Academic literature on the topic 'Semiconductor Nanostructures - Growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductor Nanostructures - Growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semiconductor Nanostructures - Growth"
Aseev, Aleksander Leonidovich, Alexander Vasilevich Latyshev, and Anatoliy Vasilevich Dvurechenskii. "Semiconductor Nanostructures for Modern Electronics." Solid State Phenomena 310 (September 2020): 65–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.65.
Full textWitt, Elena, Jürgen Parisi, and Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles." Zeitschrift für Naturforschung A 68, no. 5 (May 1, 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.
Full textGnawali, Guna Nidha, Shankar P. Shrestha, Khem N. Poudyal, Indra B. Karki, and Ishwar Koirala. "Study on the effect of growth-time and seed-layers of Zinc Oxide nanostructured thin film prepared by the hydrothermal method for liquefied petroleum gas sensor application." BIBECHANA 16 (November 22, 2018): 145–53. http://dx.doi.org/10.3126/bibechana.v16i0.21557.
Full textZhang, Li-De, and Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials." Journal of Nanoscience and Nanotechnology 8, no. 1 (January 1, 2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.
Full textLópez-López, Máximo, Esteban Cruz-Hernández, Isaac Martínez-Velis, Juan Salvador Rojas-Ramírez, Manolo Ramirez-Lopez, and Álvaro Orlando Pulzara-Mora. "Self Assembly of semiconductor nanostructures." Respuestas 12, no. 2 (May 16, 2016): 47–51. http://dx.doi.org/10.22463/0122820x.570.
Full textTan, Che, Chu Qin, and Bryce Sadtler. "Light-directed growth of metal and semiconductor nanostructures." Journal of Materials Chemistry C 5, no. 23 (2017): 5628–42. http://dx.doi.org/10.1039/c7tc00379j.
Full textWen, Zhuoqun, Yiping Wang, Zhizhong Chen, and Jian Shi. "Chemical Vapor Growth of Silicon Phosphide Nanostructures." MRS Advances 5, no. 31-32 (November 25, 2019): 1653–60. http://dx.doi.org/10.1557/adv.2019.437.
Full textGyanwali, Gunanidhi. "Studying the Effect of Seed-layers of Zinc Oxide Nanostructured Thin Film for Liquefied Petroleum Gas Sensor Application." Molung Educational Frontier 10 (December 31, 2020): 41–49. http://dx.doi.org/10.3126/mef.v10i0.34056.
Full textKohno, H., T. Iwasaki, and S. Takeda. "Metal-mediated growth of alternate semiconductor–insulator nanostructures." Solid State Communications 116, no. 11 (October 2000): 591–94. http://dx.doi.org/10.1016/s0038-1098(00)00389-6.
Full textSuwito, Galih R., Vladimir G. Dubrovskii, Zixiao Zhang, Weizhen Wang, Sofiane Haffouz, Dan Dalacu, Philip J. Poole, Peter Grutter, and Nathaniel J. Quitoriano. "Tuning the Liquid–Vapour Interface of VLS Epitaxy for Creating Novel Semiconductor Nanostructures." Nanomaterials 13, no. 5 (February 27, 2023): 894. http://dx.doi.org/10.3390/nano13050894.
Full textDissertations / Theses on the topic "Semiconductor Nanostructures - Growth"
Fu, Kai. "Growth Dynamics of Semiconductor Nanostructures by MOCVD." Doctoral thesis, KTH, Teoretisk kemi (stängd 20110512), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11447.
Full textQC 20100713
Grant, Victoria Anne. "Growth and characterisation of III-V semiconductor nanostructures." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490983.
Full textCai, Xingmin. "Growth, doping and nanostructures of gallium nitride." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35806394.
Full textCai, Xingmin, and 蔡興民. "Growth, doping and nanostructures of gallium nitride." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35806394.
Full textBernardi, Alessandro. "Growth and optical characterization of strain-engineered semiconductor nanostructures." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/383763.
Full textIn this work we explored different pathways to exploit the strain stored into nanoscale layers of materials as a driving force to self-assemble 3D structures. In particular, we have studied the epitaxial growth of self-assembled Ge quantum dots when a submonolayer of carbon is deposited prior to the growth of the dots. Using atomic-force microscopy combined with RHEED and optical techniques like Raman scattering and ellipsometry, we performed a systematic study of the role played by thermally activated Si interdiffusion and the composition of the wetting layer on dot density and morphology. The results give experimental evidence of a kinetically limited growth mechanism in which Ge adatom mobility is determined by chemical interactions among C, Si, and Ge. We suggest a two-stage growth procedure for fine-tuning the dot topography (density, shape and size), useful for possible optoelectronic applications. Moreover we investigated the dynamics of strain relaxation during the capping of islands, which is useful for engineering devices based on multistacks of quantum dots. We also analysed the evolution of Ge nanostructures grown by combining nanostenciling and pulsed laser deposition, as a promising approach for the parallel patterning of semiconductor nanostructures for optoelectronics. Apart from the growth of 3D islands, we applied strain-driven engineering to release rolled-up microtubes, obtained from strained semiconductor heterostructures. Through micro-Raman spectroscopy we were able to determine the residual strain, which results in a frequency shift of phonon modes measured on the tube as compared with reference unstrained material. We developed a simple elastic model to describe the measured phonon-frequency shifts, from which we estimate the strain status of the microtube. Results demonstrate the power of Raman spectroscopy as a diagnostic tool for engineering of strain-driven self-positioning microelectromechanical systems. We tested the potential application of this rolled-up nanotechnology to obtain a lab-in-a-tube device where light is used as a biochemical sensor. We fabricated rolled up microtubes consisting of Si/SiOx integrated on a Si chip and we analysed their properties to use them as a refractometric sensor. An aqueous sugar solution was inserted into the microtube, which leads to a change in refractive index and, as a result, to a detectable spectral shift of the whispering gallery modes. This prototype proved that the monolithic on-chip integration of strain-engineered microtubes is a promising approach to design optofluidic channels for lab-on-a-chip applications.
Jiang, Feng. "Ligand Controlled Growth of Aqueous II-VI Semiconductor Nanoparticles and Their Self-Assembly." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311311.
Full textKent, Thomas Frederick. "III-Nitride Nanostructures for Optoelectronic and Magnetic Functionalities: Growth, Characterization and Engineering." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1408564155.
Full textYang, Li Li. "Synthesis and Characterization of ZnO Nanostructures." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60815.
Full textEndimensionella nanostrukturer av ZnO har stora potentiella tillämpningar för optoelektroniska komponenter och sensorer. Huvudresultaten för denna avhandling är inte bara att vi framgångsrikt har realiserat med en kontrollerbar metod ZnO nanotrådar (ZNRs), ZnO nanotuber (ZNTs) och ZnMgO/ZnO heterostrukturer, utan vi har också undersökt deras struktur och optiska egenskaper i detalj. För ZNRs har diametern blivit välkontrollerad från 150 nm ner till 40 nm. Den storlekskontrollerande mekanismen är i huvudsak relaterad till tätheten av ZnO partiklarna som är fördeponerade på substratet. De optiska mätningarna ger upplysning om att ytrekombinationsprocessen spelar en betydande roll för tillväxten av ZNR. En värmebehandling i efterhand vid 500 grader Celsius eller användande av en förseglad glasbägare under tillväxtprocessen kan starkt hålla nere kanalerna för ytrekombinationen.För ZNT, dokumenterar vi inte bara samexistensen av rumsliga indirekta och direkta övergångar på grund av bandböjning, men vi konstaterar också att vi har mindre icke-strålande bidrag till den optiska emissionsprocessen i ZNT. För ZnMgO/ZnO heterostrukturer konstaterar vi med hjälp av analys av Mg diffusionen i den växta och den i efterhand uppvärmda Zn(0.94)Mg(0.06)O filmen, att en tillväxt vid 700 grader Celsius är den mest lämpliga för att växa ZnMgO/ZnO heterostrukturer eller kvantbrunnar. Denna avhandling ger en teoretisk och experimentell grund för bättre förståelse av grundläggande fysik och för tillämpningar av lågdimensionella strukturer.
SSF, VR
Al, Zoubi Tariq [Verfasser]. "Molecular Beam Epitaxial Growth of III-V Semiconductor Nanostructures on Silicon Substrates / Tariq Al Zoubi." Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/1043814876/34.
Full textBorisova, Svetlana [Verfasser]. "Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE / Svetlana Borisova." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1024800687/34.
Full textBooks on the topic "Semiconductor Nanostructures - Growth"
M, Salemink H. W., Pashley M. D, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on the Physical Properties of Semiconductor Interfaces at the Subnanometer Scale (1992 : Riva del Garda, Italy), eds. Semiconductor interfaces at the sub-nanometer scale. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textEuropean Materials Research Society. Meeting. Thin films epitaxial growth and nanostructures: Proceedings of the EMRS Spring Conference, Strasbourg, France, June 16-19, 1998. Amsterdam: Elsevier, 1998.
Find full textMcGlynn, E., M. O. Henry, and J. P. Mosnier. ZnO wide-bandgap semiconductor nanostructures: Growth, characterization and applications. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.14.
Full textLatyshev, Alexander V., Anatoliy V. Dvurechenskii, and Alexander L. Aseev. Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications. Elsevier, 2016.
Find full textH.W.M Salemink (Editor) and M. D. Pashley (Editor), eds. Semiconductor Interfaces at the Sub-Nanometer Scale (NATO Science Series E: (closed)). Springer, 1993.
Find full text(Editor), E. Kasper, K. L. Wang (Editor), and H. Hasegawa (Editor), eds. Thin Films Epitaxial Growth and Nanostructures (European Materials Research Society Symposia Proceedings). Elsevier, 1999.
Find full textVvedensky, Dimitri D. Quantum dots: Self-organized and self-limiting assembly. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.6.
Full textAhmad, Muhammad, Ravinder Dahiya, Dhayalan Shakthivel, Mohammad R. Alenezi, and S. Ravi P. Silva. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge University Press, 2019.
Find full textAhmad, Muhammad, Ravinder Dahiya, Dhayalan Shakthivel, Mohammad R. Alenezi, and S. Ravi P. Silva. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. Cambridge University Press, 2019.
Find full textConsonni, Vincent, and Guy Feuillet. Wide Band Gap Semiconductor Nanowires 1: Low-Dimensionality Effects and Growth. Wiley & Sons, Incorporated, John, 2014.
Find full textBook chapters on the topic "Semiconductor Nanostructures - Growth"
Shchukin, Vitaly, Eckehard Schöll, and Peter Kratzer. "Thermodynamics and Kinetics of Quantum Dot Growth." In Semiconductor Nanostructures, 1–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_1.
Full textPristovsek, Markus, and Wolfgang Richter. "In-Situ Monitoring for Nano-Structure Growth in MOVPE." In Semiconductor Nanostructures, 67–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_3.
Full textPohl, Udo W., and André Strittmatter. "Control of Self-Organized In(Ga)As/GaAs Quantum Dot Growth." In Semiconductor Nanostructures, 41–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_2.
Full textZhang, Zhang, and Stephan Senz. "One-Dimensional Semiconductor Nanostructure Growth with Templates." In One-Dimensional Nanostructures, 1–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch1.
Full textMadhukar, A., P. Chen, Q. Xie, A. Konkar, T. R. Ramachandran, N. P. Kobayashi, and R. Viswanathan. "Semiconductor Nanostructures: Nature’s Way." In Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 19–33. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_3.
Full textChoi, Heon-Jin. "Vapor–Liquid–Solid Growth of Semiconductor Nanowires." In Semiconductor Nanostructures for Optoelectronic Devices, 1–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_1.
Full textKorgel, Brian A. "Supercritical Fluid-Liquid-Solid (SFLS) Growth of Semiconductor Nanowires." In One-Dimensional Nanostructures, 41–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch3.
Full textCheng, Chuanwei, and Hong Jin Fan. "Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications." In Semiconductor Nanostructures for Optoelectronic Devices, 137–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22480-5_5.
Full textHöfling, C., C. Schneider, and A. Forchel. "6.9 Examples of III-V layers and nanostructures with diluted semiconductor materials." In Growth and Structuring, 182–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_35.
Full textRosei, F., N. Motta, A. Sgarlata, and A. Balzarotti. "Growth and Characterization of Ge Nanostructures on Si(111)." In Nanoscale Spectroscopy and Its Applications to Semiconductor Research, 252–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45850-6_22.
Full textConference papers on the topic "Semiconductor Nanostructures - Growth"
Dvoretskiy, Sergey Alekseevich. "MBE growth of HgCdTe hetero- and nanostructures." In Brazilian Workshop on Semiconductor Physics. Maresias - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/bwsp-2017-79320.
Full textHwang, David J., Sang-Gil Ryu, Eunpa Kim, Jae-Hyuck Yoo, Bin Xiang, Oscar Dubon, Andrew M. Minor, and Costas P. Grigoropoulos. "Laser-assisted nanoprocessing and growth of semiconductor nanostructures." In SPIE Defense, Security, and Sensing. SPIE, 2011. http://dx.doi.org/10.1117/12.882809.
Full textGwo, Shangjr. "Metal-oxide-semiconductor plasmonic nanorod lasers (Conference Presentation)." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2017. http://dx.doi.org/10.1117/12.2257098.
Full textMathur, Sanjay, Hao Shen, Sven Barth, and Nicole Donia. "One-dimensional semiconductor nanostructures: growth, characterization and device applications." In SPIE Optics + Photonics, edited by Lionel Vayssieres. SPIE, 2006. http://dx.doi.org/10.1117/12.678325.
Full textHeyn, Christian, Michael Zocher, Achim Küster, and Wolfgang Hansen. "Droplet etching during semiconductor epitaxy for single and coupled quantum structures." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2018. http://dx.doi.org/10.1117/12.2295829.
Full textGrillot, Frédéric, Dejan Arsenijevic, Dieter H. Bimberg, and Heming Huang. "Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2018. http://dx.doi.org/10.1117/12.2299678.
Full textAzlinda, A., Z. Khusaimi, and M. Rusop. "Controlled growth of ZnO nanostructures prepared by catalytic-immersion method." In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417126.
Full textNötzel, Richard, Manfred Ramsteiner, Lutz Däweritz, and K. H. Ploog. "Formation and electronic properties of sidewall quantum wires on patterned GaAs (311)A substrates." In Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.csub.2.
Full textRoca, Lidice Vaillant, Yerila Rodriguez Martinez, Jesus Antonio Alba Cabanas, and Osmel Cruzata Montero. "New Design Concepts for Inorganic Solar Cells: From Thin Films to Functional Nanostructures: Using a pulsed laser for in-situ growth of semiconductor core-shell nanostructures." In 2017 Photonics North (PN). IEEE, 2017. http://dx.doi.org/10.1109/pn.2017.8090573.
Full textSperka, Jirí, Lenka Zajícková, Ondrej Jasek, Annapurna Pamreddy, Josef Havel, Jan Schäfer, and Rüdiger Foest. "Growth of Carbon Materials on Gold Substrate by Plasma Enhanced CVD." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.395-398.
Full textReports on the topic "Semiconductor Nanostructures - Growth"
Shelnutt, John A., Zhongchun Wang, and Craig J. Medforth. Growth of metal and semiconductor nanostructures using localized photocatalysts. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/919279.
Full textHaddad, Raid Edward, C. Jeffrey Brinker, John Allen Shelnutt, Yi Yang, H. Eric Nuttall, Richard K. Watt, Anup K. Singl, et al. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/918305.
Full textPark, Gil Han, and Jin-Joo Song. BMDO-AASERT: Group III Nitride Semiconductor Nanostructure Research MOCVD Growth and Novel Characterizations of High Temperature, High Carrier Density and Microcrack Lasing Effects. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada397734.
Full text