Academic literature on the topic 'Semiconductor Nanostructures - Growth'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductor Nanostructures - Growth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Semiconductor Nanostructures - Growth"

1

Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.

Full text
Abstract:
Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing of energy band structure, quantization of energy spectrum of a charge carrier and a pronounced spin-related phenomena. Superposition of quantum states and formation of entangled states of photons offers new opportunities for the realization of quantum bits, development of nanoscale systems for quantum cryptography and quantum computing. Advanced growth techniques such as molecular beam epitaxy and chemical vapour epitaxy, atomic layer deposition as well as optical, electron and probe nanolithography for nanostructure fabrication have been widely used. Nanostructure characterization is performed using nanometer resolution tools including high-resolution, reflection and scanning electron microscopy as well as scanning tunneling and atomic force microscopy. Quantum properties of semiconductor nanostructures have been evaluated from precise electrical and optical measurements. Modern concepts of various semiconductor devices in electronics and photonics including single-photon emitters, memory elements, photodetectors and highly sensitive biosensors are developed very intensively. The perspectives of nanostructured materials for the creation of a new generation of universal memory and neuromorphic computing elements are under lively discussion. This paper is devoted to a brief description of current achievements in the investigation and modeling of single-electron and single-photon phenomena in semiconductor nanostructures, as well as in the fabrication of a new generation of elements for micro-, nano, optoelectronics and quantum devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Witt, Elena, Jürgen Parisi, and Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles." Zeitschrift für Naturforschung A 68, no. 5 (May 1, 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.

Full text
Abstract:
Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS2). CuInS2/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity.
APA, Harvard, Vancouver, ISO, and other styles
3

Gnawali, Guna Nidha, Shankar P. Shrestha, Khem N. Poudyal, Indra B. Karki, and Ishwar Koirala. "Study on the effect of growth-time and seed-layers of Zinc Oxide nanostructured thin film prepared by the hydrothermal method for liquefied petroleum gas sensor application." BIBECHANA 16 (November 22, 2018): 145–53. http://dx.doi.org/10.3126/bibechana.v16i0.21557.

Full text
Abstract:
Gas sensors are devices that can convert the concentration of an analytic gas into an electronic signal. Zinc oxide (ZnO) is an important n-type metal oxide semiconductor which has been utilized as gas sensor for several decades. In this work, ZnO nanostructured films were synthesized by a hydrothermal route from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method for different time duration. The effect of growth time and seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by X-ray diffraction, scanning electron microscopy, optical spectroscopy, and four probes sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG.XRD showed that all the ZnO nanostructures were hexagonal crystal structure with preferential orientation. SEM reviled that the size of nanostructure increased with increase in growth time. Band gap and sheet resistance for ZnO nanostructured thin film decreased with increase in growth time. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in no of seed layers as well as growth time. The dependence of the LPG sensing properties on the different growth time of ZnO nanostructured was investigated. The sensing performances of the film were investigated by measured change in sheet resistance under expose to LPG gas. BIBECHANA 16 (2019) 145-153
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Li-De, and Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials." Journal of Nanoscience and Nanotechnology 8, no. 1 (January 1, 2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.

Full text
Abstract:
One-dimensional (1D) semiconductor nanomaterials attract much attention because they are ideal systems for investigation and studying the relationship between properties and structures and having extensive application future in the high technical field. They are expected to play an important role in fabrication of the next generation nanocircuits, nanotools, nanowires lasers, photon tunneling devices, near-field photo-waveguide devices, etc. This article described controlled growth, characterization of structures and morphologies and properties of 1D semiconductor nanomaterials based on our previous works. This article is organized into two parts: The first part is complicated nanostructures of semiconductors, which includes coaxial nanocables, heterostructure nanowires and nanowires with metal–semiconductor junction behavior, hierarchical structures, doping of the nanowires and nanobelts, porous materials and periodically twined nanowires and asymmetrical polytypic nanobelts. The second part contains semiconductor nanoarrays based on anodic alumina membrane (AAM) templates. Finally, we propose that further investigation of the influence of nanomaterial morphologies on properties and how to design the morphology of nanostructures to meet the property requirements of nanodevices are our future research directions in this field.
APA, Harvard, Vancouver, ISO, and other styles
5

López-López, Máximo, Esteban Cruz-Hernández, Isaac Martínez-Velis, Juan Salvador Rojas-Ramírez, Manolo Ramirez-Lopez, and Álvaro Orlando Pulzara-Mora. "Self Assembly of semiconductor nanostructures." Respuestas 12, no. 2 (May 16, 2016): 47–51. http://dx.doi.org/10.22463/0122820x.570.

Full text
Abstract:
Abstract In this work we present the growth and characterization of GaAs self-assembled quantum wires (SAQWRs), and InAs self-assembled quantum dots (SAQDs) by molecular beam epitaxy on (631)-oriented GaAs substrates. Adatoms on the (631) crystal plane present a strong surface diffusion anisotropy which we use to induce preferential growth along one direction to produce SAQWRs. On the other hand, InAs SAQDs were obtained on GaAs(631) with SAQWRs by the Stransky–Krastanov (S-K) growth method. SAQDs grown directly on (631) substrates presented considerable fluctuations in size. We study the effects of growing a stressor layer before the SAQDs formation to reduce these fluctuations.Keywords : Quantum wires, quantum dots; selfassembly; molecular beam epitaxy.
APA, Harvard, Vancouver, ISO, and other styles
6

Tan, Che, Chu Qin, and Bryce Sadtler. "Light-directed growth of metal and semiconductor nanostructures." Journal of Materials Chemistry C 5, no. 23 (2017): 5628–42. http://dx.doi.org/10.1039/c7tc00379j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wen, Zhuoqun, Yiping Wang, Zhizhong Chen, and Jian Shi. "Chemical Vapor Growth of Silicon Phosphide Nanostructures." MRS Advances 5, no. 31-32 (November 25, 2019): 1653–60. http://dx.doi.org/10.1557/adv.2019.437.

Full text
Abstract:
ABSTRACTIn the search for chemically stable two-dimensional (2D) materials with high in-plane mobility, proper bandgap, and compatibility with vapor-based fabrication, van der Waals semiconductor SiP has become a potential candidate as a robust variation of black phosphorous. While bulk SiP crystals were synthesized in the 1970s, the vapor-based synthesis of SiP nanostructures or thin films is still absent. We here report the first chemical vapor growth of SiP nanostructures on SiO2/Si substrate. SiP islands with lateral size up to 20 μm and showing well-defined Raman signals were grown on SiO2/Si substrate or on SiP-containing concentric rings. The presence of SiP phase is confirmed by XRD. The formation of rings and islands is explained by a multiple coffee ring growth model where a dynamic fluctuation of droplet growth front induces the topography of concentric ring surfaces. This new growth method might shed light on the controlled growth of group IV-III high-mobility 2D semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
8

Gyanwali, Gunanidhi. "Studying the Effect of Seed-layers of Zinc Oxide Nanostructured Thin Film for Liquefied Petroleum Gas Sensor Application." Molung Educational Frontier 10 (December 31, 2020): 41–49. http://dx.doi.org/10.3126/mef.v10i0.34056.

Full text
Abstract:
Gas sensors are devices that can convert the concentration of an analyte gas into an electronic signal. Zinc oxide (ZnO) is one of the most important n-type metal oxide semiconductor which has been utilized as gas sensor for many years. In this work, ZnO nanostructured films were synthesized by a hydrothermal growth from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method. The effect of seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by scanning electron microscopy, X-ray diffraction, optical spectroscopy, and sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG. XRD showed that all the ZnO nanostructures were hexagonal crystal structure. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in number of seed layers. The sensitivity of the film was investigated by measured change in sheet resistance under with LPG gas.
APA, Harvard, Vancouver, ISO, and other styles
9

Kohno, H., T. Iwasaki, and S. Takeda. "Metal-mediated growth of alternate semiconductor–insulator nanostructures." Solid State Communications 116, no. 11 (October 2000): 591–94. http://dx.doi.org/10.1016/s0038-1098(00)00389-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suwito, Galih R., Vladimir G. Dubrovskii, Zixiao Zhang, Weizhen Wang, Sofiane Haffouz, Dan Dalacu, Philip J. Poole, Peter Grutter, and Nathaniel J. Quitoriano. "Tuning the Liquid–Vapour Interface of VLS Epitaxy for Creating Novel Semiconductor Nanostructures." Nanomaterials 13, no. 5 (February 27, 2023): 894. http://dx.doi.org/10.3390/nano13050894.

Full text
Abstract:
Controlling the morphology and composition of semiconductor nano- and micro-structures is crucial for fundamental studies and applications. Here, Si-Ge semiconductor nanostructures were fabricated using photolithographically defined micro-crucibles on Si substrates. Interestingly, the nanostructure morphology and composition of these structures are strongly dependent on the size of the liquid–vapour interface (i.e., the opening of the micro-crucible) in the CVD deposition step of Ge. In particular, Ge crystallites nucleate in micro-crucibles with larger opening sizes (3.74–4.73 μm2), while no such crystallites are found in micro-crucibles with smaller openings of 1.15 μm2. This interface area tuning also results in the formation of unique semiconductor nanostructures: lateral nano-trees (for smaller openings) and nano-rods (for larger openings). Further TEM imaging reveals that these nanostructures have an epitaxial relationship with the underlying Si substrate. This geometrical dependence on the micro-scale vapour–liquid–solid (VLS) nucleation and growth is explained within a dedicated model, where the incubation time for the VLS Ge nucleation is inversely proportional to the opening size. The geometric effect on the VLS nucleation can be used for the fine tuning of the morphology and composition of different lateral nano- and micro-structures by simply changing the area of the liquid–vapour interface.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Semiconductor Nanostructures - Growth"

1

Fu, Kai. "Growth Dynamics of Semiconductor Nanostructures by MOCVD." Doctoral thesis, KTH, Teoretisk kemi (stängd 20110512), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11447.

Full text
Abstract:
Semiconductors and related low-dimensional nanostructures are extremely important in the modern world. They have been extensively studied and applied in industry/military areas such as ultraviolet optoelectronics, light emitting diodes, quantum-dot photodetectors and lasers. The knowledge of growth dynamics of semiconductor nanostructures by metalorganic chemical vapour deposition (MOCVD) is very important then. MOCVD, which is widely applied in industry, is a kind of chemical vapour deposition method of epitaxial growth for compound semiconductors. In this method, one or several of the precursors are metalorganics which contain the required elements for the deposit materials. Theoretical studies of growth mechanism by MOCVD from a realistic reactor dimension down to atomic dimensions can give fundamental guidelines to the experiment, optimize the growth conditions and improve the quality of the semiconductor-nanostructure-based devices. Two main types of study methods are applied in the present thesis in order to understand the growth dynamics of semiconductor nanostructures at the atomic level: (1) Kinetic Monte Carlo method which was adopted to simulate film growths such as diamond, Si, GaAs and InP using the chemical vapor deposition method; (2) Computational fluid dynamics method to study the distribution of species and temperature in the reactor dimension. The strain energy is introduced by short-range valence-force-field method in order to study the growth process of the hetero epitaxy. The Monte Carlo studies show that the GaN film grows on GaN substrate in a two-dimensional step mode because there is no strain over the surface during homoepitaxial growth. However, the growth of self-assembled GaSb quantum dots (QDs) on GaAs substrate follows strain-induced Stranski-Krastanov mode. The formation of GaSb nanostructures such as nanostrips and nanorings could be determined by the geometries of the initial seeds on the surface. Furthermore, the growth rate and aspect ratio of the GaSb QD are largely determined by the strain field distribution on the growth surface.
QC 20100713
APA, Harvard, Vancouver, ISO, and other styles
2

Grant, Victoria Anne. "Growth and characterisation of III-V semiconductor nanostructures." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490983.

Full text
Abstract:
This thesis describes the growth and characterisation of III-V semiconductor materials and nanostructures. The material was grown by molecular beam epitaxy (MBE) and characterised using a range of techniques including atomic force microscopy (AFM), cross-sectional scanning tunnelling microscopy (XSTM) and x-ray diffraction (XRD).
APA, Harvard, Vancouver, ISO, and other styles
3

Cai, Xingmin. "Growth, doping and nanostructures of gallium nitride." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35806394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Xingmin, and 蔡興民. "Growth, doping and nanostructures of gallium nitride." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35806394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bernardi, Alessandro. "Growth and optical characterization of strain-engineered semiconductor nanostructures." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/383763.

Full text
Abstract:
En este trabajo hemos investigado distintas posibilidades para aprovechar las tensiones almacenadas en los materiales nanoestructurados para obtener estructuras 3D auto-organizadas. En particular hemos estudiado el crecimiento epitaxial de puntos cuánticos auto-organizados de Ge sobre Si depositando una submonocapa de carbono antes del crecimiento de las islas de Ge. Empleando la microscopía de fuerza atómica combinada con difracción RHEED y técnicas ópticas como la dispersión Raman y la elipsometría, hemos llevado a cabo un estudio sistemático de la influencia de la interdifusión de Si y de la composición de la capa de mojado en la densidad y la morfología de las islas. Los resultados aportan evidencia experimental de un mecanismo de crecimiento cinéticamente limitado donde la movilidad de los adátomos de Ge se ve afectada por la interacción química entre C, Si, y Ge. Como resultado, presentamos un protocolo de crecimiento en dos etapas para manipular la topografía de las islas (densidad, forma y tamaño), útil para posibles aplicaciones en optoelectrónica. Hemos investigado el fenómeno de relajación de las tensiones elásticas cuando recubrimos las islas, un proceso necesario para la ingeniería de dispositivos que constan de multicapas de puntos cuánticos. También hemos analizado la evolución de nanoestructuras de Ge preparadas combinando el uso de nanoplantillas (nanostencils) con la técnica PLD, una estrategia que tiene mucho potencial para producir patrones de nanoestructuras semiconductoras para optoelectrónica. Además del crecimiento de islas 3D, hemos aplicado la ingeniería de capas tensadas para fabricar microtubos que se enrollan espontáneamente a partir de heteroestructuras tensadas de semiconductor. Mediante la espectroscopía Raman con resolución microscópica hemos conseguido medir las tensiones residuales, que se manifiestan en un cambio de la frecuencia de los fonones, comparando la señal colectada en la pared del tubo con el valor de referencia del material sin tensiones. Hemos desarrollado un modelo elástico para describir dicho cambio de frecuencia, lo que nos permite caracterizar la distribución de tensiones en el microtubo. Los resultados demuestran que la espectroscopía Raman es una potente técnica de diagnóstico del estado de tensión en dispositivos tipo MEMS. Hemos aplicado la tecnología de fabricación de microtubos enrollados para obtener un sensor bioquímico “lab-in-a-tube” óptico, donde se emplea la luz como sonda. Hemos fabricado microtubos de Si/SiOx integrados en un chip de Silicio y hemos evaluado sus propiedades como sensor refractométrico. Introduciendo una solución azucarada en el microtubo, se produce un cambio en el índice de refracción, que se manifiesta en un desplazamiento de las frecuencias de los modos ópticos de “whispering gallery”. Este prototipo demuestra que la integración de microtubos enrollados es un proceso de fabricación con mucho potencial para diseñar canales optofluídicos en dispositivos “lab-on-a-chip”.
In this work we explored different pathways to exploit the strain stored into nanoscale layers of materials as a driving force to self-assemble 3D structures. In particular, we have studied the epitaxial growth of self-assembled Ge quantum dots when a submonolayer of carbon is deposited prior to the growth of the dots. Using atomic-force microscopy combined with RHEED and optical techniques like Raman scattering and ellipsometry, we performed a systematic study of the role played by thermally activated Si interdiffusion and the composition of the wetting layer on dot density and morphology. The results give experimental evidence of a kinetically limited growth mechanism in which Ge adatom mobility is determined by chemical interactions among C, Si, and Ge. We suggest a two-stage growth procedure for fine-tuning the dot topography (density, shape and size), useful for possible optoelectronic applications. Moreover we investigated the dynamics of strain relaxation during the capping of islands, which is useful for engineering devices based on multistacks of quantum dots. We also analysed the evolution of Ge nanostructures grown by combining nanostenciling and pulsed laser deposition, as a promising approach for the parallel patterning of semiconductor nanostructures for optoelectronics. Apart from the growth of 3D islands, we applied strain-driven engineering to release rolled-up microtubes, obtained from strained semiconductor heterostructures. Through micro-Raman spectroscopy we were able to determine the residual strain, which results in a frequency shift of phonon modes measured on the tube as compared with reference unstrained material. We developed a simple elastic model to describe the measured phonon-frequency shifts, from which we estimate the strain status of the microtube. Results demonstrate the power of Raman spectroscopy as a diagnostic tool for engineering of strain-driven self-positioning microelectromechanical systems. We tested the potential application of this rolled-up nanotechnology to obtain a lab-in-a-tube device where light is used as a biochemical sensor. We fabricated rolled up microtubes consisting of Si/SiOx integrated on a Si chip and we analysed their properties to use them as a refractometric sensor. An aqueous sugar solution was inserted into the microtube, which leads to a change in refractive index and, as a result, to a detectable spectral shift of the whispering gallery modes. This prototype proved that the monolithic on-chip integration of strain-engineered microtubes is a promising approach to design optofluidic channels for lab-on-a-chip applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Feng. "Ligand Controlled Growth of Aqueous II-VI Semiconductor Nanoparticles and Their Self-Assembly." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311311.

Full text
Abstract:
Colloidal semiconductor nanoparticles (NPs) contain hundreds to thousands of atoms in a roughly spherical shape with diameters in the range of 1-10 nm. The extremely small particle size confines electron transitions and creates size tunable bandgaps, giving rise to the name quantum dots (QDs). The unique optoelectronic properties of QDs enable a broad range of applications in optical and biological sensors, solar cells, and light emitting diodes. The most common compound semiconductor combination is chalcogenide II-VI materials, such as ZnSe, CdSe, and CdTe. But III-V and group IV as well as more complicated ternary materials have been demonstrated. Coordinating organic ligands are used to cap the NP surface during the synthesis, as a mean of protecting, confining, and separating individual particles. This study investigated the impact of the ligand on particle growth and self-assembly into hierarchical structures. ZnSe QDs were synthesized using an aqueous route with four different thiol ligands, including 3-mercaptopropionic acid (MPA), thioglycolic acid (TGA), methyl thioglycolate (MTG), and thiolactic acid (TLA). The particle growth was monitored as a function of reaction time by converting the band gaps measured using UV-vis spectroscopy into particle sizes. A kinetic model based on a diffusion-reaction mechanism was developed to simulate the growth process. The growth data were fit to this model, yielding the binding strength in the order TLA < MTG ≈ TGA < MPA. This result showed the relationship between the QD growth rates and the chemical structures of the ligands. Ligands containing electron-withdrawing groups closer to the anchoring S atom and branching promoted growth, whereas longer, possibly bidendate, ligands retarded it. Removing TGA ligands from the surface of CdTe QDs in a controlled manner yielded new superstructures that were composed of either intact or fused particles. Purifying as-synthesized QDs by precipitating them using an anti-solvent removed most of the free ligand in solution. Aging this purified QD suspension for a week caused self-assembly of QDs into nanoribbons. The long time needed for self-assembly was due to the slow equilibrium between the ligands on QD surface and in solution. Accelerating the approach to equilibrium by diluting purifed CdTe QDs with organic solvents triggered rapid self-assembly of superstructures within a day, forming various nanostructures from nanoribbons to nanoflowers. The type of nanostructures that formed was determined by the solvation of TGA in the trigger solvent. Extracting the smallest portion of TGA in methanol promoted vectorial growth into ribbons consistent with dipole-dipole attractive and charge-charge repulsive interactions. Removing more of the TGA layer in IPA caused the dots to fuse into webs containing clustered ribbons and branches, and the directional nature of the superstructure was lost. Completely deprotecting the surface in acetone promoted photochemical etching and dissolved the QDs, yielding ower-like structures composed of CdS. Nanocrystal (NC) growth mediated by a ligand was also studied in the organic synthesis of FeS₂ nanocubes. Oleylamine was used not only as the ligand but also the solvent and reductant during the reaction. A one hour reaction between iron (II) chloride and elemental sulfur in oleylamine at 200 ℃ and a S to Fe ratio of 6 yielded phase pure pyrite cubes with dimensions of 87.9±14.1 nm. X-ray diffraction (XRD) spectra and Raman peaks for pyrite at 340, 375, and 426 cm⁻¹ confirmed phase purity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results showed that the oleylamine remained on the FeS₂ surface as a ligand. The reaction mechanism includes the production of pyrrhotite Fe₁₋ᵪS (0≤x<0.5) via reduction of S⁰ to S²⁻ by oleylamine and the oxidation of pyrrhotite to pyrite with remaining S⁰.
APA, Harvard, Vancouver, ISO, and other styles
7

Kent, Thomas Frederick. "III-Nitride Nanostructures for Optoelectronic and Magnetic Functionalities: Growth, Characterization and Engineering." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1408564155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Li Li. "Synthesis and Characterization of ZnO Nanostructures." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60815.

Full text
Abstract:
One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices.  Therefore, it is very important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nanorods (ZNRs), ZnO nanotubes (ZNTs) and ZnMgO/ZnO heterostructures, but also investigate the structure and optical properties in detail by means of scanning electron microscope (SEM), transmission electron microscope (TEM), resonant Raman spectroscopy (RRS), photoluminescence (PL), time resolved PL (TRPL), X-ray photoelectron spectroscopy (XPS) and Secondary ion mass spectrometry (SIMS). For ZNRs, on one hand, ZNRs have been successfully synthesized by a two-step chemical bath deposition method on Si substrates. The diameter of ZNRs can be well controlled from 150 nm to 40 nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNRs. But when the density is higher than the critical value of 2.3×108cm-2, the density will become the dominant factor to determine the diameter of ZNRs. One the other hand, the surface recombination of ZNRs has been investigated in detail. Raman, RRS and PL results help us reveal that the surface defects play a significant role in the as-grown sample. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZNRs. Then we utilized TRPL technique, for the first time, to investigate the CBD grown ZNRs with different diameters. The results show that the decay time of the excitons in ZNRs strongly depends on the diameter. The altered decay time is mainly due to the surface recombination process. A thermal treatment under 500°C can strongly suppress the surface recombination channel. A simple carrier and exciton diffusion equation is also used to determine the surface recombination velocity, which results in a value between 1.5 and 4.5 nm/ps. Subsequently, we utilized XPS technique to investigate the surface composition of as-grown and annealed ZNRs so that we can identify the surface recombination centers. The experimental results indicated that the OH and H bonds play the dominant role in facilitating surface recombination but specific chemisorbed oxygen also likely affect the surface recombination. Finally, on the basis of results above, we explored an effective way, i.e. sealing the beaker during the growth process, to effectively suppress the surface recombination of ZNRs and the suppression effect is even better than a 500oC post-thermal treatment. For ZNTs, the structural and optical properties have been studied in detail. ZNTs have been successfully evolved from ZNRs by a simple chemical etching process. Both temperature-dependent PL and TRPL results not only further testify the coexistence of spatially indirect and direct transitions due to the surface band bending, but also reveal that less nonradiative contribution to the emission process in ZNTs finally causes their strong enhancement of luminescence intensity. For ZnMgO/ZnO heterostructures, the Zn0.94Mg0.06O/ZnO heterostructures have been deposited on 2 inch sapphire wafer by metal organic chemical vapor deposition (MOCVD) equipment. PL mapping demonstrates that Mg distribution in the entire wafer is quite uniform with average concentration of ~6%. The annealing effects on the Mg diffusion behaviors in Zn0.94Mg0.06O/ZnO heterostructures have been investigated by SIMS in detail. All the SIMS depth profiles of Mg element have been fitted by three Gaussian distribution functions. The Mg diffusion coefficient in the as-grown Zn0.94Mg0.06O layer deposited at 700 oC is two orders of magnitude lower than that of annealing samples, which clearly testifies that the deposited temperature of 700 oC is much more beneficial to grow ZnMgO/ZnO heterostructures or quantum wells. This thesis not only provides the effective way to fabricate ZNRs, ZNTs and ZnMgO/ZnO heterostructures, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better understanding fundamental physics and broader applications of low-dimensional ZnO and related structures.
Endimensionella nanostrukturer av ZnO har stora potentiella tillämpningar för optoelektroniska komponenter och sensorer. Huvudresultaten för denna avhandling är inte bara att vi framgångsrikt har realiserat med en kontrollerbar metod ZnO nanotrådar (ZNRs), ZnO nanotuber (ZNTs) och ZnMgO/ZnO heterostrukturer, utan vi har också undersökt deras struktur och optiska egenskaper i detalj. För ZNRs har diametern blivit välkontrollerad från 150 nm  ner till 40 nm. Den storlekskontrollerande mekanismen är i huvudsak relaterad till tätheten av ZnO partiklarna som är fördeponerade på substratet. De optiska mätningarna ger upplysning om att ytrekombinationsprocessen spelar en betydande roll för tillväxten av ZNR. En värmebehandling i efterhand  vid 500 grader Celsius eller användande av en förseglad glasbägare under tillväxtprocessen kan starkt hålla nere kanalerna för ytrekombinationen.För ZNT, dokumenterar vi inte bara samexistensen av rumsliga indirekta och direkta  övergångar på grund av bandböjning, men vi konstaterar också att vi har mindre icke-strålande bidrag till den optiska emissionsprocessen i ZNT. För ZnMgO/ZnO heterostrukturer konstaterar vi med hjälp av analys av Mg diffusionen i den växta och den i efterhand uppvärmda Zn(0.94)Mg(0.06)O filmen, att en tillväxt vid 700 grader Celsius är den mest lämpliga för att växa ZnMgO/ZnO heterostrukturer eller kvantbrunnar.   Denna avhandling ger en teoretisk och experimentell grund för bättre förståelse av grundläggande fysik och för tillämpningar av lågdimensionella strukturer.
SSF, VR
APA, Harvard, Vancouver, ISO, and other styles
9

Al, Zoubi Tariq [Verfasser]. "Molecular Beam Epitaxial Growth of III-V Semiconductor Nanostructures on Silicon Substrates / Tariq Al Zoubi." Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/1043814876/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borisova, Svetlana [Verfasser]. "Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE / Svetlana Borisova." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1024800687/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Semiconductor Nanostructures - Growth"

1

M, Salemink H. W., Pashley M. D, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on the Physical Properties of Semiconductor Interfaces at the Subnanometer Scale (1992 : Riva del Garda, Italy), eds. Semiconductor interfaces at the sub-nanometer scale. Dordrecht: Kluwer Academic Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

European Materials Research Society. Meeting. Thin films epitaxial growth and nanostructures: Proceedings of the EMRS Spring Conference, Strasbourg, France, June 16-19, 1998. Amsterdam: Elsevier, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

McGlynn, E., M. O. Henry, and J. P. Mosnier. ZnO wide-bandgap semiconductor nanostructures: Growth, characterization and applications. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.14.

Full text
Abstract:
This article describes the growth, characterization and applications of zinc oxide (ZnO) wide-bandgap semiconductor nanostructures. It first introduces the reader to the basic physics and materials science of ZnO, with particular emphasis on the crystalline structure, electronic structure, optical properties and materials properties of ZnO wide-bandgap semiconductors. It then considers some of the commonly used growth methods for ZnO nanostructures, including vapor-phase transport, chemical vapor deposition, molecular beam epitaxy, pulsed-laser deposition, sputtering and chemical solution methods. It also presents the results of characterization of ZnO nanostructures before concluding with a discussion of some promising areas of application of ZnO nanostructures, such as field emission applications; electrical, optical/photonic applications; and applications in sensing, energy production, photochemistry, biology and engineering.
APA, Harvard, Vancouver, ISO, and other styles
4

Latyshev, Alexander V., Anatoliy V. Dvurechenskii, and Alexander L. Aseev. Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. Elsevier, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

H.W.M Salemink (Editor) and M. D. Pashley (Editor), eds. Semiconductor Interfaces at the Sub-Nanometer Scale (NATO Science Series E: (closed)). Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), E. Kasper, K. L. Wang (Editor), and H. Hasegawa (Editor), eds. Thin Films Epitaxial Growth and Nanostructures (European Materials Research Society Symposia Proceedings). Elsevier, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vvedensky, Dimitri D. Quantum dots: Self-organized and self-limiting assembly. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.6.

Full text
Abstract:
This article describes the self-organized and self-limiting assembly of quantum dots, with particular emphasis on III–V semiconductor quantum dots. It begins with a background on the second industrial revolution, highlighted by advances in information technology and which paved the way for the era of ‘quantum nanostructures’. It then considers the science and technology of quantum dots, followed by a discussion on methods of epitaxial growth and fabrication methodologies of semiconductor quantum dots and other supported nanostructures, including molecular beam epitaxy and metalorganic vapor-phase epitaxy. It also examines self-organization in Stranski–Krastanov systems, site control of quantum dots on patterned substrates, nanophotonics with quantum dots, and arrays of quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmad, Muhammad, Ravinder Dahiya, Dhayalan Shakthivel, Mohammad R. Alenezi, and S. Ravi P. Silva. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge University Press, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmad, Muhammad, Ravinder Dahiya, Dhayalan Shakthivel, Mohammad R. Alenezi, and S. Ravi P. Silva. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge University Press, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Consonni, Vincent, and Guy Feuillet. Wide Band Gap Semiconductor Nanowires 1: Low-Dimensionality Effects and Growth. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Semiconductor Nanostructures - Growth"

1

Shchukin, Vitaly, Eckehard Schöll, and Peter Kratzer. "Thermodynamics and Kinetics of Quantum Dot Growth." In Semiconductor Nanostructures, 1–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pristovsek, Markus, and Wolfgang Richter. "In-Situ Monitoring for Nano-Structure Growth in MOVPE." In Semiconductor Nanostructures, 67–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pohl, Udo W., and André Strittmatter. "Control of Self-Organized In(Ga)As/GaAs Quantum Dot Growth." In Semiconductor Nanostructures, 41–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Zhang, and Stephan Senz. "One-Dimensional Semiconductor Nanostructure Growth with Templates." In One-Dimensional Nanostructures, 1–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Madhukar, A., P. Chen, Q. Xie, A. Konkar, T. R. Ramachandran, N. P. Kobayashi, and R. Viswanathan. "Semiconductor Nanostructures: Nature’s Way." In Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 19–33. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Heon-Jin. "Vapor–Liquid–Solid Growth of Semiconductor Nanowires." In Semiconductor Nanostructures for Optoelectronic Devices, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Korgel, Brian A. "Supercritical Fluid-Liquid-Solid (SFLS) Growth of Semiconductor Nanowires." In One-Dimensional Nanostructures, 41–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Chuanwei, and Hong Jin Fan. "Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications." In Semiconductor Nanostructures for Optoelectronic Devices, 137–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Höfling, C., C. Schneider, and A. Forchel. "6.9 Examples of III-V layers and nanostructures with diluted semiconductor materials." In Growth and Structuring, 182–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rosei, F., N. Motta, A. Sgarlata, and A. Balzarotti. "Growth and Characterization of Ge Nanostructures on Si(111)." In Nanoscale Spectroscopy and Its Applications to Semiconductor Research, 252–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45850-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Semiconductor Nanostructures - Growth"

1

Dvoretskiy, Sergey Alekseevich. "MBE growth of HgCdTe hetero- and nanostructures." In Brazilian Workshop on Semiconductor Physics. Maresias - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/bwsp-2017-79320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hwang, David J., Sang-Gil Ryu, Eunpa Kim, Jae-Hyuck Yoo, Bin Xiang, Oscar Dubon, Andrew M. Minor, and Costas P. Grigoropoulos. "Laser-assisted nanoprocessing and growth of semiconductor nanostructures." In SPIE Defense, Security, and Sensing. SPIE, 2011. http://dx.doi.org/10.1117/12.882809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gwo, Shangjr. "Metal-oxide-semiconductor plasmonic nanorod lasers (Conference Presentation)." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2017. http://dx.doi.org/10.1117/12.2257098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mathur, Sanjay, Hao Shen, Sven Barth, and Nicole Donia. "One-dimensional semiconductor nanostructures: growth, characterization and device applications." In SPIE Optics + Photonics, edited by Lionel Vayssieres. SPIE, 2006. http://dx.doi.org/10.1117/12.678325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heyn, Christian, Michael Zocher, Achim Küster, and Wolfgang Hansen. "Droplet etching during semiconductor epitaxy for single and coupled quantum structures." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2018. http://dx.doi.org/10.1117/12.2295829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grillot, Frédéric, Dejan Arsenijevic, Dieter H. Bimberg, and Heming Huang. "Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2018. http://dx.doi.org/10.1117/12.2299678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Azlinda, A., Z. Khusaimi, and M. Rusop. "Controlled growth of ZnO nanostructures prepared by catalytic-immersion method." In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nötzel, Richard, Manfred Ramsteiner, Lutz Däweritz, and K. H. Ploog. "Formation and electronic properties of sidewall quantum wires on patterned GaAs (311)A substrates." In Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.csub.2.

Full text
Abstract:
The natural formation of nanometer-scale structures on high-index semiconductor surfaces during molecular beam epitaxy (MBE) [1] and metalorganic vapor phase epitaxy (MOVPE) [2] has opened a new pathway for the realization of quantum-wire and dot arrays. Even higher flexibility in the formation of nanostructures on high-index semiconductor surfaces can be realized by growth on patterned substrates. Patterning provides an additional degree of freedom for the control of the size and, most important, allows the precise placing of the nanostructures desired for applications in devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Roca, Lidice Vaillant, Yerila Rodriguez Martinez, Jesus Antonio Alba Cabanas, and Osmel Cruzata Montero. "New Design Concepts for Inorganic Solar Cells: From Thin Films to Functional Nanostructures: Using a pulsed laser for in-situ growth of semiconductor core-shell nanostructures." In 2017 Photonics North (PN). IEEE, 2017. http://dx.doi.org/10.1109/pn.2017.8090573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sperka, Jirí, Lenka Zajícková, Ondrej Jasek, Annapurna Pamreddy, Josef Havel, Jan Schäfer, and Rüdiger Foest. "Growth of Carbon Materials on Gold Substrate by Plasma Enhanced CVD." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.395-398.

Full text
Abstract:
Carbon is a versatile building element of many interesting materials that have already find practical applications in the form of thin films (diamond, DLC) or potential applications in the form of nanostructures (fullerenes, carbon nanotubes, graphene). For electronics or sensors, it is important to provide a very good contact to the functional structures. Gold is the best choice taking into account its inertness, i. e. oxidation resistance. From this point of view the investigation of the growth of carbon materials on gold is important. The carbon-gold interaction plays an important role in different fields of electronics such as atomic force microscope lithography, bioelectronics or semiconductor industry. Research in this field is developing rapidly e. g. the modification of interface structure and contact resistance between a CNT and gold electrode was recently modified by Joule melting and amorphous C-Au nanocomposite thin films were deposited by dc magnetron co-sputtering. Herein we report on the preparation and characterization of the carbon nanocomposites which were synthesized on gold substrate from methane precursor using low pressure thermal chemical vapor deposition technique and two different plasma-enhanced chemical vapor deposition (PECVD) methods. The former one PECVD proceeded in microwave reactor at low pressure and the latter one was carried out using non-thermal atmospheric pressure plasma jet (ntAPPJ). Presented approach is based on the deposition of carbon material on gold instead of the deposition of gold on carbon material which is more common. Surprisingly, we didnt find similar studies dealing with the synthesis of carbon nanocomposites using direct deposition from hydrocarbon precursor on the gold thin _lm. The surface morphology was studied by high resolution scanning electron microscopy (HRSEM). Depth-structure profile including the film thickness was observed using the focused ion beam ablation. Energy-dispersive X-ray spectroscopy (EDX), infrared reflection absorption spectroscopy (IRRAS) and laser desorption-ionization time of flight mass spectrometry (LDI-TOF MS) were used to study the chemical properties. Gold and carbon related clusters were observed by means of mass spectrometric study.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Semiconductor Nanostructures - Growth"

1

Shelnutt, John A., Zhongchun Wang, and Craig J. Medforth. Growth of metal and semiconductor nanostructures using localized photocatalysts. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/919279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haddad, Raid Edward, C. Jeffrey Brinker, John Allen Shelnutt, Yi Yang, H. Eric Nuttall, Richard K. Watt, Anup K. Singl, et al. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/918305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Gil Han, and Jin-Joo Song. BMDO-AASERT: Group III Nitride Semiconductor Nanostructure Research MOCVD Growth and Novel Characterizations of High Temperature, High Carrier Density and Microcrack Lasing Effects. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada397734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography