Journal articles on the topic 'Semiconducting Quantum Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Semiconducting Quantum Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Dao Hua. "Semiconducting Materials for Photonic Technology." Materials Science Forum 859 (May 2016): 96–103. http://dx.doi.org/10.4028/www.scientific.net/msf.859.96.
Full textCocchi, Caterina, and Holger-Dietrich Saßnick. "Ab Initio Quantum-Mechanical Predictions of Semiconducting Photocathode Materials." Micromachines 12, no. 9 (August 24, 2021): 1002. http://dx.doi.org/10.3390/mi12091002.
Full textBanerjee, Pritam, Chiranjit Roy, Juan Jesús Jiménez, Francisco Miguel Morales, and Somnath Bhattacharyya. "Atomically resolved 3D structural reconstruction of small quantum dots." Nanoscale 13, no. 16 (2021): 7550–57. http://dx.doi.org/10.1039/d1nr00466b.
Full textZentel, Rudolf. "Polymer Coated Semiconducting Nanoparticles for Hybrid Materials." Inorganics 8, no. 3 (March 11, 2020): 20. http://dx.doi.org/10.3390/inorganics8030020.
Full textMokkath, Junais Habeeb. "Dopant-induced localized light absorption in CsPbX3 (X = Cl, Br, I) perovskite quantum dots." New Journal of Chemistry 43, no. 46 (2019): 18268–76. http://dx.doi.org/10.1039/c9nj03784e.
Full textReichardt, Sven, and Ludger Wirtz. "Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials." Science Advances 6, no. 32 (August 2020): eabb5915. http://dx.doi.org/10.1126/sciadv.abb5915.
Full textLiang, Shuang, Ze Ma, Nan Wei, Huaping Liu, Sheng Wang, and Lian-Mao Peng. "Solid state carbon nanotube device for controllable trion electroluminescence emission." Nanoscale 8, no. 12 (2016): 6761–69. http://dx.doi.org/10.1039/c5nr07468a.
Full textBanks, Peter A., Jefferson Maul, Mark T. Mancini, Adam C. Whalley, Alessandro Erba, and Michael T. Ruggiero. "Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations." Journal of Materials Chemistry C 8, no. 31 (2020): 10917–25. http://dx.doi.org/10.1039/d0tc01676d.
Full textFeng, Hao-Lin, Wu-Qiang Wu, Hua-Shang Rao, Long-Bin Li, Dai-Bin Kuang, and Cheng-Yong Su. "Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells." Journal of Materials Chemistry A 3, no. 28 (2015): 14826–32. http://dx.doi.org/10.1039/c5ta02269j.
Full textKIM, Jaewook. "Advances in Floating Zone Crystal Growth." Physics and High Technology 31, no. 9 (September 30, 2022): 22–25. http://dx.doi.org/10.3938/phit.31.030.
Full textSuzuki, Katsuaki, and Hironori Kaji. "(Invited) Structural Analysis of Organic Semiconducting Materials By Solid State NMR." ECS Meeting Abstracts MA2022-01, no. 13 (July 7, 2022): 910. http://dx.doi.org/10.1149/ma2022-0113910mtgabs.
Full textZhou, Qi, Junfang Yang, Mingxu Du, Xiaobo Yu, Cheng Li, Xi-Sha Zhang, Qian Peng, Guanxin Zhang, and Deqing Zhang. "New near-infrared absorbing conjugated electron donor–acceptor molecules with a fused tetrathiafulvalene–naphthalene diimide framework." Journal of Materials Chemistry C 10, no. 7 (2022): 2814–20. http://dx.doi.org/10.1039/d1tc04291b.
Full textMo, Daize, Zhe Chen, Liang Han, Hanjian Lai, Pengjie Chao, Qingwen Zhang, Leilei Tian, and Feng He. "Highly stable and bright fluorescent chlorinated polymer dots for cellular imaging." New Journal of Chemistry 43, no. 6 (2019): 2540–49. http://dx.doi.org/10.1039/c8nj05671d.
Full textPejova, Biljana, Atanas Tanuševski, and Ivan Grozdanov. "Semiconducting thin films of zinc selenide quantum dots." Journal of Solid State Chemistry 177, no. 12 (December 2004): 4785–99. http://dx.doi.org/10.1016/j.jssc.2004.06.011.
Full textCATTANI, M., M. C. SALVADORI, and J. M. FILARDO BASSALO. "SURFACE-INDUCED ELECTRICAL RESISTIVITY OF CONDUCTING THIN FILMS." Surface Review and Letters 12, no. 02 (April 2005): 221–26. http://dx.doi.org/10.1142/s0218625x05006974.
Full textYin, Feng, Kuan Hu, Si Chen, Dongyuan Wang, Jianing Zhang, Mingsheng Xie, Dan Yang, Meng Qiu, Han Zhang, and Zi-gang Li. "Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells." Journal of Materials Chemistry B 5, no. 27 (2017): 5433–40. http://dx.doi.org/10.1039/c7tb01068k.
Full textJames Singh, Konthoujam, Tanveer Ahmed, Prakalp Gautam, Annada Sankar Sadhu, Der-Hsien Lien, Shih-Chen Chen, Yu-Lun Chueh, and Hao-Chung Kuo. "Recent Advances in Two-Dimensional Quantum Dots and Their Applications." Nanomaterials 11, no. 6 (June 11, 2021): 1549. http://dx.doi.org/10.3390/nano11061549.
Full textKausar, Ayesha. "Polyaniline and quantum dot-based nanostructures: Developments and perspectives." Journal of Plastic Film & Sheeting 36, no. 4 (May 14, 2020): 430–47. http://dx.doi.org/10.1177/8756087920926649.
Full textKrowne, C. M. "Nanowire and Nanocable Intrinsic Quantum Capacitances and Junction Capacitances: Results for Metal and Semiconducting Oxides." Journal of Nanomaterials 2010 (2010): 1–27. http://dx.doi.org/10.1155/2010/160639.
Full textYi, Guangyu, Guozhu Wei, and Haina Wu. "Transverse Stark effect in a rectangular semiconducting quantum wire." physica status solidi (b) 244, no. 12 (December 2007): 4651–59. http://dx.doi.org/10.1002/pssb.200743045.
Full textKumar, Pushpendra, and Kedar Singh. "Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots." Journal of Nanoparticle Research 13, no. 4 (April 7, 2010): 1613–20. http://dx.doi.org/10.1007/s11051-010-9914-5.
Full textPortney, Nathaniel G., Alfredo A. Martinez-Morales, and Mihrimah Ozkan. "Nanoscale Memory Characterization of Virus-Templated Semiconducting Quantum Dots." ACS Nano 2, no. 2 (January 10, 2008): 191–96. http://dx.doi.org/10.1021/nn700240z.
Full textKshirsagar, Anjali, and Neelesh Kumbhojkar. "Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots." Bulletin of Materials Science 31, no. 3 (June 2008): 297–307. http://dx.doi.org/10.1007/s12034-008-0048-7.
Full textKNOLL, WOLFGANG, MING-YONG HAN, XINHENG LI, JOSE-LUIS HERNANDEZ-LOPEZ, ABHIJIT MANNA, KLAUS MÜLLEN, FUMIO NAKAMURA, et al. "NANOSCOPIC BUILDING BLOCKS FROM POLYMERS, METALS, AND SEMICONDUCTORS FOR HYBRID ARCHITECTURES." Journal of Nonlinear Optical Physics & Materials 13, no. 02 (June 2004): 229–41. http://dx.doi.org/10.1142/s0218863504001815.
Full textLiu, Chang, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. "Superconductivity in Shear Strained Semiconductors." Chinese Physics Letters 38, no. 8 (September 1, 2021): 086301. http://dx.doi.org/10.1088/0256-307x/38/8/086301.
Full textHam, Heon, and Harold N. Spector. "Stark effect of electrons in a semiconducting quantum disk." Physica B: Condensed Matter 381, no. 1-2 (May 2006): 53–56. http://dx.doi.org/10.1016/j.physb.2005.12.252.
Full textRedko, N. A., V. D. Kagan, and M. P. Volkov. "Quantum-limit anisotropic magnetoresistance of semiconducting n-BiSb alloys." Physica B: Condensed Matter 404, no. 23-24 (December 2009): 5196–99. http://dx.doi.org/10.1016/j.physb.2009.08.320.
Full textRomanova, K. A., and Yu G. Galyametdinov. "Quantum-Chemical Simulation of Optical Functional Materials Based on Semiconducting Quantum Dots CdSe/CdS and Liquid-Crystalline Polymers." Liquid Crystals and their Application 20, no. 2 (June 30, 2020): 76–84. http://dx.doi.org/10.18083/lcappl.2020.2.76.
Full textGérard, Valérie A., Mark Freeley, Eric Defrancq, Anatoly V. Fedorov, and Yurii K. Gun’ko. "Optical Properties andIn VitroBiological Studies of Oligonucleotide-Modified Quantum Dots." Journal of Nanomaterials 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/463951.
Full textGrado-Caffaro, M. A., and M. Grado-Caffaro. "Electrons as harmonic oscillators in degenerate semiconducting quantum dots." Optik 119, no. 7 (May 2008): 349–50. http://dx.doi.org/10.1016/j.ijleo.2007.02.001.
Full textPatel, Ghanshyam, Madan Singh, and Tushar Pandya. "Effect of Size and Shape on Refractive Index, Dielectric Constant and Band Gap of Semiconducting Nanowire." Nanoscience & Nanotechnology-Asia 10, no. 3 (June 17, 2020): 279–85. http://dx.doi.org/10.2174/2210681209666181212154219.
Full textVázquez, G. J., M. del Castillo-Mussot, and Harold N. Spector. "Transverse Stark effect of electrons in a semiconducting quantum wire." physica status solidi (b) 240, no. 3 (December 2003): 561–64. http://dx.doi.org/10.1002/pssb.200301865.
Full textMiller-Link, Elisa. "(Invited) Controlling and Using Optoelectronic Properties of MoS2 and WS2 Monolayers." ECS Meeting Abstracts MA2022-01, no. 12 (July 7, 2022): 863. http://dx.doi.org/10.1149/ma2022-0112863mtgabs.
Full textLimwongse, Teeravat, Supachok Thainoi, Somsak Panyakeow, and Songphol Kanjanachuchai. "InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium." Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/791782.
Full textStuchlikova, Lubica, Beata Sciana, Arpad Kosa, Matej Matus, Peter Benko, Juraj Marek, Martin Donoval, Wojciech Dawidowski, Damian Radziewicz, and Martin Weis. "Evaluation of Effective Mass in InGaAsN/GaAs Quantum Wells Using Transient Spectroscopy." Materials 15, no. 21 (October 30, 2022): 7621. http://dx.doi.org/10.3390/ma15217621.
Full textZhang, Binglei, Yi Luo, Yang Liu, Valerii N. Trukhin, Ilia A. Mustafin, Prokhor A. Alekseev, Bogdan R. Borodin, et al. "Photon Drag Currents and Terahertz Generation in α-Sn/Ge Quantum Wells." Nanomaterials 12, no. 17 (August 23, 2022): 2892. http://dx.doi.org/10.3390/nano12172892.
Full textIbragimov, G. B. "Free-carrier absorption in semiconducting quantum wells for alloy-disorder scattering." Journal of Physics: Condensed Matter 14, no. 19 (May 2, 2002): 4977–83. http://dx.doi.org/10.1088/0953-8984/14/19/319.
Full textLiu, He, Daniel Grasseschi, Akhil Dodda, Kazunori Fujisawa, David Olson, Ethan Kahn, Fu Zhang, et al. "Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2." Science Advances 6, no. 49 (December 2020): eabc9308. http://dx.doi.org/10.1126/sciadv.abc9308.
Full textJeannin, Mathieu, Pamela Rueda-Fonseca, Edith Bellet-Amalric, Kuntheak Kheng, and Gilles Nogues. "Deterministic radiative coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots." Nanotechnology 27, no. 18 (March 22, 2016): 185201. http://dx.doi.org/10.1088/0957-4484/27/18/185201.
Full textTang, Yan-Hao. "Exotic states in moiré superlattices of twisted semiconducting transition metal dichalcogenides." Acta Physica Sinica 72, no. 2 (2023): 1. http://dx.doi.org/10.7498/aps.72.20222080.
Full textAraujo, F. D. V., F. W. N. Silva, T. Zhang, C. Zhou, Zhong Lin, Nestor Perea-Lopez, Samuel F. Rodrigues, et al. "Substrate-Induced Changes on the Optical Properties of Single-Layer WS2." Materials 16, no. 7 (March 24, 2023): 2591. http://dx.doi.org/10.3390/ma16072591.
Full textAsokan, M., and A. John Peter. "Electronic Properties of Exciton in Mg Based II–VI Wide Band Gap Semiconducting Quantum Dots." Journal of Advanced Physics 6, no. 1 (March 1, 2017): 126–32. http://dx.doi.org/10.1166/jap.2017.1304.
Full textKumar, Ajay, Priyam, Harikesh Meena, Jai Prakash, Ling Wang, and Gautam Singh. "Recent advances on semiconducting nanomaterials–ferroelectric liquid crystals nanocomposites." Journal of Physics: Condensed Matter 34, no. 1 (November 1, 2021): 013004. http://dx.doi.org/10.1088/1361-648x/ac2ace.
Full textSreckovic, Milesa, Stanko Ostojic, Jelena Ilic, Zoran Fidanovski, Sanja Jevtic, Dragan Knezevic, and Marija Obrenovic. "Photoinduced processes, radiation interaction with material and damages - material hardness." Nuclear Technology and Radiation Protection 30, no. 1 (2015): 23–34. http://dx.doi.org/10.2298/ntrp1501023s.
Full textPan, Jun, Hao Shen, and Sanjay Mathur. "One-Dimensional SnO2Nanostructures: Synthesis and Applications." Journal of Nanotechnology 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/917320.
Full textDutta, Riya, Avradip Pradhan, Praloy Mondal, Saloni Kakkar, T. Phanindra Sai, Arindam Ghosh, and Jaydeep Kumar Basu. "Enhancing Carrier Diffusion Length and Quantum Efficiency through Photoinduced Charge Transfer in Layered Graphene–Semiconducting Quantum Dot Devices." ACS Applied Materials & Interfaces 13, no. 20 (May 17, 2021): 24295–303. http://dx.doi.org/10.1021/acsami.1c04254.
Full textVIGNEASHWARI, B., S. DASH, A. K. TYAGI, and S. AUSTIN SUTHANTHIRARAJ. "SYNTHESIS, CHARACTERIZATION, AND ASSEMBLY OF CdSe QUANTUM DOT ARRAY." International Journal of Nanoscience 07, no. 01 (February 2008): 9–19. http://dx.doi.org/10.1142/s0219581x0800516x.
Full textIbragimov, G. B. "Free-carrier absorption in semiconducting quantum well wires for alloy-disorder scattering." Journal of Physics: Condensed Matter 14, no. 34 (August 22, 2002): 8145–52. http://dx.doi.org/10.1088/0953-8984/14/34/332.
Full textKostyrko, T., and S. Krompiewski. "A model of a tunable quantum dot in a semiconducting carbon nanotube." Semiconductor Science and Technology 23, no. 8 (July 23, 2008): 085024. http://dx.doi.org/10.1088/0268-1242/23/8/085024.
Full textMohanan, Jaya L., Indika U. Arachchige, and Stephanie L. Brock. "Porous Semiconductor Chalcogenide Aerogels." Science 307, no. 5708 (January 21, 2005): 397–400. http://dx.doi.org/10.1126/science.1104226.
Full text