Academic literature on the topic 'Semiconductor magnetooptics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductor magnetooptics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semiconductor magnetooptics"
Belyanin, A. A., V. V. Kocharovsky, and Vl V. Kocharovsky. "Superradiance phenomenon in semiconductor magnetooptics." Solid State Communications 80, no. 3 (October 1991): 243–46. http://dx.doi.org/10.1016/0038-1098(91)90190-7.
Full textAdachi, Nobuyasu, Masahiro Inoue, Iwao Mogi, and Giyuu Kido. "High Field Magnetooptics of a Diluted Magnetic Semiconductor Cd1-xCoxSe." Journal of the Physical Society of Japan 64, no. 4 (April 15, 1995): 1378–84. http://dx.doi.org/10.1143/jpsj.64.1378.
Full textZenkova, K. Yu, A. A. Zinchenko, and B. M. Nitsovich. "Nonlinear magnetooptical absorption in a semiconductor." Physics of the Solid State 43, no. 1 (January 2001): 17–18. http://dx.doi.org/10.1134/1.1340178.
Full textSavchuk, A. I., S. Yu Paranchych, I. D. Stolyarchuk, S. V. Medynskiy, V. I. Fediv, M. D. Andriychuk, Ye O. Kandyba, A. Perrone, and P. I. Nikitin. "Magnetooptical characterization of magnetic photorefractive semiconductors." Optical Materials 18, no. 1 (October 2001): 147–49. http://dx.doi.org/10.1016/s0925-3467(01)00153-7.
Full textBassani, F., G. C. La Rocca, and S. Rodriguez. "Inversion asymmetry and hole magnetooptics in zinc-blende semiconductors." Physical Review B 37, no. 12 (April 15, 1988): 6857–67. http://dx.doi.org/10.1103/physrevb.37.6857.
Full textSeisyan, R. P., G. M. Savchenko, and N. S. Averkiev. "Diamagnetic exciton polariton in the interband magnetooptics of semiconductors." Semiconductors 46, no. 7 (July 2012): 873–77. http://dx.doi.org/10.1134/s1063782612070184.
Full textGaj, Jan. "Magnetooptical Studies of Bulk Diluted Magnetic Semiconductors." Acta Physica Polonica A 80, no. 2 (August 1991): 171–78. http://dx.doi.org/10.12693/aphyspola.80.171.
Full textKratzer, Joseph H., and John Schroeder. "Magnetooptic properties of semiconductor quantum dots in glass composites." Journal of Non-Crystalline Solids 349 (December 2004): 299–308. http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.209.
Full textImamura, M., Jin-Yong Ahn, K. Takashima, and S. Inoue. "Magnetooptical properties of diluted magnetic semiconductor CdMnCoTe films." IEEE Transactions on Magnetics 38, no. 5 (September 2002): 3237–39. http://dx.doi.org/10.1109/tmag.2002.802515.
Full textAkinaga, H., M. Mizuguchi, T. Manago, E. Gan'shina, A. Granovsky, I. Rodin, A. Vinogradov, and A. Yurasov. "Enchanced magnetooptical response of magnetic nanoclusters embedded in semiconductor." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 470–72. http://dx.doi.org/10.1016/s0304-8853(01)01067-8.
Full textDissertations / Theses on the topic "Semiconductor magnetooptics"
Chang, Chin-chi. "Magneto-optical studies of semiconductor heterostructures." Thesis, University of Oxford, 1998. http://ora.ox.ac.uk/objects/uuid:f25fb6fb-18d9-4750-8ca2-191201c27fba.
Full textNasir, F. "Electrical and optical properties of (Hg,Cd)Te accumulation layers." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379839.
Full textVaughan, Thomas Alexander. "Magneto-optics of InAs/GaSb heterostructures." Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:52b3d4c8-04f2-4ee8-b5a5-382934807722.
Full textGodoy, Marcio Peron Franco de. "Propriedades de pontos quânticos de InP/GaAs." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277715.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-06T18:02:06Z (GMT). No. of bitstreams: 1 Godoy_MarcioPeronFrancode_D.pdf: 4057709 bytes, checksum: 0df1e56082150d4109dcf891f05d4da6 (MD5) Previous issue date: 2006
Resumo: Neste trabalho estudamos as propriedade estruturais e ópticas de pontos quânticos auto-organizados de InP crescidos sobre o substrato de GaAs. Esta estrutura apresenta o alinhamento de bandas tipo-II na interface, confinando o elétron no ponto quântico, enquanto o buraco mantém-se na barreira, próximo à interface devido à interação coulombiana atrativa. As amostras foram crescidas por epitaxia de feixe químico (CBE) no modo Stranskii-Krastanov. Os pontos quânticos apresentam raio médio de 25 nm e grande dispersão de altura (1-5 nm) e ocorre a relaxação parcial do parâmetro de rede, chegando a 2 %, em pontos quânticos superficiais. Do ponto de vista de propriedades ópticas, a fotoluminescência de pontos quânticos superficiais exibe uma eficiente emissão óptica, devido a baixa velocidade de recombinação dos estados superficiais do InP, e reflete a densidade e distribuição bimodal de tamanhos. Além disso, sua emissão óptica em função da intensidade de excitação exibe comportamento diverso em comparação com pontos quânticos cobertos com uma camada de GaAs. Em pontos quânticos cobertos, determinamos a energia de ativação térmica, que varia de 6 a 8 meV, e é associada à energia de ligação do éxciton ou energia de ionização do buraco. O decaimento temporal da luminescência de pontos quânticos é de 1,2 ns, um tempo relativamente curto para um ponto quântico tipo-II. A análise das propriedades magneto-ópticas em pontos quânticos individuais, inédita em QDs tipo-II, permitiu verificar que o fator-g do éxciton é praticamente constante, independentemente do tamanho dos QDs, devido ao fato dos buracos estarem levemente ligados. Por fim, mostramos a versatilidade do sistema acoplando-o a um poço quântico de InGaAs. Este acoplamento introduz mudanças na superposição das funções de onda do par elétron-buraco que permitem a manipulação do tempo de decaimento da luminescência e da energia de ligação excitônica
Abstract: We have investigated structural and optical properties of InP self-assembled quantum dots grown on GaAs substrate. This system presents a type-II band lineup where only electrons are confined in the InP quantum dots. The InP/GaAs quantum dots were grown by chemical beam epitaxy in the Stranskii-Krastanov mode. Our quantum dots present a mean radius of 25 nm and large height dispersion, 1-5 nm, and a partial relieve of the strain up to 2 % is observed. The photoluminescence spectra of surface quantum dots show an efficient optical emission, which is attributed to the low surface recombination velocity in InP. We observed a bimodal dispersion of the dots size distribution, giving rise to two distinct emission bands. A remarkable result is the relatively large blue shift of the emission band from uncapped samples as compared to those for capped dots. In capped quantum dots, we obtained the thermal activation energy, from 6 to 8 meV, which is associated to the exciton binding energy or hole ionization energy. The observed luminescence decay time is about 1.2 ns, relatively short decay time for type II system. We investigated magneto-optical properties using single-dot spectroscopy. The values of the exciton g factor obtained for a large number of single InP/GaAs dots are mainly constant independent of the emission energy and, therefore, of the quantum dot size. The result is attributed to the weak confinement of the holes in InP/GaAs QDs. We have also investigated structures where InP quantum dots are coupled to a InGaAs quantum well. This system permits the manipulation of the wave function overlap between electron-hole in order to control the optical emission decay time and exciton binding energy
Doutorado
Física
Doutor em Ciências
Karraï, Khaled. "Etude de propriétés magnéto-optiques des hétérostructures de semiconducteurs III-V par spectroscopie submillimétrique." Grenoble 1, 1987. http://www.theses.fr/1987GRE10127.
Full textBerroir, Jean-Marc. "Proprietes electroniques des superreseaux hgte-cdte." Paris 6, 1988. http://www.theses.fr/1988PA066074.
Full textJanda, Tomáš. "Dynamika spinové polarizace v polovodičích." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-305143.
Full textBooks on the topic "Semiconductor magnetooptics"
Krevet, Rasmus. FIR-laser magnetooptics on Cr-based diluted magnetic semiconductors. Göttingen: Cuvillier Verlag, 1994.
Find full textDonnerberg, Hansjörg. Atomic simulation of electrooptic and magnetooptic oxide materials. Berlin: Springer, 1999.
Find full textDonnerberg, Hansjorg. Atomic Simulation of Electr00Ptic and Magnetooptic Oxide Materials. Springer-Verlag Telos, 1998.
Find full textB, Carlin Donald, Connolly J. C, and Langley Research Center, eds. Linear laser diode arrays for improvement in optical disk recording. Hampton, Va: Langley Research Center, 1990.
Find full textB, Carlin Donald, Connolly J. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Linear laser diode arrays for improvement in optical disk recording for space stations. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textDevreese, J. T. Theoretical Aspects and New Developments in Magneto-Optics. Springer, 2013.
Find full text1929-, Landwehr G., and Rashba Ė I. 1927-, eds. Landau level spectroscopy. Amsterdam: North-Holland, 1991.
Find full textBook chapters on the topic "Semiconductor magnetooptics"
Pfeffer, P., and W. Zawadzki. "Interband Electron-Phonon Interaction in Magnetooptics of Hg1−xMnxTe." In High Magnetic Fields in Semiconductor Physics II, 522–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_80.
Full textCoquillat, D., J. P. Lascaray, A. Benhida, J. Deportes, A. K. Bhattacharjee, and R. Triboulet. "Magnetooptics at Γ and L Points of the Brillouin Zone and Magnetization Studies of Semimagnetic Semiconductors Cd1−xMnxTe and Zn1−xMnxTe with 0.01 < x < 0.73." In High Magnetic Fields in Semiconductor Physics II, 473–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_72.
Full textLascaray, J. P. "Magnetooptic Properties of Wide Gap II1-xMnxVI Semimagnetic Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors, 169–90. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_7.
Full textVoisin, P. "Optical and Magnetooptical Absorption in Quantum Wells and Superlattices." In Heterojunctions and Semiconductor Superlattices, 73–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71010-0_6.
Full textFrey, R., J. Frey, C. Meriaux, and C. Flytzanis. "Nonlinear Magnetooptics. The Photoinduced Faraday Rotation in Diluted Magnetic Semiconductors." In Guided Wave Nonlinear Optics, 75–86. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2536-9_6.
Full textKutrowski, M., T. Wojtowicz, S. Kret, G. Karczewski, J. Kossut, R. Fiederling, B. König, et al. "Magnetooptical Properties of Graded Quantum Well Structures Made of Diluted Magnetic Semiconductors." In Optical Properties of Semiconductor Nanostructures, 237–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_25.
Full textKossacki, P., D. Ferrand, A. Arnoult, J. Cibert, Y. Merle D’aubigné, A. Wasiela, S. Tatarenko, J. L. Staehli, and T. Dietl. "Magnetooptical Studies of Magnetic Ordering in Modulation Doped Quantum Well of Cd1-xMnxTe." In Optical Properties of Semiconductor Nanostructures, 225–35. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_24.
Full textRöthlein, P., G. Meyer, H. Pascher, and M. Tacke. "Coherent Anti-Stokes Raman Scattering and Magnetooptical Interband Transitions in Pb1−xEuxSe." In High Magnetic Fields in Semiconductor Physics II, 573–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_89.
Full textKriechbaum, M., G. Bauer, E. J. Fantner, P. Pichler, H. Clemens, K. E. Ambrosch, H. Pascher, and M. v. Ortenberg. "Intra- and Interband Magnetooptical Investigations of PbTe/Pb1−xSnxTe Superlattices." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 543–46. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_120.
Full textTimofeev, V. B. "MAGNETOOPTICS OF 2D-ELECTRONS IN REGIME OF QUANTUM HALL EFFECT." In Lattice Dynamics and Semiconductor Physics, 428–59. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814368346_0020.
Full textConference papers on the topic "Semiconductor magnetooptics"
Krevet, R. "Magnetooptics on chromium-based diluted magnetic semiconductors." In 17th International Conference on Infrared and Millimeter Waves. SPIE, 2017. http://dx.doi.org/10.1117/12.2298229.
Full textSavchuk, A., M. Gavaleshko, and A. Lyakbovich. "Magnetooptical effects induced by exchange interaction In diluted magnetic semiconductors." In 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642465.
Full textZenkova, C. Yu, V. M. Kramar, N. K. Kramar, and O. V. Derevyanchuk. "Magnetooptical bistability of layer semiconductors in the field of exciton absorption." In SPIE Proceedings, edited by Malgorzata Kujawinska and Oleg V. Angelsky. SPIE, 2008. http://dx.doi.org/10.1117/12.797009.
Full textTadić, M., and F. M. Peeters. "Exciton states and magnetooptical transitions in stacks of InGaAs/GaAs self-assembled quantum rings." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730158.
Full textKhoi Le, Van. "Electrical, Magnetic and Magnetooptical Properties of Bulk (Zn,Mn)Te Semimagnetic Semiconductor Doped with Phosphorus." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994126.
Full text