Academic literature on the topic 'Semiconducting Quantum Materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconducting Quantum Materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Semiconducting Quantum Materials"

1

Zhang, Dao Hua. "Semiconducting Materials for Photonic Technology." Materials Science Forum 859 (May 2016): 96–103. http://dx.doi.org/10.4028/www.scientific.net/msf.859.96.

Full text
Abstract:
Semiconducting materials are important photonic materials and the technologies developed have been utilized in many fields of the modern society and they are closely related to the quality of our life. The main applications of the materials are for light source and sensing originated from interaction of photons and matters. In this invited talk, I will first present our work on the properties of the semiconducting materials and their applications as lasers and photodetectors, and then present integrated hybrid subwavelength structures which show significant enhancement on device performance. It is believed that complex hybrid structures which combine quantum-and hetero-structures made of semiconducting materials, and subwavelength structure for performance enhancement are the main focus in the near future.
APA, Harvard, Vancouver, ISO, and other styles
2

Cocchi, Caterina, and Holger-Dietrich Saßnick. "Ab Initio Quantum-Mechanical Predictions of Semiconducting Photocathode Materials." Micromachines 12, no. 9 (August 24, 2021): 1002. http://dx.doi.org/10.3390/mi12091002.

Full text
Abstract:
Ab initio Quantum-Mechanical methods are well-established tools for material characterization and discovery in many technological areas. Recently, state-of-the-art approaches based on density-functional theory and many-body perturbation theory were successfully applied to semiconducting alkali antimonides and tellurides, which are currently employed as photocathodes in particle accelerator facilities. The results of these studies have unveiled the potential of ab initio methods to complement experimental and technical efforts for the development of new, more efficient materials for vacuum electron sources. Concomitantly, these findings have revealed the need for theory to go beyond the status quo in order to face the challenges of modeling such complex systems and their properties in operando conditions. In this review, we summarize recent progress in the application of ab initio many-body methods to investigate photocathode materials, analyzing the merits and the limitations of the standard approaches with respect to the confronted scientific questions. In particular, we emphasize the necessary trade-off between computational accuracy and feasibility that is intrinsic to these studies, and propose possible routes to optimize it. We finally discuss novel schemes for computationally-aided material discovery that are suitable for the development of ultra-bright electron sources toward the incoming era of artificial intelligence.
APA, Harvard, Vancouver, ISO, and other styles
3

Banerjee, Pritam, Chiranjit Roy, Juan Jesús Jiménez, Francisco Miguel Morales, and Somnath Bhattacharyya. "Atomically resolved 3D structural reconstruction of small quantum dots." Nanoscale 13, no. 16 (2021): 7550–57. http://dx.doi.org/10.1039/d1nr00466b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zentel, Rudolf. "Polymer Coated Semiconducting Nanoparticles for Hybrid Materials." Inorganics 8, no. 3 (March 11, 2020): 20. http://dx.doi.org/10.3390/inorganics8030020.

Full text
Abstract:
This paper reviews synthetic concepts for the functionalization of various inorganic nanoparticles with a shell consisting of organic polymers and possible applications of the resulting hybrid materials. A polymer coating can make inorganic nanoparticles soluble in many solvents as individual particles and not only do low molar mass solvents become suitable, but also polymers as a solid matrix. In the case of shape anisotropic particles (e.g., rods) a spontaneous self-organization (parallel orientation) of the nanoparticles can be achieved, because of the formation of lyotropic liquid crystalline phases. They offer the possibility to orient the shape of anisotropic nanoparticles macroscopically in external electric fields. At least, such hybrid materials allow semiconducting inorganic nanoparticles to be dispersed in functional polymer matrices, like films of semiconducting polymers. Thereby, the inorganic nanoparticles can be electrically connected and addressed by the polymer matrix. This allows LEDs to be prepared with highly fluorescent inorganic nanoparticles (quantum dots) as chromophores. Recent works have aimed to further improve these fascinating light emitting materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Mokkath, Junais Habeeb. "Dopant-induced localized light absorption in CsPbX3 (X = Cl, Br, I) perovskite quantum dots." New Journal of Chemistry 43, no. 46 (2019): 18268–76. http://dx.doi.org/10.1039/c9nj03784e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reichardt, Sven, and Ludger Wirtz. "Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials." Science Advances 6, no. 32 (August 2020): eabb5915. http://dx.doi.org/10.1126/sciadv.abb5915.

Full text
Abstract:
We present an ab initio computational approach for the calculation of resonant Raman intensities, including both excitonic and nonadiabatic effects. Our diagrammatic approach, which we apply to two prototype, semiconducting layered materials, allows a detailed analysis of the impact of phonon-mediated exciton-exciton scattering on the intensities. In the case of bulk hexagonal boron nitride, this scattering leads to strong quantum interference between different excitonic resonances, strongly redistributing oscillator strength with respect to optical absorption spectra. In the case of MoS2, we observe that quantum interference effects are suppressed by the spin-orbit splitting of the excitons.
APA, Harvard, Vancouver, ISO, and other styles
7

Liang, Shuang, Ze Ma, Nan Wei, Huaping Liu, Sheng Wang, and Lian-Mao Peng. "Solid state carbon nanotube device for controllable trion electroluminescence emission." Nanoscale 8, no. 12 (2016): 6761–69. http://dx.doi.org/10.1039/c5nr07468a.

Full text
Abstract:
Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Banks, Peter A., Jefferson Maul, Mark T. Mancini, Adam C. Whalley, Alessandro Erba, and Michael T. Ruggiero. "Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations." Journal of Materials Chemistry C 8, no. 31 (2020): 10917–25. http://dx.doi.org/10.1039/d0tc01676d.

Full text
Abstract:
The thermomechanical response of organic semiconducting solids – an essential aspect to consider for the design of flexible electronics – was determined using terahertz vibrational spectroscopy and quantum quasiharmonic approximation simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Feng, Hao-Lin, Wu-Qiang Wu, Hua-Shang Rao, Long-Bin Li, Dai-Bin Kuang, and Cheng-Yong Su. "Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells." Journal of Materials Chemistry A 3, no. 28 (2015): 14826–32. http://dx.doi.org/10.1039/c5ta02269j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KIM, Jaewook. "Advances in Floating Zone Crystal Growth." Physics and High Technology 31, no. 9 (September 30, 2022): 22–25. http://dx.doi.org/10.3938/phit.31.030.

Full text
Abstract:
Optical floating zone (OFZ) method has been applied to grow various materials for semiconducting industry applications as well as basic research on quantum materials. This article describes the OFZ method in detail and briefly introduces two recent advances in floating zone method by incorporating new techniques, namely, laser diode as optical source and high pressure environments. These developments have made it possible to grow materials that were previously challenging in conventional OFZ method and greatly expanded the range of accessible systems to search for exotic quantum phenomena.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Semiconducting Quantum Materials"

1

Flatten, Lucas Christoph. "Quantum electrodynamics of semiconducting nanomaterials in optical microcavities." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:a5f4797f-ea23-49e4-bd1e-2483154508d6.

Full text
Abstract:
Semiconducting nanocrystals in open-access microcavities are promising systems in which enhanced light-matter interactions lead to quantum effects such as the modulation of the spontaneous emission process and exciton-polariton formation. In this thesis I present improvements of the open cavity platform which serves to confine the electromagnetic field with mode volumes down to the λ3 regime and demonstrate results in both the weak and strong coupling regimes of cavity quantum electrodynamics with a range of different low-dimensional materials. I report cavity fabrication details allowing a peak finesse of 5 × 104 and advanced photonic structures such as coupled cavities in the open cavity geometry. By incorporating two-dimensional materials and nanoplatelets in the cavity I demonstrate the strong coupling regime of light-matter interaction with the formation of exciton-polaritons, quasi-particles composed of both photon and exciton, at room temperature. In the perturbative weak coupling regime I show pronounced modulation of the single-photon emission from CdSe/ZnS quantum dots and the two-dimensional material WSe2 and demonstrate Purcell enhancement of the spontaneous emission rate by factors of 2 at room temperature and 8 at low temperature. The findings presented in this thesis pave the way to establish open microcavities as a platform for a wide range of applications in nanophotonics and quantum information technologies.
APA, Harvard, Vancouver, ISO, and other styles
2

Bandyopadhyay, Avra Sankar. "Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752376/.

Full text
Abstract:
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions. We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yu. "Fabrication, structural and spectroscopic studies of wide bandgap semiconducting nanoparticles of ZnO for application as white light emitting diodes." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI046.

Full text
Abstract:
La présente thèse étudie les nanoparticules de ZnO incorporées dans une matrice d'acide polyacrylique (PAA) mésosphérique synthétisée via un protocole d'hydrolyse. La structure hybride mésosphérique de ZnO / PAA a précédemment démontré son efficacité pour émettre de la lumière visible dans une large gamme, qui résulte des défauts intrinsèques de niveaux profonds dans les nanocristaux de ZnO. Pour modifier davantage le spectre de photoluminescence (PL) et améliorer le rendement quantique de PL (PL QY) du matériau, le ZnO dopé au métal et le ZnO / PAA revêtu de silice sont fabriqués indépendamment. Au niveau du ZnO dopé avec des éléments métalliques, la nature, la concentration, la taille et la valence du dopant affectent la formation des mésosphères et par conséquent la PL et le PL QY. Les ions plus grands que Zn2+ avec une valence plus élevée ont tendance à induire des mésosphères plus grandes et des nanoparticules de ZnO non incorporées. Le dopage conduit généralement à l'extinction de la PL, mais le spectre PL peut toujours être ajusté dans une large plage (entre 2,46 eV et 2,17 eV) sans dégrader le PL QY en dopant avec de petits ions à une faible concentration de dopage (0,1 %). Concernant le ZnO / PAA revêtu de silice, un revêtement optimal est obtenu, qui dépend corrélativement de la quantité de TEOS et d'ammoniac dans le processus de revêtement. La quantité de TEOS n'affecte pas la structure cristalline de ZnO ou le spectre PL du matériau, mais une concentration élevée d'ammoniac peut dégrader les mésosphères de PAA et épaissir la couche de silice. Une fine couche de silice qui n'absorbe pas trop de lumière d'excitation mais recouvre complètement les mésosphères s'avère être la plus efficace, avec une amélioration drastique du PL QY d’un facteur six. En ce qui concerne l'application, les matériaux souffrent d’une dégradation thermique à des températures élevées jusqu'à 100 °C, auxquelles les diodes électroluminescentes blanches (WLEDs) fonctionnent généralement. Cependant, le ZnO / PAA revêtu de silice induit une intensité d'émission plus élevée à température ambiante pour compenser la dégradation thermique
The present thesis studies ZnO nanoparticles embedded in a mesospheric polyacrylic acid (PAA) matrix synthesized via a hydrolysis protocol. The mesospheric ZnO/PAA hybrid structure was previously proved efficient in emitting visible light in a broad range, which results from the deep-level intrinsic defects in ZnO nanocrystals. To further tune the photoluminescence (PL) spectrum and improve the PL quantum yield (PL QY) of the material, metal-doped ZnO and silica-coated ZnO/PAA are fabricated independently. For ZnO doped with metallic elements, the nature, concentration, size and valence of the dopant are found to affect the formation of the mesospheres and consequently the PL and PL QY. Ions larger than Zn2+ with a higher valence tend to induce larger mesospheres and unembedded ZnO nanoparticles. Doping generally leads to the quenching of PL, but the PL spectrum can still be tuned in a wide range (between 2.46 eV and 2.17 eV) without degrading the PL QY by doping small ions at a low doping concentration (0.1 %). For silica-coated ZnO/PAA, an optimal coating correlatively depends on the amount of TEOS and ammonia in the coating process. The amount of TEOS does not affect the crystal structure of ZnO or the PL spectrum of the material, but high concentration of ammonia can degrade the PAA mesospheres and thicken the silica shell. A thin layer of silica that does not absorb too much excitation light but completely covers the mesospheres proves to be the most efficient, with a drastic PL QY improvement of six times. Regarding the application, the materials suffer from thermal quenching at temperatures high up to 100°C, at which white light emitting diodes (WLEDs) generally operates. However, silica-coated ZnO/PAA induces higher emission intensity at room temperature to make up for the thermal quenching
APA, Harvard, Vancouver, ISO, and other styles
4

Παππάς, Σπυρίδων. "Ανάπτυξη και χαρακτηρισμός προηγμένων υλικών για νανοδιατάξεις." Thesis, 2013. http://hdl.handle.net/10889/6374.

Full text
Abstract:
Το αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η ανάπτυξη και ο χαρακτηρισμός προηγμένων υλικών για εφαρμογές σε νανοδιατάξεις. Στα πλαίσια αυτής, επικεντρωθήκαμε στην ανάπτυξη και μελέτη μαγνητικών και ημιαγωγικών λεπτών υμενίων που βασίζονται σε οξείδια παραδοσιακών μετάλλων και ημιαγωγών. Ο μαγνητικός και οπτικός χαρακτηρισμός των υλικών αυτών υπό τη μορφή της νανοδομής του λεπτού υμενίου, αποκαλύπτουν νέες ιδιότητες με εξαιρετικά μεγάλο τεχνολογικό ενδιαφέρον. Πιο συγκεκριμένα, έγινε καταρχήν ανάπτυξη πολυστρωματικών μαγνητικών υμενίων Ni/NiO, μονοστρωματικών ημιαγωγικών υμενίων Cu2O, CuO και NiO, όπως επίσης και μονοστρωματικών άμορφων μονωτικών υμενίων SiOx με ή και χωρίς ενσωματωμένες κβαντικές τελείες Si. Για κάθε σειρά υμενίων από τις κατηγορίες αυτές, έγινε μελέτη των μαγνητικών ή/και των οπτικών τους ιδιοτήτων. Τα υμένια Ni/NiO αναπτύχθηκαν σε διαφορετικά υποστρώματα με τη χρήση μιας μόνο κεφαλής magnetron sputtering και της μεθόδου της φυσικής οξείδωσης. Η διαστρωμάτωση του υλικού και η επαναληψιμότητα της μεθόδου αποδείχθηκαν εξαιρετικής ποιότητας. Για υμένια Ni/NiO με διαφορετικό πάχος στρώματος Ni έγινε εκτεταμένη μελέτη της εξάρτησης της μαγνήτισης και της ανισοτροπίας από τη θερμοκρασία. Βρέθηκε ότι τα υμένια με λεπτά στρώματα Ni εμφανίζουν τάση για κάθετη μαγνητική ανισοτροπία, η οποία προέρχεται από την υπολογίσιμη θετική ανισοτροπία επιφανείας που επιδεικνύουν αυτά. Τα ημιαγωγικά υμένια οξειδίων του Cu και του Νi αναπτύχθηκαν μετά από οξείδωση υμενίων των αντίστοιχων μεταβατικών μετάλλων. Τα άμορφα μονωτικά υμένια SiOx αναπτύχθηκαν με τη τεχνική της “reactive” ιοντοβολής. Στη συνέχεια, μέρος αυτών οξειδώθηκε πλήρως μετά από θέρμανση σε θερμοκρασία 950 οC και σε περιβάλλον αέρα, ενώ κάποια άλλα υποβλήθηκαν σε θερμική αποσύνθεση μετά από θέρμανση σε συνθήκες κενού στους 1000 οC. Με τη διαδικασία της θερμικής αποσύνθεσης, όπως αποδεικνύουν και οι εικόνες ηλεκτρονικής μικροσκοπίας, σχηματίζονται νανοκρύσταλλοι Si ενσωματωμένοι σε άμορφη μήτρα οξειδίου του Si. Για τα υμένια των οξειδίων του Cu και του Ni μελετήθηκαν με τη χρήση της φασματοσκοπίας UV-VIS τα φαινόμενα κβαντικού περιορισμού που παρουσιάζουν αυτά. Βρέθηκε ότι σε κάθε περίπτωση εμφανίζεται μετατόπιση της ακμής απορρόφησης προς μεγαλύτερες ενέργειες, καθώς το πάχος του υμενίου μειώνεται και γίνεται συγκρίσιμο με την εξιτονική ακτίνα Bohr του αντίστοιχου υλικού. Τα υμένια SiOx βρέθηκε ότι μετά από τη διαδικασία της θερμικής τους αποσύνθεσης παρουσιάζουν φωτοφωταύγεια, η οποία προέρχεται από τις εξιτονικές επανασυνδέσεις στις κβαντικές τελείες Si που εμπεριέχονται σ’ αυτά. Από την εργασία στα πλαίσια αυτής της Διατριβής, διαπιστώνουμε ότι μπορούμε να μεταβάλλουμε τις ιδιότητες παραδοσιακών υλικών, όπως είναι για παράδειγμα τα μέταλλα, οι κλασσικοί ημιαγωγοί και τα οξείδια αυτών, όταν αυτά αναπτύσσονται υπό τη μορφή νανοδομών. Οι νανοδομές αυτές μπορεί να εμφανίζουν εξαιρετικό ενδιαφέρον για εφαρμογές σε νανοδιατάξεις με καινούργιες αλλά κι εντελώς ελεγχόμενες ιδιότητες.
The objective of this Thesis is the growth and the characterization of high tech materials which can be possible candidates for future applications in nanodevices. In the framework of the Thesis, we were mainly focused on the production and the study of magnetic and semiconducting thin films, which are based on oxides of metals and of conventional semiconductors. The magnetic and optical characterizations reveal that these materials, in the form of thin films exhibit new properties with exceptionally large technological interest. In more detail, magnetic Ni/NiO multilayers, semiconducting Cu2O, CuO and NiO thin films, as well as insulating amorphous SiOx thin films with or without embedded Si quantum dots, were produced. The magnetic and/or optical properties of each of the aforementioned thin film categories were studied and their impact on possible future applications was examined. The Ni/NiO multilayers were produced on various substrates with the aid of a single magnetron sputtering head and the natural oxidation process. The produced multilayers were of excellent layering and interface quality. An extended study of both the magnetization and the anisotropy as a function of the temperature and the varying Ni layer thickness was performed. It is found from the magnetic investigations, that the multilayers with thin Ni layers exhibit a trend for perpendicular magnetic anisotropy, which is attributed to the considerable positive surface anisotropy of the Ni/NiO interfaces. The semiconducting copper and nickel oxide thin films were produced via the oxidation of the corresponding metallic films. The amorphous SiOx films were fabricated via the reactive sputtering method. Part of the as deposited films was fully oxidized at 950 oC under the ambient air environment, whereas another part was thermally decomposed under vacuum conditions at 1000 oC. Electron microscopy investigations reveal that upon the thermal decomposition process of the films, embedded Si nanocrystals are formed in the amorphous matrix of the Si oxide. The Cu and Ni oxide films exhibited quantum confinement effects, which were studied via the UV-VIS spectroscopy. The recorded spectra reveal that the absorption edge shifts towards higher energies, as the layer thickness is reduced and becomes comparable with the excitonic Bohr radius of the material. The Si oxide thin films, after the thermal decomposition treatment are found to exhibit photoluminescence at the region between 1.3 and 1.5 eV which is originated to the excitonic recombination in the embedded Si quantum dots. Finally, it is deduced that conventional materials like metals, semiconductors and the oxides of them, can exhibit new properties when they are prepared in the form of nanostructure. These nanostructures can attract a lot of interest for possible applications in nanodevices with new but completely controllable properties.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Semiconducting Quantum Materials"

1

G, Snyder Paul, and United States. National Aeronautics and Space Administration., eds. Materials, structures, and devices for high-speed electronics: Final report, grant period, January 1, 1981 - December 31, 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

G, Snyder Paul, and United States. National Aeronautics and Space Administration., eds. Materials, structures, and devices for high-speed electronics: Final report, grant period, January 1, 1981 - December 31, 1992. [Washington, DC: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Panigrahi, Muktikanta, and Arpan Kumar Nayak. Polyaniline based Composite for Gas Sensors. IOR PRESS, 2021. http://dx.doi.org/10.34256/ioriip212.

Full text
Abstract:
In this research work, we have demonstrated the synthesis, spectroscopic characteristics, thermal behaviour and DC conductivity of a few nanostructured composites, substituted conducting polymers (ICPs) and composites of ICPs. The physical properties of aforementioned composites are significantly changed by the doping with HCl, H2SO4, HNO3, H3PO4, or acrylic acid. The charge transport properties of these polymeric materials have been studied in detail because of their potential application in gas sensors. In the current work, varieties of conducting polymer based materials such as PANI-ES/Cloisite 20A nanostructured composite, acrylic acid (AA) doped PANI polymer, N-substituted conducting polyaniline polymer, DL−PLA/PANI-ES composites, poly methyl methacrylate (PMMA) based polyaniline composite, and inorganic acid doped polyaniline are sucessfuly synthesized using aniline/aniline hydrochloride as precursors in acidic medium. Particularly, AA based synthesised PANI polymer was found with higher solubility The spectroscopic, thermal stability, enthalpy of fusion, room temperature DC conductivity and temperature dependent DC conductivity measurements with and without magnetic was carried out with as-synthesized materials. The FTR/ATR−FTIR spectra indicated the presence of different functional groups in the as-prepared composite materials. The UV−Visible absorption spectroscopic analysis showed the presence of polaron band suggesting PANI-ES form. The Room temperature DC conductivity, temperature variation DC conductivity (in presence and absence of magnetic field), and magnetoresistance (MR) of as-prepared conducting polyaniline based were analysed. The highest room temperature DC conductivity value was obtained from H2SO4 doped based composite materials and all prepared conductive composites were followed ohms law. The low temperature DC conductivity was carried out in order to study the semiconducting nature of prepared materials. The Mott type VRH model was found to be well fitted the conductivity data and described the density of states at the Fermi level which is constant in this temperature range. From MR plots, a negative MR was observed, which described the quantum interference effect on hopping conduction. We discuss different gas analytes i.e., NO2, LPG, H2, NH3, CH4, and CO of conducting polymer based materials.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Semiconducting Quantum Materials"

1

Pattanayak, Dillip Kumar, Arun Kumar Padhy, Lokesh Kumar Prusty, Ranjan Kumar Bhuyna, and Samita Pattanayak. "Hidden Treasures of Semiconducting Materials for Quantum Computing." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 132–53. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9183-3.ch009.

Full text
Abstract:
Quantum computing is based on physical materials. The choice of material is important, and semiconductor materials have become a widely trailed choice in recent years. A lot of initial research into quantum computing only manifested that it could operate at temperatures close to absolute zero. However, because semiconductors are now used in the construct of these systems, it has enabled researchers to utilize quantum computers in room temperature conditions. This is one of the major reasons why quantum computing is close to commercial realization, so the role played by semiconductors is of major importance. It is true that the implementation of semiconductors has been challenging in its own way. Many semiconducting materials can exhibit many quantum degrees of freedom, and this causes the qubits to interact with each and decode quickly. Here the authors try to project a systematic study of different semiconducting materials used for quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
2

"Self-organized and quantum domain structures." In Microscopy of Semiconducting Materials, 115–78. CRC Press, 2000. http://dx.doi.org/10.1201/9781482268690-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Quantum Dots: Properties and Applications." In Materials Research Foundations, 331–48. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901250-13.

Full text
Abstract:
Quantum dots (QDs) are very small nanoparticles and are composed of hundreds to thousands of atoms. These semiconducting materials can be made from an element, such as silicon or germanium, or compounds such as cadmium sulphide (CdS) or cadmium selenide (CdSe). The colour of these small particles does not depend on the type of semiconducting material from which the dots are made, but rather on its diameter. Besides, ODs attract the most attention because of their unique visual properties. Therefore, these are used in all kinds of applications where precise control of coloured light is important. As these dots are of great importance in chemical, biological and medical applications, they can be designed to deliver anti-cancer drugs and direct them to specific areas of the body. Therefore, with this technique, the harmful side effects of chemical treatments can be reduced. It is possible to examine and study the properties of these nanomaterials and make sure they are analyzed using some scientific devices and techniques, the most important of which are: transmittance electron microscopy (TEM), scanning electron microscopy (SEM), atomic forces microscopy (AFM) with dielectrics, and X-ray diffraction (XRD). This chapter opens horizons towards knowing what quantum dots are and their unique properties, as well as methods of preparation and then placing our hands on the chemical, and biological applications of these dots.
APA, Harvard, Vancouver, ISO, and other styles
4

Cockayne, D. J. H., X. Z. Liao, and J. Zou. "The morphology and composition of quantum dots." In Microscopy of Semiconducting Materials 2001, 77–83. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shen, H., and F. H. Pollak. "Quantum Wells." In Concise Encyclopedia of Semiconducting Materials & Related Technologies, 385–88. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-034724-0.50093-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ernst, F., O. Kienzle, O. G. Schmidt, K. Eberl, J. Zhu, K. Brunner, and G. Abstreiter. "Ge-Si Nanostructures for Quantum-Effect Electronic Devices." In Microscopy of Semiconducting Materials 2001, 167–76. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Migliorato, M. A., A. G. Cullis, M. Fearn, and J. H. Jefferson. "Atomistic modelling of strain relaxation effects in quantum dots." In Microscopy of Semiconducting Materials 2001, 97–100. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keast, V. J., N. Sharma, and C. J. Humphreys. "Energy-loss spectroscopy of GaN alloys and quantum wells." In Microscopy of Semiconducting Materials 2001, 259–62. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhi, D., D. W. Pashley, B. A. Joyce, and T. S. Jones. "The structure of uncapped and capped InAs/GaAs quantum dots." In Microscopy of Semiconducting Materials 2001, 89–92. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leifer, K., B. Dwir, Y. Ducommun, D. Y. Oberli, and E. Kapon. "Localisation and transport in quantum wires with longitudinal bandgap variation." In Microscopy of Semiconducting Materials 2001, 113–18. CRC Press, 2018. http://dx.doi.org/10.1201/9781351074629-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Semiconducting Quantum Materials"

1

Xiulai Xu, D. A. Williams, J. R. A. Cleaver, Debao Zhou, and C. Stanley. "InAs quantum dots for quantum information processing." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, L., P. Lever, P. L. Gareso, M. Buda, H. H. Tan, C. Jagadish, P. Reece, and M. gal. "Impurity-free vacancy disordering of quantum wells and quantum dots for optoelectronic/photonic integrated circuits." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Kwang-Sup. "Semiconducting quantum dots with optoelectronic and photonic functions (Conference Presentation)." In Organic Photonic Materials and Devices XXI, edited by Christopher E. Tabor, François Kajzar, and Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2514004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsuya, Daiju, Masaki Suzuki, Yoshinobu Aoyagi, and Koji Ishibashi. "Quantum dot transport of semiconducting single-wall carbon nanotubes." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.h-4-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yan, B., Z. Yang, Y. Shi, J. L. Liu, R. Zhang, Y. D. Zheng, and K. L. Wang. "Structural characteristics of self-assembled Ge/Si quantum dot superlattices." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jarillo-Herrero, Pablo. "A Few Electron-Hole Semiconducting Carbon Nanotube Quantum Dot." In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Q., P. Offermans, R. Noetzel, P. M. Koenrad, and J. H. Wolter. "Capping process of InAs/GaAs quantum dots grown by molecular-beam epitaxy." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

He, J., P. Offermans, P. M. Koenrad, Q. Gong, G. J. Hamhuis, T. J. Eijekmans, and J. H. Wolter. "Structural and optical properties of columnar (In,Ga)As quantum dots on GaAs (100)." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Terashita, Y., M. Okazaki, K. Kamimura, and K. Fujiwara. "Lasing wavelength of GaAs single quantum well diodes with thin AlAs carrier blocking layers." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, B., Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye, H. Y. Liu, Z. Y. Zhang, et al. "Controlled growth of III-V compound semiconductor nano-structures and their application in quantum-devices." In 2004 13th International Conference on Semiconducting and Insulating Materials. IEEE, 2004. http://dx.doi.org/10.1109/sim.2005.1511398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography