen, Kenneth Sabalo, Natalie MacDonald, Michael Beattie, and Mostafa Sadoqi. "Photocurrent Enhancement by Introducing Gold Nanoparticles in Nanostructures Based Heterojunction Solar Cell Device." MRS Advances 2, no. 15 (2017): 817–24. http://dx.doi.org/10.1557/adv.2017.146.
Full textFissel, Andreas. "Molecular Beam Epitaxy of Semiconductor Nanostructures Based on SiC." Materials Science Forum 483-485 (May 2005): 163–68. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.163.
Full textZiembicki, Jakub, Paweł Scharoch, Maciej P. Polak, Michał Wiśniewski, and Robert Kudrawiec. "Band parameters of group III–V semiconductors in wurtzite structure." Journal of Applied Physics 132, no. 22 (December 14, 2022): 225701. http://dx.doi.org/10.1063/5.0132109.
Full textKarbalaei Akbari, Mohammad, Nasrin Siraj Lopa, Jihae Park, and Serge Zhuiykov. "Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO2 Conversion." Materials 16, no. 10 (May 11, 2023): 3675. http://dx.doi.org/10.3390/ma16103675.
Full textReznik, R. R., K. P. Kotlyar, A. I. Khrebtov, and G. E. Cirlin. "Features of the MBE growth of nanowires with quantum dots on the silicon surface." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012032. http://dx.doi.org/10.1088/1742-6596/2086/1/012032.
Full textKarbalaei Akbari, Mohammad, Nasrin Siraj Lopa, and Serge Zhuiykov. "Atomic Layer Deposition of Ultra-Thin Crystalline Electron Channels for Heterointerface Polarization at Two-Dimensional Metal-Semiconductor Heterojunctions." Coatings 13, no. 6 (June 3, 2023): 1041. http://dx.doi.org/10.3390/coatings13061041.
Full textPetkov, Nikolay, Barbara Platschek, Michael A. Morris, Justin D. Holmes, and Thomas Bein. "Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels." Chemistry of Materials 19, no. 6 (March 2007): 1376–81. http://dx.doi.org/10.1021/cm0627239.
Full textSilveira, J. P., J. M. Garcia, and F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures." Journal of Crystal Growth 227-228 (July 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.
Full textMadhukar, Anupam. "Growth of semiconductor heterostructures on patterned substrates: defect reduction and nanostructures." Thin Solid Films 231, no. 1-2 (August 1993): 8–42. http://dx.doi.org/10.1016/0040-6090(93)90701-p.
Full textWang, Zumin, Lin Gu, Fritz Phillipp, Jiang Y. Wang, Lars P. H. Jeurgens, and Eric J. Mittemeijer. "Metal-Catalyzed Growth of Semiconductor Nanostructures Without Solubility and Diffusivity Constraints." Advanced Materials 23, no. 7 (December 27, 2010): 854–59. http://dx.doi.org/10.1002/adma.201002997.
Full textXu, Bo, Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye, and Feng Qi Liu. "Controlled Growth of III-V Compound Semiconductor Nano-Structures and Their Application in Quantum-Devices." Materials Science Forum 475-479 (January 2005): 1783–86. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1783.
Full textTomitori, Masahiko, and Toyoko Arai. "Germanium Nanostructures on Silicon Observed by Scanning Probe Microscopy." MRS Bulletin 29, no. 7 (July 2004): 484–87. http://dx.doi.org/10.1557/mrs2004.143.
Full textMillán, Brenda Carolina Pérez, César Eduardo Cea Montufar, Fabián Mendoza Hernández, and Erasto Vergara Hernández. "Photoluminescence of Silver-Doped ZnO Nanostructures." Key Engineering Materials 945 (May 19, 2023): 11–16. http://dx.doi.org/10.4028/p-64j9qy.
Full textLu, Yi Ren, T. Ling, X. W. Du, P. F. Yin, H. Zhang, and X. Y. Chen. "One Step Growth of Semiconductor CdS Uniform Branched Nanowire on FTO." Applied Mechanics and Materials 472 (January 2014): 744–49. http://dx.doi.org/10.4028/www.scientific.net/amm.472.744.
Full textSakuraba, Masao, Katsutoshi Sugawara, and Junichi Murota. "Atomically Controlled Plasma Processing for Epitaxial Growth of Group IV Semiconductor Nanostructures." ECS Transactions 25, no. 7 (December 17, 2019): 229–36. http://dx.doi.org/10.1149/1.3203960.
Full textSharma, Vikas, Tapan Kumar Das, P. Ilaiyaraja, Athrey C Dakshinamurthy, and Sudakar C. "Growth of Sb2S3 semiconductor thin film on different morphologies of TiO2 nanostructures." Materials Research Bulletin 131 (November 2020): 110980. http://dx.doi.org/10.1016/j.materresbull.2020.110980.
Full textGlas, F., J. Coelho, G. Patriarche, and G. Saint-Girons. "Buried dislocation networks for the controlled growth of III–V semiconductor nanostructures." Journal of Crystal Growth 275, no. 1-2 (February 2005): e1647-e1653. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.219.
Full textCoelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Dislocation networks adapted to order the growth of III-V semiconductor nanostructures." physica status solidi (c) 2, no. 6 (April 2005): 1933–37. http://dx.doi.org/10.1002/pssc.200460528.
Full textKabongo, Guy L., Gugu H. Mhlongo, and Mokhotjwa S. Dhlamini. "Unveiling Semiconductor Nanostructured Based Holmium-Doped ZnO: Structural, Luminescent and Room Temperature Ferromagnetic Properties." Nanomaterials 11, no. 10 (October 4, 2021): 2611. http://dx.doi.org/10.3390/nano11102611.
Full textLai, Zhiqiang, Yanjie Guo, and Peihui Yang. "Facile Synthesis, Characterization, Nanocrystal Growth and Photoluminescence Properties of GeS Nanowires." Nano 11, no. 12 (December 2016): 1650140. http://dx.doi.org/10.1142/s179329201650140x.
Full textFricke, Jörg, Richard Nötzel, Uwe Jahn, Zhichuan Niu, Hans-Peter Schönherr, Manfred Ramsteiner, and Klaus H. Ploog. "Patterned growth on GaAs (311)A substrates: Engineering of growth selectivity for lateral semiconductor nanostructures." Journal of Applied Physics 86, no. 5 (September 1999): 2896–900. http://dx.doi.org/10.1063/1.371138.
Full text