Academic literature on the topic 'Semiconductor Nanoparticles/Quantum Dots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductor Nanoparticles/Quantum Dots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semiconductor Nanoparticles/Quantum Dots"
Himadri, D., D. Pranayee, and S. Kandarpa Kumar. "Synthesis of PbS Nanoparticles and Its Potential as a Biosensor based on Memristic Properties." Volume 4,Issue 5,2018 4, no. 5 (September 14, 2018): 500–502. http://dx.doi.org/10.30799/jnst.147.18040510.
Full textBarachevsky, V. A. "Photochromic quantum dots." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.
Full textYuan, Dekai, Ping Wang, Liju Yang, Jesse L. Quimby, and Ya-Ping Sun. "Carbon “quantum” dots for bioapplications." Experimental Biology and Medicine 247, no. 4 (December 3, 2021): 300–309. http://dx.doi.org/10.1177/15353702211057513.
Full textLin, Cheng-An J., Tim Liedl, Ralph A. Sperling, María T. Fernández-Argüelles, Jose M. Costa-Fernández, Rosario Pereiro, Alfredo Sanz-Medel, Walter H. Chang, and Wolfgang J. Parak. "Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots)." J. Mater. Chem. 17, no. 14 (2007): 1343–46. http://dx.doi.org/10.1039/b618902d.
Full textBertino, M. F., R. R. Gadipalli, J. G. Story, C. G. Williams, G. Zhang, C. Sotiriou-Leventis, A. T. Tokuhiro, S. Guha, and N. Leventis. "Laser writing of semiconductor nanoparticles and quantum dots." Applied Physics Letters 85, no. 24 (December 13, 2004): 6007–9. http://dx.doi.org/10.1063/1.1836000.
Full textDoskaliuk, Natalia, Yuliana Lukan, and Yuriy Khalavka. "Quantum dots for temperature sensing." Scientiae Radices 2, no. 1 (March 23, 2023): 69–87. http://dx.doi.org/10.58332/scirad2023v2i1a04.
Full textDoskaliuk, Natalia, Yuliana Lukan, and Yuriy Khalavka. "Quantum dots for temperature sensing." Scientiae Radices 2, no. 2 (April 19, 2023): 93–111. http://dx.doi.org/10.58332/scirad2023v2i2a01.
Full textMAHMOOD, Iram, Ishfaq AHMAD, Ishaq AHMAD, and Ting-kai ZHAO. "Photodegradation of Melamine Using Magnetic Silicon Quantum Dots." Materials Science 27, no. 2 (May 5, 2021): 127–32. http://dx.doi.org/10.5755/j02.ms.22688.
Full textКосарев, А. Н., В. В. Чалдышев, А. А. Кондиков, Т. А. Вартанян, Н. А. Торопов, И. А. Гладских, П. В. Гладских, et al. "Эпитаксиальные квантовые точки InGaAs в матрице Al-=SUB=-0.29-=/SUB=-Ga-=SUB=-0.71-=/SUB=-As: интенсивность и кинетика люминесценции в ближнем поле серебряных наночастиц." Журнал технической физики 126, no. 5 (2019): 573. http://dx.doi.org/10.21883/os.2019.05.47655.382-18.
Full textJooken, Stijn, Yovan de Coene, Olivier Deschaume, Dániel Zámbó, Tangi Aubert, Zeger Hens, Dirk Dorfs, et al. "Enhanced electric field sensitivity of quantum dot/rod two-photon fluorescence and its relevance for cell transmembrane voltage imaging." Nanophotonics 10, no. 9 (May 21, 2021): 2407–20. http://dx.doi.org/10.1515/nanoph-2021-0077.
Full textDissertations / Theses on the topic "Semiconductor Nanoparticles/Quantum Dots"
Poppe, Jan. "Spectroelectrochemical Investigations of Semiconductor Nanoparticles." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162122.
Full textMatas, Adams Alba Maria. "Semiconductor Nanoparticles as Platform for Bio-Applications and Energy Related Systems." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334391.
Full textEsta tesis esta dedicada a la sintesis, caracterizacion y aplicaciones de diferentes nanomateriales que presentan la propiedad de ser semiconductores. Esta dividida en tres bloques, en los cuales, en el primer de ellos se habla sobre quantum dots (QDs), que son nanoparticulas fluorescentes cuya longitud de onda de emision varia con el tamaño. Dichos materiales se estan usando ultimamente como sustitutos de los colorantes organicos ya que presentan ventajas, la principal es que no pierden su emision con el tiempo. Estos QDs han sido usados para estudiar su interaccion con el oro (que aumenta su intensidad de fluorescencia), han sido encapsulados usando polimeros para usarlos como controles en citometria de flujo y por silica para usarlos (una vez unidos a un peptido y un colorante organico adecuado) como detectores de fibrosis quistica. Finalmente tambien han sido usados en esta tesis para intentar seguir el movimiento de un receptor en plaquetas. En el segundo bloque de la tesis se habla de up conversion nanoparticles, cuya diferencia frente a los QDs es que se excitan a mayor longitud de onda a la que emiten, por lo que son capaces de absorber en el infrarojo y emitir en el visible, haciendolos ideales para aplicaciones en biologia. En esta tesis se usaron para reconocer un receptor en neutrofilos y para introducirlo dentro de hidrotalcitas (material que no es reconocido por el cuerpo como extraño) para asi poder liberarlo en el organismo. Finalmente, en el tercer bloque se han sintetizado materiales para catalisis (sulfuro de bismuto) y para celdas solares (oxido de titanio).
This thesis is dedicated to the synthesis, characterization and application of different nanomaterials that are semiconductors. It is divided in three blocks, in the first one we talk about quantum dots (QDs), that are fluorescent nanoparticles whose wavelength of emission changes with size. Such materials are being used as substitutes of organic dyes, due to the many advantages they present, the main one is that the fluorescence is not lost with time. These QDs have been used to study their interaction with gold ( that increases the fluorescence intensity), they have been encapsulated with polimers to be used as controls in flow cytometry or by silica to use them as sensors for cystic fibrosis (once they have been attatched to the right polymer and dye). Finally, in this thesis, they have been also used to track the movement of a platelet receptor. In the second block we talk about up conversion nanoparticles, which only difference regarding QDs is that they are excited using a longer wavelength than the emission, so they are able to absorb in the infrared and emit in the visible range of light, making them ideal for biological applications. We have use this materials to recognice an specific receptor in neutrophils as well as to be surrounded by hydrotalcite (body friendly material) so it can be released in the organism. Finally, in the third block we have syntesized materials for catalysis (bismuth sulfide) and for solar cells (titanium oxide for perovskite solar cells).
Dooley, Chad Johnathan. "New Nanomaterials for Photovoltaic Applications: A Study on the Chemistry and Photophysics of II-VI Semiconductor Nanostructures." Thesis, Boston College, 2009. http://hdl.handle.net/2345/705.
Full textThis dissertation examines the chemistry and photophysics of semiconductor quantum dots with the intent of studying their capabilities and limitations as they pertain to photovoltaic technologies. Specifically, experiments are presented detailing the first time-resolved measurements of electron transfer in electronically coupled quantum rods. Electron transfer from the conduction band of CdTe was measured to occur on the 400 fs timescale (kET = 2.5 x 1012 s-1), more than 500x faster than previously believed. Additionally, the direct optical promotion of an electron from the valence band of CdTe was observed, occurring on the timescale of the pump pulse (~50 fs). Based on the determined injection rates, a carrier separation efficiency of > 90% has been calculated suggesting these materials are sufficient for use in solar energy capture applications where efficient carrier separation is critical. To this end, model photovoltaic cells were fabricated, and their power conversion efficiency and photon-to-current generation efficiency characterized. In devices based of CdSe and heteromaterial quantum rods we observed fill-factors on the order of 10-20% though with power conversion efficiencies of < 0.02%. It was discovered that using a high temperature annealing step, while critical to get electrochemically stable photoelectrodes, was detrimental to quantum confinement effects and likely removed any hQR specific capabilities. Additionally, a detailed study on the role of nucleotide triphosphate chemistry in stabilizing emissive CdS nanoparticles is presented. Specifically it was observed that in a neutral pH environment, GTP selectively stabilizes CdS quantum dots with diameters of ~4 nm while the other naturally occurring ribonucleotides do not yield emissive product. The selectivity is dependent on the presence of the nucleophilic N-7 electrons near a triphosphate pocket for Cd2+ complexation as well as an exocyclic amine to stabilize the resulting product particles. However, in an elevated pH environment, the nucleobase specificity is relaxed and all NTPs yield photo-emissive quantum dots with PLQEs as high as 10%
Thesis (PhD) — Boston College, 2009
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Hellström, Staffan. "Exciton-plasmon interactions in metal-semiconductor nanostructures." Doctoral thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93306.
Full textQC 20120417
Jiang, Feng. "Ligand Controlled Growth of Aqueous II-VI Semiconductor Nanoparticles and Their Self-Assembly." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311311.
Full textRazgoniaeva, Natalia Razgoniaeva. "Photochemical energy conversion in metal-semiconductor hybrid nanocrystals." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.
Full textFairclough, Simon Michael. "Carrier dynamics within semiconductor nanocrystals." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:857f624d-d93d-498d-910b-73cce12c4e0b.
Full textSchill, Alexander Wilhem. "Interesting Electronic and Dynamic Properties of Quantum Dot Quantum Wells and other Semiconductor Nanocrystal Heterostructures." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11514.
Full textKairdolf, Brad A. "Development of polymer-coated nanoparticle imaging agents for diagnostic applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31845.
Full textCommittee Chair: Nie, Shuming; Committee Member: Bao, Gang; Committee Member: Murthy, Niren; Committee Member: Varma, Vijay; Committee Member: Wang, Zhong Lin. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Zedan, Abdallah. "GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED MATERIALS." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/457.
Full textBooks on the topic "Semiconductor Nanoparticles/Quantum Dots"
Masumoto, Yasuaki, and Toshihide Takagahara, eds. Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9.
Full textW, Koch S., ed. Semiconductor quantum dots. Singapore: World Scientific, 1993.
Find full textRogach, Andrey L., ed. Semiconductor Nanocrystal Quantum Dots. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-75237-1.
Full textMichler, Peter, ed. Single Semiconductor Quantum Dots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87446-1.
Full textCredi, Alberto, ed. Photoactive Semiconductor Nanocrystal Quantum Dots. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51192-4.
Full textOptical properties of semiconductor quantum dots. Berlin: Springer, 1997.
Find full textW, Wise Frank, ed. Selected papers on semiconductor quantum dots. Bellingham, Wash: SPIE Press, 2005.
Find full textI, Klimov Victor, ed. Nanocrystal quantum dots. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textKlimov, Victor I. Nanocrystal quantum dots. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full text1948-, Masumoto Y., and Takagahara T. 1950-, eds. Semiconductor quantum dots: Physics, spectroscopy, and applications. Berlin: Springer, 2002.
Find full textBook chapters on the topic "Semiconductor Nanoparticles/Quantum Dots"
Freeman, Ronit, Jian-Ping Xu, and Itamar Willner. "Semiconductor Quantum Dots for Analytical and Bioanalytical Applications." In Nanoparticles, 455–511. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch6.
Full textEscudero, Alberto, Carolina Carrillo-Carrión, Mikhail V. Zyuzin, and Wolfgang J. Parak. "Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications." In Photoactive Semiconductor Nanocrystal Quantum Dots, 107–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51192-4_5.
Full textAbdullah, M., Farah T. Mohammed Noori, and Amin H. Al-Khursan. "Second-Order Nonlinear Susceptibility in Quantum Dot Structures." In Semiconductor Nanocrystals and Metal Nanoparticles, 307–41. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-10.
Full textEven, Jacky, Cheng Wang, and Frédéric Grillot. "From Basic Physical Properties of InAs/InP Quantum Dots to State-of-the-Art Lasers for 1.55 µm Optical Communications." In Semiconductor Nanocrystals and Metal Nanoparticles, 95–125. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-4.
Full textGolan, Y., L. Margulis, B. Alperson, I. Rubinstein, G. Hodes, and J. L. Hutchison. "The Role of Semiconductor/Substrate Mismatch in the Formation of Electrodeposited Quantum Dots." In Nanoparticles in Solids and Solutions, 167–74. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8771-6_9.
Full textTorres-Torres, Carlos, and Geselle García-Beltrán. "Study on Second- and Third-Order Nonlinear Optical Properties in Semiconductor Nanoparticles and Quantum Dots." In Optical Nonlinearities in Nanostructured Systems, 109–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10824-2_5.
Full textBailes, Julian, and Mikhail Soloviev. "The Application of Semiconductor Quantum Dots for Enhancing Peptide Desorption, Improving Peak Resolution and Sensitivity of Detection in Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry." In Nanoparticles in Biology and Medicine, 211–17. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-953-2_16.
Full textParak, Wolfgang Johann, Liberato Manna, Friedrich C. Simmel, Daniele Gerion, and Paul Alivisatos. "Quantum Dots." In Nanoparticles, 3–47. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631544.ch2.
Full textOwschimikow, N., B. Herzog, B. Lingnau, K. Lüdge, A. Lenz, H. Eisele, M. Dähne, et al. "Submonolayer Quantum Dots." In Semiconductor Nanophotonics, 13–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35656-9_2.
Full textAl-Douri, Yarub. "Semiconductor Quantum Dots." In Nanomaterials, 149–68. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3881-8_8.
Full textConference papers on the topic "Semiconductor Nanoparticles/Quantum Dots"
Ozel, Tuncay, Sedat Nizamoglu, Mustafa A. Sefunc, Olga Samarskaya, Ilkem O. Ozel, Evren Mutlugun, Vladimir Lesnyak, et al. "Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles." In 2010 23rd Annual Meeting of the IEEE Photonics Society (Formerly LEOS Annual Meeting). IEEE, 2010. http://dx.doi.org/10.1109/photonics.2010.5698799.
Full textKudo, Tetsuhiro, Shang-Jan Yang, and Hiroshi Masuhara. "Dynamically swarming gold nanoparticles formed by laser trapping at glass/solution interface." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.18a_211b_3.
Full textWang, L., D. Ankuciwiez, J. Y. Chen, and R. K. Jain. "Enhancement of Two-Photon Absorption-Induced Florescence in Semiconductor Quantum Dots by Gold Nanoparticles." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/nlo.2009.nme4.
Full textPark, Inkyu, Seung H. Ko, Heng Pan, Albert P. Pisano, and Costas P. Grigoropoulos. "Micro/Nanoscale Structure Fabrication by Direct Nanoimprinting of Metallic and Semiconducting Nanoparticles." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43878.
Full textAgrawal, Amit, Xiaohu Gao, Nitin Nitin, Gang Bao, and Shuming Nie. "Quantum Dots and FRET-Nanobeads for Probing Genes, Proteins, and Drug Targets in Single Cells." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43598.
Full textToropov, Nikita A., Aisylu N. Kamalieva, Kristina M. Rizvanova, Roman O. Volkov, Maxim G. Gushchin, and Tigran A. Vartanyan. "Resonant and non-resonant interaction of semiconductor quantum dots with plasmons localized in silver and zinc nanoparticles." In Nonlinear Optics and Applications, edited by Mario Bertolotti and Alexei M. Zheltikov. SPIE, 2019. http://dx.doi.org/10.1117/12.2520650.
Full textNguyen, Ha Trang, Sung Jin Kim, and Ju-Hyung Yun. "Engineering of multi-photoluminescence properties for hybrid structure of metal nanoparticles/semiconductor quantum dots for bio-imaging applications." In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIX, edited by Dror Fixler, Sebastian Wachsmann-Hogiu, and Ewa M. Goldys. SPIE, 2022. http://dx.doi.org/10.1117/12.2608170.
Full textKulah, Jonathan, and Ahmet Aykaç. "Synthesis and Characterization of Silver Quantum Dots from Moringa Oleifera Leaves & Seeds Extracts." In 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.049.
Full textKandlakunta, Sahithi, and Mahesh Panchagnula. "Laser Induced Fluorometry and Velocimetry." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14980.
Full textStella, A., M. Nisoli, S. De Silvestri, O. Svelto, G. Lanzani, P. Cheyssac, and R. Kofman. "Confinement Effects on the Electron Thermalization Process in Tin Nanocrystals." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.48.
Full textReports on the topic "Semiconductor Nanoparticles/Quantum Dots"
Steel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413562.
Full textNielsen, Erik, Xujiao Gao, Irina Kalashnikova, Richard Partain Muller, Andrew Gerhard Salinger, and Ralph Watson Young. QCAD simulation and optimization of semiconductor double quantum dots. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1204068.
Full textRicken, James Bryce, Lynette Rios, Jens Fredrich Poschet, Marlene Bachand, George David Bachand, Adrienne Celeste Greene, and Amanda Carroll-Portillo. Toxicological studies of semiconductor quantum dots on immune cells. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/945919.
Full textCundiff, Steven T. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1250541.
Full textScholtes, Kevin T., Christopher B. Jacobs, Eric S. Muckley, Patrick M. Caveney, and Ilia N. Ivanov. Scalable processing of ZnS nanoparticles for high photoluminescence efficiency quantum dots. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1482456.
Full textBandyopadhyay, Supriyo, Hadis Morkoc, Alison Baski, and Shiv Khanna. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada483818.
Full textNarayanamurti, Venkatesh. Ballistic Electron Emission Spectroscopy Study of Transport through Semiconductor Quantum Wells and Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada329782.
Full textCundiff, Steven. Final Report for Optical Two-Dimensional Spectroscopy of Semiconductor Quantum Wells and Quantum Dots. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1577852.
Full textPaiella, Roberto, and Theodore D. Moustakas. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1373285.
Full textSteel, Duncan G. Time Resolved Nano-Optical Spectroscopy of Coherently Excited Semiconductor Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada386872.
Full text